Personalized API Recommendation via Implicit
Preference Modeling

Wei Gao'®)| Liang Chen?, Jian Wu', Hai Dong?, and Athman Bouguettaya?

L College of Computer Science and Technology, Zhejiang University,
Hangzhou, China
{gw,wujian2000}@zju.edu.cn
2 School of Computer Science and Information Technology,
RMIT, Melbourne, Australia
{liang.chen,Hai.dong,athman.bouguettaya}Ormit.edu.au

Abstract. With a huge amount of APIs on the Internet, understanding
users’ complex needs and preferences for APIs becomes an important
task. In this paper, we aim to uncover users’ implicit needs for APIs and
recommend suitable APIs for users. Specifically, first different similarity
scores between APIs are computed according to heterogeneous functional
aspects of APIs. Next, users’ preferences for APIs is combined with sim-
ilarities of APIs measured with different functional aspects, and matrix
factorization technique is used to learn the latent representation of users
and APIs for each functional aspect. Then we use a personalized weight
learning approach to combine the latent factors of different aspects to
get the predicted preferences of users for APIs.

1 Introduction

With the development of Web 2.0 paradigm and mobile service computing, API
(Application Programming Interface) as a form of REST-ful service has become
prevalent in developing Web and mobile applications. Consumers can enjoy web
or mobile service by simply invoking the APIs provided by service developers. As
a result, the number of services has been experiencing a dramatic increase over
the past few years. And platforms like ProgrammbleWeb!, Mashape?, APIStore®
that collect, host and aggregate APIs on the Internet are emerged to help users
find APIs that meet their requirements in an efficient manner. However, with the
huge number of APIs on the web, it is quite challenging for a consumer to find
APIs that are satisfactory to her. There is a need to understand users’ implicit
needs and preferences for APIs, predict what APIs they are likely to use and
recommend a list of suitable APIs.

A lot of methods have been proposed for service recommendation, including
collaborative-filtering based method [5,10,11], content-based method [2,3,6] and

! www.programmableweb.com.

2 www.mashape.com.

3 apistore.baidu.com.

© Springer International Publishing Switzerland 2016

Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 646-653, 2016.
DOI: 10.1007/978-3-319-46295-0_44


www.programmableweb.com
www.mashape.com
http://www.apistore.baidu.com

Personalized API Recommendation via Implicit Preference Modeling 647

a hybrid of both [7-9]. Our work can be regarded as a hybrid recommendation
method that combines collaborative filtering and content-based method. In our
API recommendation model, users and APIs are connected via the follow rela-
tions representing users historical preferences for APIs. Furthermore, APIs are
linked with different aspects of functional information. For instance, each API is
associated with its provider, category, tags, textual information or the mashups
composing it. And different types of relations exist between APIs. For instance,
the Facebook API and the Twitter API are linked to each other as they belong
to the same Social category, and they are composed together by some mashup.
As a result, there exist heterogeneous relations between APIs and these rich
source of relations can be utilized in conjunction with user preference relations
for hybrid API recommendation.

In this paper, we explore the multiple aspects of API functionalities and their
effects on users’ preferences, and propose a novel API recommendation approach.
We identify several functional aspects of APIs that could impact the adoption of
APIs for users, including APIs provider, category, developer, tag, textual descrip-
tion and mashups it composes. We propose to measure the similarities of APIs
according to different functional aspects. Then we combine the users historical
interaction data with different aspects of API similarities by propagating the
user-API relations under different aspects of functionality. Matrix factorization
technique is applied on the propagated user preference data and latent factor
representation for users and APIs is calculated for each functional aspect of API
accordingly. Then we combine these latent factors of different aspects with dif-
ferent weights personalized for each user. A weight learning method is proposed
to learn a personalized recommendation model for each user. The final predicted
scores of users’ preferences for APIs are computed with the learned weights and
top scoring APIs are used for recommendation. Our contributions in this work
are summarized as follows.

1. We study the problem of discovering users’ implicit preferences for APIs and
make personalized recommendations by mining rich heterogeneous functional
information of APIs with various aspects.

2. We combine matrix factorization based collaborative filtering as well as differ-
ent types of functional aspects of APIs with personalized weights to perform
API recommendation.

3. We conduct extensive experiments on the ProgrammableWeb dataset and the
result demonstrate the effectiveness of our recommendation approach.

The remainder of this paper is organized as follows. In Sect. 2, we give an
overview of the related work of service recommendation approaches. In Sect. 3,
we present details of the proposed API recommendation approach. In Sect. 4, we
present and analyze our experimental results. Section 5 concludes this paper.

