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Abstract. Matrix factorisation is a widely used tool with applications
in collaborative filtering, image analysis and in genomics. Several exten-
sions of the classical model have been proposed, such as modelling of
multiple related “data views” or accounting for side information on the
latent factors. However, as the complexity of these models increases even
subtle mismatches of the distributional assumptions on the input data
can severely affect model performance. Here, we propose a simple yet
effective solution to address this problem by modelling the observed data
in a transformed or warped space. We derive a joint model of a multi-
view matrix factorisation model that infers view-specific data transfor-
mations and provide a computationally efficient variational approxima-
tion for parameter inference. We first validate the model on synthetic
data before applying it to a matrix completion problem in genomics. We
show that our model improves the imputation of missing values in gene-
disease association analysis and allows for discovering enhanced consen-
sus structures across multiple data views The data and software related
to this paper are available at https://github.com/PMBio/WarpedMF.

Keywords: Multi-view learning · Matrix factorisation · Data transfor-
mation · Side information

1 Introduction

Probabilistic matrix factorisation is a widely used tool to impute missing values
in dyadic data [16,19,26]. Using these models, the unobserved entries in the data
matrix can be recovered by the inner product of a (typically low-rank) represen-
tation of factors and loadings, which can be inferred from the observed entries
in the data matrix. Several extensions of the classical matrix factorisation model
(MF) have been considered, including multi-view approaches to combine multi-
ple related matrix factorisation tasks as well as methods to integrate prior (side)
information. Intuitively, multi-view models use a set of common latent variables
to explain shared structure in multiple complementary views, thereby borrowing
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statistical strength across datasets. A number of alternative implementations of
multi-view models have been proposed, assuming different extents of sharing
using a common loading matrix [3,7], or using a shared subset of the latent
factors [27]. A second widely considered extension is modelling additional side
information, either on the inferred factors and/or the loadings. The inclusion of
such additional data can improve the recovery of the latent variables, in partic-
ular if the input matrices are spares or if the number of latent factors is large
compared to the dimensionality of the observed data matrix. Existing meth-
ods use linear regression on the latent factors [12,15,21] or employ multivariate
normal priors on the latent factors [1,28].

However, while in principle powerful, multi-view methods are challenging to
apply in practice. This is because the underlying representation of the raw data
frequently differs between views and in particular the assumption of marginal
Gaussian residuals is hardly met.

To address this limitation, we here show that a simple parametric trans-
formation of the observed data can substantially improve the performance of
matrix factorisation models that span multiple views. We fit one parametric
transformation for each view, assuming a common latent space representation,
such that a common set of factors and loadings explain the observed data across
all views. We derive an efficient variational inference scheme that scales to tens
of views, each consisting of thousands of rows and columns, where view-specific
transformations are estimated as part of the inference. Additionally, our model
allows incorporating side information in the form of a covariance prior on either
factors and/or loadings.

We first validate our model using synthetic data before applying it to a
biomedical problem. We use our model to impute gene-disease associations that
have been acquired from multiple complementary data sources. Our results show
that learning warping functions within the matrix factorisation framework in
conjunction with low-rank side information substantially outperforms previous
methods.

2 Related Work

Multi-view formulations differ in the assumptions how specific latent variables
are coupled between views [3,7,9,23]. In this work, we assume that all views
are consistent and related to the same entities (e.g. diseases and genes), how-
ever reflect complementary sources of evidence. We require both latent factor
matrices from MF to be shared, of which the inner product represents the con-
sensus across all data sets. The ability to require such consensus structures is
strongly dependent on appropriate data pre-processing steps. Several paramet-
ric and non-parametric transformations have been considered for this purpose.
One objective is to decouple mean and variance relationships [8,13], for exam-
ple using the BoxCox transformation [5]. Within the class of transformations,
the BoxCox transformation can recover natural logarithmic, square root, and
reciprocal functions. In the context of Gaussian processes (GP) regression, more
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general parametric transformations have been considered, for example a sum of
(a small number of) step functions [25]. The parameters of these transformations
can be learned jointly with the remaining GP hyper-parameters. Similar princi-
ples have also been considered for linear mixed models in statistical genetics [11],
as well as for collective link prediction [6]. Moreover, there is some albeit limited
work on using warping transformations in conjunction with GP-based function
factorisation [22]. However, to the best of our knowledge, there are no methods
that consider warping for multi-view matrix factorisation.

