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Abstract. We consider the problem of node classification in hetero-
geneous graphs, where both nodes and relations may be of different
types, and different sets of categories are associated to each node type.
While graph node classification has mainly been tackled for homoge-
neous graphs, heterogeneous classification is a recent problem which has
been motivated by applications in fields such as social networks, where
graphs are intrinsically heterogeneous. We propose a transductive app-
roach to this problem based on learning graph embeddings, and model
the uncertainty associated to the node representations using Gaussian
embeddings. A comparison with representative baselines is provided on
three heterogeneous datasets.

Keywords: Node graph classification · Representation learning ·
Gaussian embeddings

1 Introduction

Classification of nodes in graphs is a relational classification problem where the
labels of each node depend on its neighbors. Many problems in domains like
image, biology, text or social data labeling can be formulated as graph node
classification and this problem has been tackled with different approaches like
collective classification [21], random walks [1], and transductive regularized mod-
els [10]. Most approaches consider homogeneous graphs, where all the nodes share
the same set of labels, propagating labels from seed nodes to their neighbors.
Many problems in domains like biology or social data analysis involve heteroge-
neous networks where the nodes and the relations between nodes are of different
types, each node type being associated to a specific set of labels. For example, the
LastFM social network, one of the datasets used in our experiments, links users,
tracks, artists and albums via seven different types of relations such as friend-
ship, most listened tracks, and authorship. In such a network, nodes of different
types influence each other and their labels are interdependent. The dependency
is, however, more complex than with homogeneous networks and depends both
on the nodes type and on their specific relation. Classical methods for homoge-
neous graphs based for example on label propagation, usually relies on a simple
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relational hypothesis like homophily in social networks. They cannot be easily
extended to heterogeneous networks, and new methods have to be developed for
dealing with this relational classification problem.

In this paper, we consider the problem of node classification in heterogeneous
graphs. We propose a transductive approach based on graph embeddings where
the node embeddings are learned so as to reflect both the classification objective
for the different types of nodes and the relational structure of the graph. When
most embedding techniques consider deterministic embeddings where each node
is represented as a point in a representation space, we focus here on density-based
embeddings which capture some form of uncertainty about the learned represen-
tations. Uncertainty can have various causes related to the lack of information
(isolated nodes in the graph) or because of the contradiction between neighbor-
ing nodes (different labels). Our hypothesis is that, because of these different
factors, training will result in learned representations with different confidence,
and that this uncertainty is important for this classification problem. For that,
we will use Gaussian embeddings which have been recently proposed for learn-
ing word [23] and knowledge graph [7] embeddings in an unsupervised setting.
More precisely, each graph node representation corresponds to a Gaussian dis-
tribution where the mean and the variance are learned. The variance term is
a measure of uncertainty associated to the node representation. The objective
function is composed of two terms, one reflecting the classification task and the
other one reflecting the relations between the nodes. Both mono and multi-label
classification can be handled by the model. For the experiments, we focus on
classification in social network data. This type of data offers a variety of sit-
uations which allows us to illustrate the behavior and the performance of the
model for different types of heterogeneous classification problems.

To summarize, our contributions are as follows: (i) We propose a new method
for learning to classify nodes adapted to heterogeneous graph data; (ii) We model
the uncertainty associated with the nodes representation; (iii) We provide a
comparison with state of the art baselines on a series of social data classification
problems representative of different situations.

2 Related Work

2.1 Graph Node Classification

Several different models have been proposed to solve the graph node classifica-
tion task. We discuss below three main families [4] (i) collective classification,
(ii) random walk type methods, and (iii) semi-supervised/transductive graph
regularized models.

Random Walks. This family gathers methods where labels are iteratively prop-
agated from seed nodes to all the other nodes in a network. Propagation follows
a random walk or a similar iterative mechanism. [8,28] are among the early ML
models using random walks for classification in homogeneous graphs. [27] propose
an extension of these models for heterogeneous graphs. It relies on hand-defined
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projections of the graph onto homogeneous graphs, the approach being difficult
to adapt automatically to new datasets. The Graffiti random surfer model [1] is
a state of the art random walk classifier for heterogeneous graphs. It is based on
two intertwined random walks. Both are between nodes of the same type, but
allowing either one hop (standard) or two-hop (extended) steps in the graph. It
models up to a certain extent the influence among nodes of different types. In
our preliminary tests on different datasets, this model was among the best ones.

Collective Classification. Collective classification algorithms are extensions of
classical inductive classification to relational data. They take as input a fixed size
vector composed of node features and of statistics on the node neighbors current
labels. Sen et al. [21] provide an introduction and a comparison of some of these
models. They distinguish between two families: local and global models. The
former make use of local classifiers. In [14,15] for example, naive Bayes classifiers
are used iteratively, dynamically updating the attributes of nodes as inferences
are made about their neighbors. Along these lines, [18] recently introduced an
iterative model for sparsely labeled network which forces the label predictions to
map the distribution of the observed data with a maximum entropy constraint.
Global classifiers optimize a global loss function using graphical models, like
e.g. Markov Random Fields. Iterative methods suppose features associated with
nodes to learn the classifier, which is not the case in our work.