2 Related Work

Service recommendation can be classified into three categories: functional-based
service recommendation, non-functional service recommendation and a hybrid



648 W. Gao et al.

of both. Non-functional based service recommendation focus on predicting the
non-functional features (i.e., Qos) of services and recommend services that gives
the best Qos performance [5,10,11]. However, the Qos attributes of APIs are not
always available due to expensive access cost to all APIs over the web. The func-
tionality of services is usually analyzed by the functional description of services,
such as structured WSDL files or free form textual descriptions. In [3], services
with similar functionalities are clustered based on WSDL files and the result is
used for service recommendation. [2] use LDA-based approach to model function-
ality of services using both WSDL files and tags. [6] propose a relational topic
modeling (RTM) technique to model the functionality of mashups, services and
their links. The hybrid service recommendation method combines both function-
ality and Qos attributes of services. Other available side information can also be
utilized for recommendation. [7] use collaborative topic regression technique to
integrate both users’ preferences and functional features of services. [4] proposed
to incorporate three heterogeneous factors to recommend APIs for mashup: the
functionality of an API, the usage history of the API by mashups and the pop-
ularity of the API, and integrate different sources of information using Bayes’
theorem. However, the heterogeneous functional aspects of APIs and whether it
is informative to infer users’ preferences is unexplored.

3 User Preference Modeling

In this section, we propose to model users’ preferences for APIs in terms of differ-
ent functional aspects of APIs and propose a novel personalized API recommen-
dation model by combining heterogeneous functional information of APIs and
collaborative information of other users. Specifically, with m users and n APIs,
the user-API matrix R € R™*" is constructed as follows: if a user u; followed
an API a;, then the corresponding entry of R;; is 1. Otherwise, it is 0. The goal
is to predict preference score for unobserved user-API pairs by filling in the 0
entries. To this end, we propose the following recommendation method: First,
six functional aspects of APIs, namely provider, category, developer, tag, tex-
tual descriptions and mashups, are extracted for each API and the similarities of
APIs are evaluated under different aspects of API. Second, the user-API interac-
tion matrix is constructed and is combined with API similarities measured with
six aspects respectively. For each aspect of API, the user-API matrix is prop-
agated. Then the six augmented matrices are factored into user latent factor
matrices and API latent factor matrices respectively using matrix factorization
technique. To predict users’ preferences for APIs, the predicted score for each
aspect is linearly combined with different weights for each user and a method is
proposed to learn the weights from data. Finally, the predicted scores of users
for APIs are calculated and APIs that receive the highest score for each user are
recommended. The detailed explanation of the method is as follows:

First, we identify six aspects to model the functionalities of an API and their
impact on users’ preferences. We describe the similarity measuring method for
each aspect as follows:



Personalized API Recommendation via Implicit Preference Modeling 649

1. Provider. The provider of an API is usually a website that publishes APIs. If
two APIs have the same developer, their similarity is 1, otherwise it is 0.

2. Category. Each API belongs to some categories curated by the Program-
mableWeb taxonomy. The similarity of APIs according to category is com-
puted as the Jaccard similarity of the categories two APIs belongs to.

3. Developer. Developers are a group of people who contribute to the develop-
ment process of APIs. The similarity of APIs with respect to developers is
computed as the Jaccard similarity of the developers two APIs have.

4. Tag. Tagging is an effective method of annotating APIs with a list of key-
words. The similarity of APIs with respect to tags is computed as the Jaccard
similarity of the tags two APIs have.

5. Textual Description. Each API has a brief text describing its functions. We
use Latent Dirichlet Allocation (LDA [1]) method, which is a probabilistic
topic modeling technique that models the textual descriptions of APIs as a
distribution on latent topics. The similarity is computed as the cosine simi-
larity of two topic vectors of APIs.

6. Mashup. Besides functional similarity, different APIs may complement each
other. Two APIs of different functionalities can be composed together to
form a mashup. The complementarity of APIs is computed as the number of
mashups that compose both APIs divided by the number of mashups that
only compose one of them.

Next, we utilize heterogeneous aspects of APIs and incorporate them into
the recommendation process. We construct an enhanced matrix R on the basis
of R by adding functional aspects of APIs. To this end, we use the following
equation to infer users’ preferences for each aspect:

Z:l Riksim(a;, ak)

> ke sim(aj, ax)

Rij = (1)
where sim(a;, ar) measures the similarity of APIs under a particular aspect.
From Eq. (2) we can see that the users’ implicit preferences for unknown APIs are
measured by two parts: (1) The observed user-API follow relations represented
by R, and (2) the similarities between APIs for a certain aspect represented by
sim(-) function. The predicted score of an unfollowed API is the aggregation
of APIs followed by the user weighted by the similarity between them and the
predicted API. In this way, the users’ preferences are propagated from the orig-
inal user-API follow matrix R by incorporating the functional aspect of APIs
represented by their similarities.

