Skip to main content

Chloroplasts Heat Shock Protein 70B as Marker of Oxidative Stress

  • Chapter
  • First Online:
Book cover Heat Shock Proteins and Plants

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

Abstract

Organisms respond to environmental impact by developing a series of physiological, biochemical and molecular strategies. Heat shock proteins are one of them, possess a special place among defense systems and could contribute to cellular homeostasis. Here we address and try to discuss the following questions: 1. Whether species isolated from habitats with extreme environmental conditions are good model for studying cell resistance to oxidative stress? 2. Whether HSP70B could be used as a reliable marker for cell resistance to oxidative stress? 3. Whether HSP70B could be applied to evaluate the magnitude of environmentally induced stress? In this chapter we tried to throw more light on these three “whether”. Briefly, results and discussion presented here contribute to the hypothesis of consistent functional properties of HSP70B as a mechanism of thermo-tolerance in plant species. Some assumptions are done concerning the role of constitutive and well-expressed overproduction of HSP70B as a part of Chlorella survival strategy against environmental stress stimuli. Here we show that overproduction of HSP70B could be used as an early warning marker for induced oxidative stress in the studied genotypes. Our experimental finding that HSP70B induction correlates with the magnitude of PQ-induced oxidative stress contributes to the still unresolved challenge for identification of reliable markers for screening of genotype resistance/susceptibility to oxidative stress. For the first time we identified homologue of chloroplast HSP70B in Chlorella chloroplasts. The development of plant-based biomarker test systems corresponds to the strategies for protection biodiversity preservation and genome stability of plant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

catalase

GST:

glutathione-S-transferase

HSPs:

heat shock proteins

PQ:

paraquat

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Ahn S-G, Thiele DJ (2003) Direct redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and cellular protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Almeselmani M, Deshmukh P, Sairam R, Kushwaha S, Singh T (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidativestress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392

    Article  CAS  PubMed  Google Scholar 

  • Badahur A, Antra C, Rajesh K, Major S, Naik P (2011) Physiological and biochemical basis of drought tolerance in vegetables. Veg Sci 38:1–16

    Google Scholar 

  • Badiani M, Schenone G, Paolacci AR, Fumagalli I (1993) Daily Fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves as affected by the presence of ambient air pollutants. Plant Cell Physiol 34:271–279

    CAS  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P(2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Google Scholar 

  • Banti V, Loreti E, Novi G, Santaniello A, Alpi A, Perata P (2008) Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell Environ 31:1029–1037

    Google Scholar 

  • Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Barua D, Heckathorn SA (2006) The interactive effects of light and temperature on heat shock protein accumulation in Solidago altissima (Asteracea) in the field and laboratory. Am J Bot 93:102–109

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2012) Soil bacteria support and protect plants against abiotic stresses. In: Venkateswarlu B, Shanker A (eds) Abiotic stress in plants – mechanisms and adaptations. Agricultural and biological sciences. Springer, Dordrecht, pp 143–171

    Google Scholar 

  • Bierkens J, Van dePerre WV, Maes J (1998) Effect of different environmental variables on the synthesis of Hsp70 in Raphidocelis subcapitata. Comp Biochem Physiol A Mol Integr Physiol 120:29–34

    Article  CAS  PubMed  Google Scholar 

  • Brennecke T, Gellner K, Bosch TC (1998) The lack of stress response in Hydra oligactis is due to reduce hsp70 mRNA stability. Eur J Biochem 255:703–709

    Article  CAS  PubMed  Google Scholar 

  • Chalmers AJ (2007) Radioresistant glioma stem cells – therapeutic obstacle or promising target? DNA Repair 6:1391–1394

    Article  CAS  PubMed  Google Scholar 

  • Chankova S, Yurina N (2012) Micro-algae as a model system for studying of genotype resistance to oxidative stress and adaptive response. In: Mothersill CE, Korogodina V, Seymour CB (eds) Radiobiology and environmental security. Springer, Dordrecht, pp 19–30

    Chapter  Google Scholar 

  • Chankova SG, Vinarova KM, Nikolov SH, Mehandjiev AD, Sergeeva SA, Ptitzina SN, Semov AB, Shevchenko VA (1990) Changes in Chlorella vulgaris B. populations after chronic influence with chemical and physical mutagenic factors. Biol Plant 32:35–41