There are also a number of existing methods to incorporate side informa-
tion within the matrix factorisation, where it is available. One approach is to
place a regression-based prior that relates the side information in the form of
covariates for rows and columns of the data matrix [2,12,15,21]. Scalable infer-
ence within the regression-based matrix factorisation models (RBMF-SI) can
be achieved through variational approximations that assume a fully-factorised
form [15]. Alternatively, side information can also be encoded as row and column
covariance priors on the latent factors and loadings [28]. Inference in such models
can be prohibitively expensive, mainly since naive implementations require the
inversion of matrices with the same dimension as the number of rows or columns
of the observed data matrix. We here show how this bottleneck can be addressed
using low-rank approximations, which is similar to approaches that have been
used for parameter inference in linear mixed models [17].

3 RBMF-SI

We start by briefly reviewing the standard matrix factorisation model that incor-
porates side information via linear regression [2,15]. In the RBMF-SI model,
each entry (i, j) of the observed data matrix Y ∈ IRI×J is modelled as the
inner product of two factor matrices of rank K � I, J which are U ∈ IRI×K

and V ∈ IRJ×K , with Gaussian distributed residuals with variance τ−1. The
corresponding likelihood is then:

p(Y |U ,V , τ−1) =
∏

(i,j)∈O
N (Yij |Ui:Vj:

�, τ−1), (1)

where O denotes the set of observed indices in Y and N (·) denotes a normal
distribution.

Side information F ∈ IRI×NF and G ∈ IRJ×NG for the factors U and the
loadings V respectively is incorporated as a multivariate normal prior on factors
and loadings using a regression model in the prior mean:

p(U |F ,A, σ2
uk) =

K∏

k=1

N (U:k|FA:k, σ
2
ukI),

p(V |G,B, σ2
vk) =

K∏

k=1

N (V:k|GB:k, σ
2
vkI), (2)
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where I denotes the identity matrix. Here, the regression coefficient matrices
A ∈ IRNF ×K and B ∈ IRNG×K are shrunk using an L2 prior with variances
specific for each factor k:

p(A|σ2
A) =

NF∏

f=1

K∏

k=1

N (Afk|0, σ2
Ak), p(B|σ2

B) =
NG∏

g=1

K∏

k=1

N (Bgk|0, σ2
Bk). (3)

We will show later that by marginalising out the weights A and B, these
regression-priors can be cast as linear covariance matrices derived from the side
information F and G, which results in low rank covariances in case of NF < I
and NG < J (see Sect. 4.1).

4 MV-WarpedMF-SI

In this section, we derive MV-WarpedMF-SI, a multi-view warped matrix fac-
torisation model that accounts for side information (MV-WarpedMF-SI). The
model unifies the inference of data transformations and matrix factorisation,
performing joint inference for the model parameters of both components.

4.1 Model Description

Let Y n ∈ IRI×J be an observed data matrix for a data view n where n =
1, . . . , N . An entry (i, j) from each view could for example represent an asso-
ciation score between a row i and a column j (e.g. gene-disease associations).
Rather than modelling the observed data directly, we introduce a determinis-
tic function that maps (warps) the observation space Y n into a latent space
Zn ∈ IRI×J . In principle, any monotonic function could be used. Here, we fol-
low [25] and consider a superposition of a (typically small) set of tanh functions
(we used T = 3 in the experiments):

Zn
ij =φn(Y n

ij ) = Y n
ij +

T∑

t=1

αn
t tanh(βn

t (Y n
ij + γn

t )). (4)

In this parametrization, αn
t , βn

t ≥ 0 adjust the step size and the steepness respec-
tively, and γn

t adjusts the relative position of each tanh factor. We use distinct
warping functions for each data view.