Random Walk Type Methods. This family gathers methods where labels are
iteratively propagated from seed nodes to all the other nodes in a network.
Propagation follows a random walk or a similar iterative mechanism. [8,28] are
among the early Machine Learning (ML) models using random walks for clas-
sification in homogeneous graphs. [27] propose an extension of these models for
heterogeneous graphs. It relies on hand-defined projections of the graph onto
homogeneous graphs, the approach being difficult to adapt automatically to
new datasets. The Graffiti random surfer model [1] is a state of the art random
walk classifier for heterogeneous graphs. It is based on two intertwined random
walks. Both are between nodes of the same type, but allowing either one hop
(standard) or two-hop (extended) steps in the graph. It models up to a certain
extent the influence among nodes of different types. In our preliminary tests on
different datasets, this model was among the best ones.

Semi-Supervised Transductive Learning. The third family has been developed
for exploiting the manifold assumption in semi-supervised learning. The loss
function is composed of two main terms, one is for classification on the labeled
nodes, the other one is a propagation equation which encourages neighbor nodes
to share similar labels. Seminal works in this direction include [2,19,24,26]. All
these models have been developed for homogeneous graphs and perform some
form of label propagation similar to random walks. The difference with the lat-
ter is that the problem is formulated as a loss minimization one, which is more
general than simply formulating a propagation rule. Relations between random
walks and loss-based models are discussed more at length in [4,29]. Extensions
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have been proposed over the years to handle more general situations. Multi-
relational graphs where nodes are all of the same type, but can be linked by
different relations are considered in [9,12]. This also allows them to extend the
transductive models to inductive formulations. Some authors have attempted to
extend homogeneous formulations to the heterogeneous setting. All follow more
or less the idea of projecting the heterogeneous graph onto a series of homoge-
neous ones, thus creating a series of homogeneous classification problems. Work
in this direction includes [11] which is a direct extension of the homogeneous for-
mulation in [25]. Graph projections have to be defined for each new problem and
none of these models is able to directly exploit the correlation between nodes of
different types. The work closer to ours is [10] who was among the first to pro-
pose an embedding model for transductive heterogeneous graph classification.
This has been the starting point of our work, but they only consider determin-
istic representations while we use a more general transductive formulation with
probabilistic embeddings.

To summarize heterogeneous graph classification approaches, very few allow
modeling the influences between nodes of different types. In the experimental
section, we will compare our model to [1,10] which have been designed specifically
for heterogeneous classification, as well as an unsupervised graph embedding
model [22] and a homogeneous graph model [28].

2.2 Learning Representations for Graphs and Relational Data

In the last years, there has been a growing interest in learning latent representa-
tions. This has led to breakthroughs in domains like image recognition, speech
or natural language processing [3,13]. Graph node embeddings have been pro-
posed for unsupervised learning where the goal is to learn node representations
that preserves the graph structure and that can be exploited latter for different
purposes like visualization, clustering or classification. [17] learns node represen-
tations by performing truncated walks on the graph – and supposing that nodes
along the path should be close together in the representation space. [22] propose
an algorithm designed for very large graphs, which can be used for different
types of graphs (undirected, directed, weighted or not) – we use their method as
our unsupervised baseline that embeds all data points, and then train a classifier
on labeled ones. Somewhat related to this topic is the learning of embeddings
for graphs where a unique representation of the whole graph is learned [20] and
the learning of triplets in knowledge graphs where both relations and nodes rep-
resentations are learned for ranking positive triplets over negative ones [5–7].
The setting is, however, quite different from the one considered here. Finally,
modeling uncertainty via Gaussian embeddings has been proposed recently for
unsupervised learning in [7,23]. Based on sentences in the former and knowledge
graph in the latter, they propose energy-based models to learn Gaussian embed-
dings. In this paper, we borrow their formalization and graph regularization cost
in a transductive setting.



610 L. Dos Santos et al.

3 Model

In this section we present our model, namely Heterogeneous Classification with
Gaussian Embeddings (HCGE).

We first introduce the notations used throughout this paper. A heterogeneous
network is modeled as a directed weighted graph G = (N , E ,W) where N is the
set of nodes, E the set of edges and W the weights associated to the edges. Each
node xi ∈ N of the graph has a type ti ∈ T , where T = 1, 2, . . . , T . We denote
Ni the neighbors of xi.

Regarding the classification task, let Yt denotes the set of categories associ-
ated with nodes of type t, and #Yt the cardinality of Yt. L ⊂ N is the set of
indices of labeled nodes. For i ∈ L, yi is the class vector associated to xi: node
xi belongs to category c if yc

i = 1 and does not belong if yc
i = −1.