    Article  Google Scholar 

  • Chankova SG, Kapchina VM, Stoyanova DP (2000) Some aspects of the plant radioresistance. Radiats Biol Radioecol 40:535–543

    CAS  PubMed  Google Scholar 

  • Chankova SG, Kapchina-Toteva VM, Frolova O, Stoilov LM, Blagoeva ED (2001) Characterization of new radioresistant strains of Chlamydomonas reinhardtii. C R Acad Bulg Sci 54:51–54

    CAS  Google Scholar 

  • Chankova SG, Matos JA, Simões F, Bryant PE (2005) Adaptive response of a new radioresistant strain of Chlamydomonas reinhardtii and correlation with increased DNA double-strand break rejoining. Int J Radiat Biol 81:509–514

    Article  CAS  PubMed  Google Scholar 

  • Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys 46:409–416

    Article  CAS  PubMed  Google Scholar 

  • Chankova SG, Yurina NP, Dimova EG, Ermohina OV, Oleskina YP, Dimitrova MT, Bryant PE (2009) Pretreatment with heat does not affect double strand DNA rejoining in Chlamydomonas reinhardtii. J Therm Biol 34:332–336

    Article  CAS  Google Scholar 

  • Chankova SG, Mitrovska Z, Miteva D, Oleskina YP, Yurina NP (2013) Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. GENE 516:184–189

    Article  CAS  PubMed  Google Scholar 

  • Chankova SG, Dimova EG, Mitrovska Z, Miteva D, Mokerova DV, Yonova PA, Yurina NP (2014) Antioxidant and HSP70B responses in Chlamydomonas reinhardtii genotypes with different resistance to oxidative stress. Ecotoxicol Environ Saf 101:131–137

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu A, Zhang S, Li C, Chang R, Liu D, Ahammed GJ, Lin X (2013) Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato. Plant Physiol Biochem 73:245–253

    Article  CAS  PubMed  Google Scholar 

  • Clark M, Peck LS (2009) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini D, Monaghan P, Metcalfe NB (2013) Loss of integration is associated with reduced resistance to oxidative stress. J Exp Biol 216:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Dimova E, Dimitrova M, Miteva D, Mitrovska Z, Chankova S (2008) Paraquat induced adaptive response in Chlamydomonas reinhardtii strains depends on the genotype. Compt Rend Acad Bulg Sci 61:911–918

    CAS  Google Scholar 

  • Dimova E, Dimitrova M, Miteva D, Mitrovska Z, Yurina NP, Bryant PE, Chankova S (2009) Does single-dose cell resistance to the radio-mimetic zeocin correlate with a zeocin-induced adaptive response in Chlamydomonas reinhardtii strains? Radiat Environ Biophys 48:77–84

    Article  CAS  PubMed  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Drzymalla C, Schroda M, Beck CF (1996) Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. Plant Mol Biol 31:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Duan Y-H, Guo J, Ding K, Wang SJ, Zhang H, Dai XW, Chen YY, Govers F, Huang LL, Kang ZS (2011) Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol Biol Rep 38:301–307

    Article  CAS  PubMed  Google Scholar 

  • Ekmekci Y, Terzioglu S (2005) Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic Biochem Physiol 83:69–81

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat shock proteins, molecular chaperones, and stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux P (2010) The role of reactive oxygen species in signaling from chloroplasts to the nucleus. Physiol Plant 138:430–439

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Heckathorne SA, Poeller GJ, Colemann JS, Hallberg RL (1996) Nitrogen availability alters patterns of accumulation of heat stress-induced proteins in plants. Oecologia (Berl) 105:413–418

    Article  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    Article  CAS  PubMed  Google Scholar 

  • Kim S-R, An G (2013) Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. J Plant Physiol 170:854–863

    Article  CAS  PubMed  Google Scholar 

  • Knight CA (2010) Small heat shock protein responses differ between chaparral shrubs from contrasting microclimates. J Bot ID 171435, 7 p

    Google Scholar 

  • Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O (2014) Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 6:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Graig EA (1988) The heat-shock proteins. Annu Rev Genet 22:651–677