In the transformed data space, we assume that the data in all views can
be explained by the same lower dimensional factor representation U ∈ IRI×K

and V ∈ IRJ×K , where K � I, J denotes the number of latent factors. Conse-
quently, the latent variables capture common structure across views. Addition-
ally, we incorporate individual row brn and column bcn bias vectors for each
view. Finally, residual variation in the latent space is modelled as multivariate
normal εnij ∼ N (0, 1/τn), assuming view-specific residual variances 1/τn. The
conditional likelihood of the transformed data Z follows as:

p(Z|μ, τ ) =
N∏

n=1

∏

(i,j)∈On

N (Zn
ij |μn

ij , 1/τn), (5)
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where μn
ij = Ui:Vj:

� + br
n

i + bc
n

j and On denotes the set of the observed indices
(i, j) in view n.

Suppose that side information is available in the form of similarity matrices,
Σu ∈ IRI×I and Σv ∈ IRJ×J , that indicate the relatedness over rows and
columns of Y respectively. If the side information is given as a feature matrix,
the similarity matrix can also be computed from these features using a suitable
kernel function e.g. a linear kernel or a Gaussian kernel for real-valued features,
or a Jaccard kernel for binary features.

We assume that the factor matrix and the loadings have multivariate normal
priors whose covariance matrices correspond to Σu and Σv respectively:

p(U |Σu,σ2
u) =

K∏

k=1

N (U:k|0,Σu + σ2
ukI), (6)

p(V |Σv,σ2
v) =

K∏

k=1

N (V:k|0,Σv + σ2
vkI). (7)

The additional variance parameters σ2
uk and σ2

vk control the prior strength for
each factor k of U and V respectively.

We note that there is a close relationship between employing a covariance
matrix to encode side information and the use of a regression-based model on
factors and their coefficients. In fact, the marginal likelihood of a regression
model is a special case of our approach with a linear kernel:

p(U |F ,σ2
A,σ2

u) =
K∏

k=1

∫
p(U:k|FA:k, σ

2
ukI)p(A:k|0, σ2

AkI) dA:k

=
K∏

k=1

N (U:k|0,σ2
AkFF � + σ2

ukI), (8)

p(V |G,σ2
B ,σ2

v) =
K∏

k=1

∫
p(V:k|GB:k, σ

2
vkI)p(B:k|0, σ2

BkI) dB:k

=
K∏

k=1

N (V:k|0, σ2
BkGG� + σ2

vkI). (9)

Finally, in order to avoid overfitting, we regularise the bias parameters for row
and column bias terms by a zero mean and a variance prior over each element:

p(br) =
N∏

n=1

I∏

i=1

N (br
n

i |0, 1/τ rn), p(bc) =
N∏

n=1

J∏

j=1

N (bc
n

j |0, 1/τ cn) (10)

Figure 1 shows a graphical model of MV-WarpedMF-SI, representing the rela-
tionships of all variables in the model.
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Y n
ijαn, βn, γn

τn

Zn
ijbr

n

i bc
n

j τ cn

jτrn

i

Ui Vjσ2
u, Σu σ2

v, Σv

View n = 1, . . . , N

φn

Fig. 1. Graphical model representation of MV-WarpedMF-SI. Nodes inside the rec-
tangular plate correspond to view-specific variables. All remaining variables are shared
across views. Observed variables are shaded in grey.

4.2 Training the MV-WarpedMF-SI

We need to make inference of the joint posterior distribution p(U ,V , br, bc|Y , θ),
where θ denotes the set of all model parameters (α, β, γ, τ , τ r, τ c,σ2

u,σ2
v).

Closed-form inference in this matrix factorization model is not tractable. For
efficient parameter inference, we here revert to a variational approach to approx-
imate the true posterior over the latent variables with a factorised form. An iter-
ative inference scheme can then be derived by minimising the Kullback-Leibler
(KL) divergence between the true posterior and the factorised approximation;
see for example [4] for a comprehensive overview. The parameters of the warping
functions (α, β, γ) and the variances (1/τ , 1/τ r, 1/τ c,σ2

u,σ2
v) are inferred using

maximum likelihood type II, i.e. by maximising the variational lower bound.
Using a standard change of variable, we first derive the marginal log-

likelihood in the observation space. This results in an additional Jacobian term
evaluated at each observed data point which appears additively in the marginal
log-likelihood of the latent space, leading to:

log p(Y |θ) = log p(Z|θ) +
N∑

n=1

∑

(i,j)∈On

log φ′
n(Y n

ij ) (11)

where φ′
n(Y n

ij ) =
∂φn(y)

∂y

∣∣∣
Y n
ij

is a Jacobian term.