Then, for each propagated user-API matrix, we use matrix factorization
method to derive low rank matrices of users and APIs. Since the propagated
matrix incorporates a specific type of similarity measurement of APIs, the latent
representations of users and APIs are encoded with a certain aspect of API
functionality. Specifically, for each propagated matrix R(l a pair_of user-factor
matrix U® and item-factor matrix V) is generatd. Each pair (U ) V(l)) rep-
resents users factors and APIs factors according to a certain aspect of APIs.
The users’ preferences for APIs under a specific aspect is then computed as



650 W. Gao et al.

RO = gOyOT The overall predicted user-API preference score is computed
by combining different aspects of APIs together. As different users may have
different preference on particular aspects of APIs, we assign a weight vector for
each user to measure her personal preference on different aspects of APIs. The
preference score prediction of user u; to API a; is defined as follows:

6
/R(Uiﬂ)j) _ Zgilﬁi(l)vj(l)T 2)

=1

where 6;; is the weight for user ¢ on the Ith aspect of API. The weight indicates
how much impact the corresponding aspect of APIs has on the particular user.

Finally, we introduce how to learn the weight parameter 6 for the personalized
preference prediction model. The preference score of a user to a followed API
should always be higher than the preference score of a user to a non-followed
API. To be specific, for each user u;, if API a; is followed by user previously
and API ay has never been followed, then the predicted preference score of u;
to a; should be higher than to aj. That is, R(u, a;) > R(u;, a) always holds.
Assuming that the user-API follow relations are organized in the form of a series
of triplets (u;, aj, ax), which means u; follows API a; and did not follow aj. Thus
for each triplet, we can define the loss function as:

Ui, aj,ar) = o(R(ui, ar) — R(ug,a;)) (3)

where o is the sigmoid function to constrain the value between 0 and 1. For all
the triplets generated, the overall objective function is

A
L= 1w az.a) + 5 0] (4)

where A is a regularization parameter. By minimizing L we can learn the para-
meter 6 from the triplets. We employ stochastic gradient descent (SGD) method
to estimate the parameter 6. The time complexity of the parameter learning
process is O(mn?), which is infeasible for practical implementation. In reality,
we only sample a small subset of triplets from data to make the learning process
more efficient.

4 Experiments and Evaluation

We conduct a set of experiments to evaluate our proposed approach for API rec-
ommendation. We crawled all the APIs available on ProgrammableWeb up until
March 2016 and their corresponding followers to construct user-API matrix. We
also crawled each API’s names, secondary categories, providers, textual descrip-
tions, developers and mashup composition. In summary, our dataset contains
792 users and 9,650 APIs. And there are a total of 1,486 APIs used in 7,066
mashups. We split 80 % of the APIs each user followed into training set and the
rest of the APIs as test set. We use precision, recall and F-score to evaluate



Personalized API Recommendation via Implicit Preference Modeling 651

the prediction accuracy when recommending top K APIs for each user and the
metrics are averaged over all users to get the overall performance. We compare
our method with the following baseline methods:

1. Neighborhood-based Collaborative Filtering (NBCF). It performs APIs rec-
ommendation based on users with similar preferences.

2. Matrix Factorization (MF). The user-API follow matrix R is directly factor-
ized for learning and prediction.

3. Matrix Factorization + Single (MFS). We evaluate the recommendation per-
formance of each of the six aspects one by one.

4. Matrix Factorization + Uniform Weight (MFU). Each aspect is aggregated
with the same weight. That is, §; is a constant equals to 1/6.

5. Matrix Factorization + Weight Learning (MFW). Different weights for each
aspect of APIs are learned. However the weight vector of each user are all the
same.

6. Matrix Factorization + Personalized Weight (MFPW). It is the personalized
API recommendation method proposed in the paper with weights different
for each user.

Fig. 1. Performance comparison of competitive methods

Figure 1 shows the recommendation accuracy of all the competitive methods
as the number of recommended APIs K ranges from 5 to 50. For method MF'S, we
only plot the aspect that achieves the best performance to save space. We can see
that MFPW consistently achieves the best recommendation performance among
all the other methods, which demonstrates the effectiveness of our approach
on API recommendation. For other baseline algorithms, Matrix factorization
method outperforms neighborhood based method, which shows that latent factor
model can capture user API preference relations more accurately. Furthermore,
incorporating heterogeneous functional information of APIs can enhance the
recommendation performance as MFS method outperforms MF method. And
MFU achieves a better recommendation result than MFS, which proves that the
idea of combining different aspects of APIs is more effective than only considering
a single aspect. Still, MFU method can not yield a better result over MFW
since the uniform combination method is too simple to model the difference of
impact of API factors. MFPW learns a personalized weight for each user and
model users’ preferences at a finer granularity, as evidenced by the superior



652 W. Gao et al.

performance compared to MFW. In summary, the experimental results validate
our theoretical analysis and show its efficacy in API preference modeling.