    Article  Google Scholar 

  • Lipiec J, Doussan C, Nosalevicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Article  Google Scholar 

  • Liu C, Willmund F, Golecki JR, Cacace S, Hess B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277

    Article  CAS  PubMed  Google Scholar 

  • Malanga G, Gonzalez PM, Estevez MS, Abele D, Puntarulo S (2008) Oxidative stress in Antarctic algae and mollusks. Ber Polarforsch Meeresforsch 571:208–215

    Google Scholar 

  • Mendez-Alvarez S, Leisinger U, Eggen RI (1999) Adaptive responses in Chlamydomonas reinhardtii. Int Microbiol 2:15–22

    CAS  PubMed  Google Scholar 

  • Mittal D, Madhyastha D, Grover A (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One 7:e40899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Monari M, Fosch J, Rosmini R, Marin MG, Serrazanetti GP (2011) Heat shock protein 70 response to physical and chemical stress in Chamelea galina. J Exp Mar Biol Ecol 397:71–78

    Article  CAS  Google Scholar 

  • Nedeva D, Pouneva I (2009) Changes in electrophoretic profiles of proteins and some antioxidant enzymes in Antarctic alga Choricystis minor and Chlorella sp. as affected by temperature and oxidative stress. Biotechnol Biotechnol Equip 23:233–236

    Article  Google Scholar 

  • Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, Fen Y, Wei Q, Tanguag RM, Wu T (2006) Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 11:162–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordhues A, Miller SM, Muehlhaus T, Schroda M (2010) New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol 285:75–113

    Article  CAS  PubMed  Google Scholar 

  • Pelham HR (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30:517–528

    Article  CAS  PubMed  Google Scholar 

  • Petrov V D, Van Breusegem F (2012) Hydrogen peroxide – a central hub for information flow in plant cells. AoB Plants pls014.

    Google Scholar 

  • Piterková J, Luhová L, Mieslerová B, Lebeda A, Petřivalský M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 24:1116

    Google Scholar 

  • Rochat T, Miyoshi A, Gratadoux JJ, Duwat P, Sourice S, Azevedo V, Langella P (2005) High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology 151:3011–3018

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stress on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Rui R, Nie Y, Tong H (1990) SOD activity as a parameter for screening stress-tolerant germplasm resources in sweet potato (Ipomoea batatas L.). Jiangsu J Agric Sci 6:52–56

    Google Scholar 

  • Sairam R, Srivastava G, Saxena D (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18:427–437

    Article  CAS  PubMed  Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Mühlhaus T (2009) A ‘foldosome’ in the chloroplast? Plant Signal Behav 4:301–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Hemme D, Mühlhaus T (2015) The Chlamydomonas heat stress response. Plant J 82:466–480

    Article  CAS  PubMed  Google Scholar 

  • Shatilina ZM, Riss HW, Protopopova MV, Trippe M, Meyer EI, Pavlichenko VV, Bedulina DS, Axenov-Gribanov DV, Timofeyev MA (2011) The role of the heat shock proteins (HSP70 and sHSP) in the thermotolerance of freshwater amphipods from contrasting habitats. J Therm Biol 36:142–149

    Article  CAS  Google Scholar 

  • Shen H, Leen YK (1997) Thermotolerance induced by heat shock in Chlorella. J Appl Phycol 9:471–475

    Article  CAS  Google Scholar 

  • Shi LX, Theg SM (2010) A stromal heat shock proteins 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22:205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sood A, Pabbi S, Uniyal P (2011) Effects of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla. Russ J Plant Physiol 58:667–673

    Article  CAS  Google Scholar 

  • Strasser H, Grabenbauer GG, Sprung CN, Sauer R, Distel LVR (2007) DNA double-strand break induction and repair in irradiated lymphoblastoid, fibroblast cell lines and white blood cells from ATM, NBS and radiosensitive patients. Strahlenther Onkol 183:447–453

    Article  PubMed  Google Scholar 

  • Su P-H, Li H-M (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Sejima H, Harper J, Mittler R (2013) Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J Exp Bot 64:253–263