Equivalent to minimising the KL divergence, we maximise the variational
lower bound of the marginal log-likelihood conditioned on the model parameters,
which is:

log p(Z|θ) ≥Eq[log p(Z|U ,V , br, bc, τ )] + Eq[log p(U |Σu,σ2
u)]

+ Eq[log p(V |Σv,σ2
v)] + Eq[log p(br|τ r)]

+ Eq[log p(bc|τ c)] − Eq[log q(U ,V , br, bc)], (12)

where Eq[·] denotes the statistical expectation with respect to q(U ,V , br, bc) as
defined below.
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To achieve scalable inference, we assume a fully factorise variational dis-
tribution q for all latent variables except the factors U and the loadings V ,
for which the prior factorisation is maintained. Thus, we choose a multivariate
normal distribution parameterised by a mean and a covariance matrix for each
latent factor, which enables automatic relevance determination, i.e. the number
of effective factors within the model can be pruned by shrinking unused factors
to zero [20]. The resulting variational distribution is:

q(U, V, br, bc) = q(U)q(V )q(br)q(bc) (13)

where q(U) =
K∏

k

N (U:k|Ũ:k,C
u
k ), q(V ) =

K∏

k

N (V:k|Ṽ:k,C
v
k )

q(br) =
N∏

n

I∏

i

N (br
n

i |b̃rni , sr
n

i ), q(bc) =
N∏

n

J∏

j

N (bc
n

j |b̃cnj , sc
n

j )

Training of the model is done by optimising the variation lower bound and
the Jacobian term with respect to each of the unknown variables including the
warping parameters in turn until convergence.

4.3 Efficient Inference of Low-Rank Side Information

The computational limitation for imposing a Gaussian process prior on each latent
factor is inverting the covariance matrix. The naive update equations for the
covariance matrices of the variational distributions q(U) and q(V ) are given by:

Cu
k =

( N∑

n=1

J∑

j=1

diag
{

τn
(
Ṽ 2
jk + Cv

k jj

)
On

:j

}
+ (Σu + σ2

ukI)−1
)−1

(14)

Cv
k =

( N∑

n=1

I∑

i=1

diag
{

τn
(
Ũ2
ik + Cu

k ii

)
On

i:

}
+ (Σv + σ2

vkI)−1
)−1

(15)

The matrix inversions entail cubic time complexity per iteration in the vari-
ational EM algorithm, which renders applications to larger datasets intractable.
If the side information is low rank, the matrix inversion lemma can be exploited
to invert the matrix efficiently, reducing the complexity to cubical scaling in the
rank of the prior matrix.

We start by exploiting a standard spectral decomposition of the full covari-
ance matrix:

(Σ + σ2I)−1 � (PXP � + σ2I)−1 = P (X + σ2I)−1P �, (16)

where X =
[
x 0
0 0

]
and PP � = P �P = I.

More specifically, we apply single value decomposition (SVD) on the covari-
ance to obtain a rank H approximation by forcing all remaining eigenvalues
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to zero, resulting in PXP �. Using the matrix inversion lemma, the updating
rule is reformed to:

{
D + P (X + σ2I)−1P �}−1

= D−1 − D−1PW −1P �D−1, (17)

where W = X + P �(D−1 + σ2I)P and D is the diagonal matrix from the first
part of the updating rule in Eqs. (14) and (15).

Since the eigen decomposition needs only to be performed once at initiali-
sation, the effective computational cost per iteration is therefore dominated by
calculating the inverse W ∈ IRH×H , which is cubic in H � I, J .