Fig. 2. Performance comparison of each aspect in MFS method

In particular, we plot the recommendation performance for each of the six
aspects of APIs in the MFS method as well as other competitive methods. The
result is shown in Fig.2 with the number of recommended APIs K set to 20.
Some observations can be drawn: First, compared to the basic MF method,
the performance of incorporating each aspect of API all shows an increase with
varying degrees. This shows that each aspect of API proposed is helpful for user
preference modeling and API recommendation. In particular, different aspects
of API has a different impact on users following pattern. The API tags reports
the best performance among all the six aspects, which indicates tags are the
most informative aspect for understanding users’ preferences for APIs. And the
API provider is the least informative information for characterizing users’ prefer-
ences. Second, unifying each aspect of APIs together for recommendation (MFU,
MFW, MFPW) performs better than only one single aspect is utilized for recom-
mendation by a relatively large margin. This indicates that the idea of combining
different aspects of APIs together is helpful in API recommendation.

5 Conclusion

In this paper, we propose a comprehensive approach for recommending APIs
to users. We utilize the heterogeneous content information of APIs and explore
the impact of different aspects of APIs on the preferences of users. We iden-
tify several aspects of APIs, including API’s provider, category, developer, tag,
textual descriptions and mashups composing them. Then users’ preferences are
propagated through different functional aspects of API and matrix factorization
is employed for each propagated matrix to learn user and API latent factors
under each aspect. To achieve personalized recommendation, latent factors of
six functional aspects are combined with different weights for each user. The
experimental results demonstrate that our approach outperforms other baseline
approaches and proves its effectiveness for personalized API recommendation.



Personalized API Recommendation via Implicit Preference Modeling 653

Acknowledgment. This research was partially supported by the Natural Science
Foundation of China under grant of No. 61379119, National Science and Technology
Supporting Program of China under grant of No. 2015BAH18F02, the Fundamental
Research Funds for the Central Universities under grant of No. ZH2016007.

References

10.

11.

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993-1022 (2003)

Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented
LDA for web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, pp. 162-176. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-45005-1_12

Elgazzar, K., Hassan, A.E., Martin, P.: Clustering WSDL documents to bootstrap
the discovery of web services. In: IEEE International Conference on Web Services,
ICWS 2010, Miami, Florida, USA, 5-10 July 2010, pp. 147-154 (2010)

Jain, A., Liu, X., Yu, Q.: Aggregating functionality, use history, and popularity of
APIs to recommend mashup creation. In: Barros, A., Grigori, D., Narendra, N.C.,
Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 188-202. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48616-0-12

Jiang, Y., Liu, J., Tang, M., Liu, X.F.: An effective web service recommendation
method based on personalized collaborative filtering. In: IEEE International Con-
ference on Web Services, ICWS 2011, Washington, DC, USA, 4-9 July 2011, pp.
211-218 (2011)

Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation
in mashup development. In: 2014 IEEE International Conference on Web Services,
ICWS, 2014, Anchorage, AK, USA, 27 June-2 July 2014, pp. 289-296 (2014)
Liu, X., Fulia, I.: Incorporating user, topic, and service related latent factors into
web service recommendation. In: 2015 IEEE International Conference on Web Ser-
vices, ICWS 2015, New York, NY, USA, 27 June-2 July 2015, pp. 185-192 (2015)
Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: 2013 IEEE 20th International Conference on
Web Services, Santa Clara, CA, USA, 28 June-3 July, 2013, pp. 107-114 (2013)
Yao, L., Sheng, Q.Z., Segev, A., Yu, J.: Recommending web services via combining
collaborative filtering with content-based features. In: 2013 IEEE 20th Interna-
tional Conference on Web Services, Santa Clara, CA, USA, 28 June-3 July 2013,
pp. 42-49 (2013)

Zheng, 7., Ma, H., Lyu, M.R., King, I.: Wsrec: a collaborative filtering based web
service recommender system. In: IEEE International Conference on Web Services,
ICWS 2009, Los Angeles, CA, USA, 6-10 July 2009, pp. 437-444 (2009)

Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service qos prediction
via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3),
289-299 (2013)


http://dx.doi.org/10.1007/978-3-642-45005-1_12
http://dx.doi.org/10.1007/978-3-642-45005-1_12
http://dx.doi.org/10.1007/978-3-662-48616-0_12

	Personalized API Recommendation via Implicit Preference Modeling
	1 Introduction
	2 Related Work
	3 User Preference Modeling
	4 Experiments and Evaluation
	5 Conclusion
	References