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 22(8):125

    Article  CAS  Google Scholar 

  • Szigeti Z, Lehoczki E (2003) A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag Sci 59:451–458

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Ikeda K, Miyasaka H, Shioi Y, Suzuki Y, Tamoi M, Takeda T, Shigeoka S, Harada K, Hirata K (2011) Comparison of three Chlamydomonas strains, which show distinctive oxidative stress tolerance. J Biosci Bioeng 112:462–468

    Article  CAS  PubMed  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 7:391–411

    Article  CAS  Google Scholar 

  • Tomanek L (2002) The heat shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Integr Comp Biol 42:797–807

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trösch R, Muehlhaus T, Schroda M, Willmund F (2015) ATP-dependent molecular chaperones in plastids – More complex than expected. Biochem et Biophys Acta 1847:872–888

    Google Scholar 

  • Tukaj S, Tukaj Z (2010) Distinct chemical contaminants induce the synthesis of Hsp70 proteins in green microalgae Desmodemus subspicatus: heat treatment increases cadmium resistance. J Therm Biol 35:239–244

    Article  CAS  Google Scholar 

  • Vartak V, Bhargava S (1999) Photosynthetic performance and antioxidant metabolism in a paraquat-resistant mutant of Chlamydomonas reinhardtii L. Pestic Biochem Physiol 64:9–15

    Article  CAS  Google Scholar 

  • Vermeulen SJ, Van de Zande L, Bijlsma R (2005) Resistance to oxidative stress induced by paraquat correlates well with both decrease and increased lifespan in Drosophila melanogaster. Biogerontology 6:387–395

    Article  CAS  PubMed  Google Scholar 

  • Veyel D, Erban A, Fehrle I, Kopka J, Schroda M (2014) Rationales and approaches for studying metabolism in eukaryotic microalgae. Metabolites 4:184–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plant: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Zhang X, Goatley M, Ervin E (2014) Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One 9:e102914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegener CB, Jansen G (2013) Antioxidants in different potato genotypes: effect of drought and wounding stress. Agriculture 3:131–146

    Article  CAS  Google Scholar 

  • White CN, Hightower LE, Schultz RJ (1994) Variations in heat shock proteins among species of desert fishes (Poecilidae, Poeciliopsis). Mol Biol Evol 11:106–119

    CAS  PubMed  Google Scholar 

  • Wiencke T (1991) Photosynthesis, dark respiration and light independent carbon fixation of endemic Antarctic microalgae. Polar Biol 11:329–337

    Google Scholar 

  • Willmund F, Dorn KV, Schulz-Raffelt M, Schroda M (2008) The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiol 148:2070–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Lin J, Liu J-Z, Wang X, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol J 10:945–955

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Huang B (2010) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 67:1477–1485

    Article  CAS  Google Scholar 

  • Xu Y, Zhan C, Huang B (2011) Heat shock proteins on association with heat tolerance in grasses. Int J Proteomics 2011:11

    Article  CAS  Google Scholar 

  • Yu A, Li P, Tang T, Wang J, Chen Y, Liu L (2015) Roles of Hsp70s in stress responses of microorganisms, plants and animals. BioMed Res Int 2015, ID 510319

    Google Scholar 

  • Zaka R, Vandecasteele CM, Misset MT (2002) Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae). J Exp Bot 53:1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Zargar S, Krishnamurthi K, Saravana Devi S, Ghosh TK, Chakrabarti T (2006) Temperature-induced stress on growth and expression of HSP in freshwater alga Scenedesmus quadricauda. Biomed Environ Sci 19:414–421

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Michael Schroda (Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany) for the antiserum against HSP70B and HSP90C. This work was supported by joint research projects between the BAS and RAS (‘Biochemical markers of plant resistance to oxidative stress’ and ‘Molecular mechanisms of induced resistance to oxidative stress in plants’), the Bulgarian Ministry of Education and Science (projects K-1204, B-1520, BioCORE), Russian Foundation for Basic Research (project № 16-04-01626a), Program MCB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Yurina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chankova, S., Yurina, N. (2016). Chloroplasts Heat Shock Protein 70B as Marker of Oxidative Stress. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_9

Download citation

Publish with us

Policies and ethics