4.4 Missing-Value Imputation with the MV-WarpedMF-SI

The trained model can be used to make predictions of missing values in the
transformed space. A consensus prediction using evidence across views can be
obtained by calculating Ũ Ṽ �, where Ũ and Ṽ correspond to the expected latent
factors and loadings under the variational posterior respectively. For each data
view, the predictive distribution for any entry in the transformed space Zn

ij is a
univariate normal distribution with the learned mean and variance:

p(Zn
ij |M) =N (Zn

ij |μ̃n
ij , ξ̃

n
ij), (18)

where M is the set of learned variables, μ̃n
ij = Ũi:Ṽ

�
j: + b̃r

n

i + b̃c
n

j , and ξ̃nij =
K∑
k

(Ũ2
ikC

v
k jj + Ṽ 2

jkC
u
k ii + Cu

k iiC
v
k jj) + sr

n

i + sc
n

j + 1/τ̃n.

The predictive distribution in the observation space can then be obtained by
reversing the warping transformation. This is done by squashing the predictive
normal distribution in the latent space through the learned warping function,
parameterised by α̃, β̃, γ̃, leading to:

p(Y n
ij |M) = φ′

n(φ−1
n (Zn

ij)) · N (Zn
ij |μ̃n

ij , ξ̃
n
ij). (19)

To compute a point estimate of a missing value, we use the predictive expecta-
tion of the warped Gaussian distribution in Eq. (19). Effectively, this operation
marginalises over the latent space, integrating over all possible values through
the inverse warping function φ−1 under its predictive distribution:

Y n
ij =

∫
φ−1
n (Zn

ij) · N (Zn
ij |μ̃n

ij , ξ̃
n
ij) dZn

ij . (20)

Since we parameterise the function in the observation space, its inverse φ−1
n (Zn

ij)
cannot be analytically computed in a closed form. However, computing the
inverse function φ−1

n (Zn
ij) is similar to finding the root of φn(Y n

ij ) − Zn
ij = 0.

This problem can be solved using the Newton-Raphson method, which typi-
cally converges within a few iterations. Although convergence of this method in
principle depends on the initialisation, we observed that a random initialisation
yields robust results in practice. Finally, we estimate the integral in Eq. (20)
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by reformulating the one dimensional Gaussian distribution into the form of a
Hermite polynomial. This approach allows to approximate the integral using a
Gauss-Hermite quadrature, estimating the integral with a weighted sum of a
relatively small number of the function evaluated at appropriate points (we used
ten evaluations in the experiments).

The implementation of MV-WarpedMF-SI is available at https://github.
com/PMBio/WarpedMF.

5 Results

We first applied the MV-WarpedMF-SI model on synthetic datasets to investi-
gate its transformation capability in a multi-view setting. Subsequently we used
the model for a genomic imputation task to fill in missing values and recover the
consensus structure in a gene-disease prioritisation study.

5.1 Simulation Studies

We simulated synthetic data drawn from the generative model of MV-
WarpedMF-SI. Firstly, we simulated covariance matrices from an inverse
Wishart distribution and used them to generate latent factors U and loadings
V by assuming K = 5 hidden factors. We then created two 1,000 × 1,000 data
matrices with 90% missing values from the inner product of the same latent
factors, UV �, corrupted with Gaussian noise, resulting in Z1 and Z2. To inves-
tigate to what extent the model is able to recover a data transformation, we
finally created Y 1 and Y 2 by using a linear superposition of the untransformed
data and a non-linear transformation, Y n = (1 − λ) · Zn + λ · φn(Zn), where
the parameter λ determines the intensity of the transformation and φ denotes
an exponential and a logarithmic data transformation for the view n = 1 and 2
respectively. In total, we generated six datasets with a variable degree of non-
linear warping. We also simulated side information regarding row and column
similarities using rank H = 10 approximations to the true simulated covariances
of U and V .

The proposed models, MV-WarpedMF and MV-WarpedMF-SI were trained
on each dataset. For comparison, we also considered a standard (non-warping)
multi-view matrix factorisation model (MV-MF) applied to the same data. Both
Y 1 and Y 2 were modelled simultaneously by each model. For each simulated
dataset, we evaluated the model performance using five-fold cross validation, cal-
culating the correlation coefficient (R2) between observed and predicted matrix
values on the hold-out test set.

The prediction results in Fig. 2(a) show that the warped models performed
markedly better than the un-warped MV-MF, where the differences were largest
for strong non-linearities and the best model was the combination of learn-
ing warping function and incorporating side information (MV-WarpedMF-SI).
Figure 2(b) shows a comparison of the true transformations and the warping

https://github.com/PMBio/WarpedMF
https://github.com/PMBio/WarpedMF


798 N. Pratanwanich et al.

(a) Model evaluation on R2:
2weiV1weiV

(b) Warping functions:
2weiV1weiV

Learned function True function Learned function True function

(c) Predictive distributions:
2weiV1weiV

Fig. 2. Impact of the inference of warping functions in multi-view learning. Considered
are the proposed MV-WarpedMF and MV-WarpedMF-SI as well as a standard multi-
view matrix factorisation model (MV-MF) applied to the raw untransformed data. Box
plots show the out of sample prediction accuracy (shown is variation in R2 across the
five folds in each of six datasets) for increasing degrees of non-linear distortion (a).
The true generative warping functions and the parametric fits recovered by the model
are shown in (b). The predictive distributions in the observed space for each view are
depicted in (c).

functions inferred using MV-WarpedMF-SI. Representative examples of the pre-
dictive density for one entry of the data matrix are shown in Fig. 2(c). The
warping model employed in MV-WarpedMF-SI can capture complex and asym-
metric distributions, providing a substantially better approximation to the true
density than a normal distribution as used in a standard MV-MF.

5.2 Analysis of Therapeutic Gene-Disease Associations

Data. Next, we applied the MV-WarpedMF-SI to a gene-disease association
task. The dataset consisted of disease × gene matrices. We considered six evi-
dence sources of therapeutic gene-disease relationships as well as the additional
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validation set of gene-disease associations derived from drugs in clinical trials.
These data are freely available via the Open Targets platform1:

– ANIM, Y 1: drug effects on animal models where scores were calculated using
the phenodigm similarity to human diseases [24].

– EXPR, Y 2: differential gene expression profiles of control-disease experiments
from Expression Atlas2 where scores were calculated from the p-value and log2
fold change.

– GEAS, Y 3: gene association studies in GWAS Catalog3 which were scored by
the p-value, sample size, and severity effect.

– LITR, Y 4: literature mining of scientific articles on Pubmed database4, scoring
gene-disease associations by the co-occurrence of the gene and disease terms
in the same sentence.

– PATH, Y 5: evidences of pathway analysis from REACTOME5.
– SOMU, Y 6: evidences of somatic mutation studies from COSMIC6.
– An independent validation set of 22,138 known associations covering 372 dis-

eases and 614 therapeutic genes, derived from ChEMBL7, scored by drug
development pipeline progression. This dataset was not included for training
the models.

We also considered side information of a disease similarity matrix (Σu)
derived from disease ontology trees [18] and a gene similarity matrix (Σv), which
was estimated from gene expression networks [10]. To define the disease similar-
ity covariance, we considered the inverse of the shortest path distance between
diseases through the lowest common ancestor. For the gene similarity network
we used the pre-computed 1,000 eigenvectors and eigenvalues of the gene-gene
correlation matrix derived from 33,427 gene expression profiles [10].

In total, we constructed six matrices of 426 diseases and 10,721 gene targets,
with an average of 95% missing values. These datasets represent typical examples
of evidences that differ in scale and distributional properties.

Considered Methods. We compared the following models in single-view learn-
ing, where each data view was trained and validated independently, as well as
multi-view learning, where all the data views were considered simultaneously.
We applied a standard matrix factorisation (MF) [14] and a regression-based
MF model with side information (RBMF-SI) [15] to each view separately, both
of which were trained on the raw (un-warped) data as baselines. As an addi-
tional comparison partner, we also considered preprocessing the raw data using
the Box-Cox transformation before applying an MF and an RBMF-SI. We denote
1 https://www.targetvalidation.org/
2 https://www.ebi.ac.uk/arrayexpress.
3 https://www.ebi.ac.uk/gwas.
4 https://europepmc.org.
5 https://www.reactome.org.
6 https://cancer.sanger.ac.uk/cosmic.
7 https://www.ebi.ac.uk/chembl.

https://www.targetvalidation.org/
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/gwas
https://europepmc.org
https://www.reactome.org
https://cancer.sanger.ac.uk/cosmic
https://www.ebi.ac.uk/chembl
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Table 1. Summary of the considered methods in this work.

Model Data transformation Side information

Single-view learning

MFb [14] None None

RBMF-SIb [15] None Regression-based

BoxCoxMF Box-Cox preprocessing None

BoxCoxRBMF-SI Box-Cox preprocessing Regression-based

WarpedMFa Built-in warping functions None

WarpedMF-SIa Built-in warping functions Covariance priors

Multi-view learning

MV-MF None None

MV-RBMF-SI None Regression-based

MV-BoxCoxMF Box-Cox preprocessing None

MV-BoxCoxRBMF-SI Box-Cox preprocessing Regression-based

MV-WarpedMFa Built-in warping functions None

MV-WarpedMF-SIa Built-in warping functions Covariance priors
a Our proposed model variants
b We modified the original model by adding bias terms.

these methods as BoxCoxMF and BoxCoxRBMF-SI respectively. The Box-Cox
transformation was fit for each data view independently.8 Moreover, we applied
all the models in multi-view learning, denoting them with the prefix ‘MV’.
Finally, the proposed model of learning warping functions during matrix fac-
torisation was used either without (WarpedMF) or with the inclusion of side
information (WarpedMF-SI), and in its multi-view form either without (MV-
WarpedMF) or with side information (MV-WarpedMF-SI). Table 1 summarises
the methods considered in this analysis.

Evaluation of Prediction Accuracy Using Cross Validations. We first
assessed the predictive accuracy of the considered methods in terms of their
ability to impute held-out values. We trained each model using a five-fold cross
validation experiment, and compared the predicted scores to the true values in
the hold-out test predictions using the Spearman rank correlation coefficients
(Rs). Predictions from all models were assessed on the raw data scale.

While we assessed each method in terms of the imputation task by using
both the latent factors and the bias terms (Ũ Ṽ � + b̃r + b̃c), we also explored
the alternative ability to impute gene-disease scores when considering only the
inferred latent factors (Ũ Ṽ �) without the learned bias terms. Table 2 shows the
average test Rs under these two prediction schemes.

8 This was done by using a SciPy library.
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Table 2. Average test Rs from the five-fold cross validations using all learned variables
(Ũ Ṽ � + b̃r + b̃c) are presented. In the parentheses are the average test Rs of the
imputing gene-disease relationships using only the inner product of the shared latent
factors (Ũ Ṽ �), which is considered the inferred consensus in multi-view learning.

Model 5-fold cross validation

ANIM EXPR GEAS LITR PATH SOMU

Single-view learning

MF .76 (.28) .71 (.22) .89 (.27) .60 (.26) .94 (.26) .84 (.51)

RBMF-SI .60 (.08) .59 (.20) .84 (.26) .39 (.02) .76 (.22) .81 (.20)

BoxCoxMF .76 (.27) .74 (.29) .92 (.38) .62 (.23) .94 (.04) .84 (.25)

BoxCoxRBMF-SI .77 (.38) .75 (.46) .87 (.37) .69 (.45) .95 (.02) .78 (.22)

WarpedMFa .77 (.32) .75 (.49) .92 (.55) .62 (.30) .95 (.38) .84 (.60)

WarpedMF-SIa .81 (.47) .77 (.67) .92 (.55) .69 (.52) .95 (.44) .87 (.76)

Multi-view learning

MV-MF .68 (-.11) .64 (.03) .85 (.25) .59 (.26) .91 (-.13) .80 (.18)

MV-RBMF-SI .64 (.01) .62 (.02) .85 (.05) .46 (.01) .59 (-.06) .79 (.08)

MV-BoxCoxMF .72 (-.02) .70 (.05) .89 (.22) .57 (.07) .91 (.13) .82 (.04)

MV-BoxCoxRBMF-SI .70 (-.16) .83 (.42) .84 (.05) .59 (.44) .09 (.03) .66 (.01)

MV-WarpedMFa .60 (.68) .69 (.65) .37 (.53) .52 (.52) .19 (.08) .71 (.59)

MV-WarpedMF-SIa .75 (.36) .72 (.43) .89 (.22) .61 (.50) .90 (.09) .81 (.38)
a Our proposed model variants.

For imputation performance, it is not surprising that modelling each view
independently can yield better results, where the best performing model com-
bined learning warping function within matrix factorisation with low-rank side
information (WarpedMF-SI). The inclusion of side information via low-rank
covariance priors (WarpedMF-SI) consistently increased prediction accuracy for
all data views, whereas other methods, i.e. the linear regression based MF models
(RBMF-SI and BoxCoxRBMF-SI) yielded variable performance.

When considering the inferred latent representations without the bias terms,
the WarpedMF-SI model had the highest predictive performance. The proposed
warped matrix factorisation models without side information (WarpedMF) was
substantially more accurate than un-wapred factorisation models (MF) or the
Box-Cox preprocessing models (BoxCoxMF). This is more evident in multi-view
learning where the un-warped factorisation (MV-MF) and the Box-Cox pre-
processing (MV-BoxCoxMF) failed to capture the consensus across views; very
little structure was remained for the shared latent factors to discover. In con-
trast, learning warping functions in multi-view learning of the MV-WarpedMF
model as well as the MV-WarpedMF-SI model maximised the mutual latent
structures across views, promoting our confidence in true associations (see the
next section).
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SAEGRPXEMINA
Single-view model Rs

min avg max
10.10.-30.-FM

RBMF-SI -.01 -.00 .01
BoxCoxMF -.06 -.00 .06
BoxCoxRBMF-SI -.03 .01 .05
WarpedMF -.02 .02 .06
WarpedMF-SI .00 .03 .06

Multi-view model Rs

70.FM-VM
MV-RBMF-SI .03
MV-BoxCoxMF .03
MV-BoxCoxRBMF-SI .03
MV-WarpedMF .19
MV-WarpedMF-SI .19

UMOSHTAPRTIL

Fig. 3. Test Rs are shown when validating with known association scores (left). Learned
transformation functions inferred by MV-WarpedMF on each data set (right).

Evaluation of Consensus Discovery Using Known Associations. To fur-
ther explore the benefit of the consensus discovery captured by the shared latent
factors, we assessed each model using the independent out-of-sample associa-
tion scores of 22,138 known gene-disease associations. Figure 3(left) shows the
test correlation coefficient (Rs) obtained from each model, where the minimum,
average and maximum of Rs across views are shown for single-view models.
These results show that single-view learning did fail to identify true gene-disease
associations, despite the strong predictive performance. Multi-view learning con-
sistently resulted in improved performance, where the best models were the com-
bination of warping and multi-view modelling with or without side information
(MV-WarpedMF and MV-WarpedMF-SI), followed by the un-warped factorisa-
tion (MV-MF). This confirms that learning warping functions in conjunction
with the parameters of matrix factorisation modelling rather than the Box-
Cox preprocessing or the un-warped factorisation can capture complex trans-
formations and in particular is an effective approach to adjust for differences
in scale between views, leading to significantly improved imputation accuracies.
Figure 3(right) depicts the six warping functions inferred by MV-WarpedMF-SI.

6 Conclusion

We have proposed a method to jointly infer a parametric data transformation
function while performing inference in matrix factorisation models. Our approach
unifies previous efforts, including models that combine data across views and the
incorporation of side information. In experiments on real data, we demonstrate
that learning warping functions within the matrix factorisation framework and
incorporating low-rank side information yield increased accuracy for imputing
missing values in single-view learning, and in multi-view learning where joint
inference was made across all views. Flexible data transformations will be par-
ticularly useful if distant data types are integrated. Our experiments illustrate
an example application of such a setting, where we consider gene-disease associa-
tions obtained using complementary sources of evidence. We show that learning
warping functions in multi-view matrix factorisation can enhance the discovery
of the shared latent structures (consensus) underlying across views.
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The proposed variational inference scheme is computationally efficient and
allows to incorporate side information in the form of multivariate normal (covari-
ance) priors. Combined with suitable low-rank approximations, the proposed
strategy is directly applicable to thousands of rows and columns with robust
performance.
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