In our model, each node xi is mapped onto a representation which is a
Gaussian distribution over the space zi ∼ N (μi, Σi) in R

Z . The latent space
is common to all nodes. In this paper, we compare two different parameteri-
zations of Σ. We experimented with a spherical (Σi = σiId) and a diagonal
(Σi = diag (σp

i )p) covariance matrix. We use a weight wr for each type of rela-
tion. To simplify we use wij for the weight wrij

of the edge (i, j) linking node i
to node j with a relation rij .

Loss Function. We learn the representations of nodes and classifiers parameters
by minimizing an objective loss function. It takes the general form of transductive
regularized loss [11,25], with a classification (ΔC) and a regularization term
(ΔG), both being detailed later:

L(z, θ) =
∑

i∈L
ΔC(fθti (zi), yi) + λ

∑

i∈N

∑

j∈Ni

wijΔG(zi, zj) (1)

As for classical transductive graph losses, the minimization in (1) aims at finding
a trade-off between the difference between observed and predicted labels in Yt,
and the amount of information shared between two connected nodes. There are
however major differences, since here z is not a label as in classical formulations,
but a node embedding. Finally, the function fθt(.) is a parametric classifier for
a node of type t – there is one such classifier for each node type. Since we are
using Gaussian embeddings, the zs are random variables and the regularization
term is a dissimilarity measure between distributions.

To avoid overfitting, following [23], we regularize the mean and the covariance
matrix associated to each node. We add two constraints to prevent means and
covariances to be too large and to keep the covariance matrices positive definite
(this also prevents degenerate solutions):

||μi|| ≤ C and ∀p, m ≤ σp
i ≤ M (2)

where the different parameters C, m and M have been set manually after some
trials on a subset of the DBLP training set to respectively 10, 0.01 and 10 (and
not changed after that), but any other reasonable value will do.

The two following paragraphs refer to the respective parts of (1).
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Classifier. The mapping onto the latent space is learned so that the labels of
each type of node can be predicted from the (Gaussian) embedding. For that, we
use a parametric classification function fθt depending on the type t of the node.
This multivariate function takes as input a node representation and outputs a
vector of scores for each label corresponding to the node type. The parameters
θt of the classifier are learned by minimizing the following loss on labeled data:

LClassification =
∑

i∈L
ΔC(fθti (zi), yi) (3)

where ΔC(fθti (zi), yi) is the loss associated with predicting labels fθti (zi) given
the observed labels yi. We recall that in this equation fθti (zi) and yi have values
in R

#Yt

.
In our experiments, we used different losses for ΔC . We first considered

the case where a class decision is simply the expectation of the classifier score
together with a hinge loss, adapting the loss proposed in [10]. For a given node
x of type t with an embedding z, this gives:

ΔC(fθt(z), y) = ΔEV (fθt(z), y) def=
#Yt∑

k=1

max
(
0; 1 − yk

Ez[fk
θt(z)]

)
(4)

where yk is 1 if x belongs to category k and −1 otherwise, and fk
θt(z) is a random

variable for category k.
Alternatively, the density based formulation allows us to leverage the density-

based representation through a probabilistic criterion, even in the case of linear
classifiers. We used here for ΔC the log-probability that ykfθt(z) take a positive
value. In this case, the variance will be influenced by the two loss terms: if the
two terms act in opposite directions, one solution will be to increase variance.
As we will see, this is confirmed by the experiments.

ΔC(fθt(z), y) = ΔPr(fθt(z), y) def= −
#Yt∑

k=1

logP
(
ykfk

θt(z) > 0
)

(5)

In our experiments and for both costs, we used a linear classifier for fk
θt , which

allows to easily compute the different costs and gradients, since the random
variable fk

θt(z), being a linear combination of Gaussian variables, is Gaussian
too. A basic derivation shows that:

P
(
ykfk

θt(z) > 0
)

=
1
2

⎛

⎝1 + erf

⎛

⎝ μ · θt

√
2
∑

p (θt
pσ

p)2

⎞

⎠

⎞

⎠ (6)

where erf is the Gauss error function.
There are some notable differences between the two classification losses

during learning. In the case of a linear classifier fθt , Ez[fk
θt(z)] = μ · θt

k.
Thus, minimizing ΔEV only updates the mean of the Gaussian embedding: the
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covariance matrix of the embedding does not interfere with the classification
term, and is only present in the second term of (1).

For the ΔPr loss, the probability is proportional to erf
(

μ·θt√
2
∑

p (θt
pσp)2

)
where

the variance is present. When the graph regularization and classification cost pull
the representation mean in opposite directions (opposite gradients), the model
will respond by increasing the variance for the spherical variance model1: this
behavior is interesting since it transforms an opposition between regularization
and classification costs into increased uncertainty.

Graph Embedding. We make the hypothesis that two nodes connected in the
graph should have similar representations, whatever their type is. Intuitively,
this will force nodes of the same type which are close in the graph to be close in
the representation space. The strength of this attraction between nodes of the
same class will be proportional to their closeness in the graph and to the weight
of the path(s) linking them. We use the asymmetric loss proposed in [7,23]:

LGraph =
∑

i

∑

j∈Ni

wijDKL(zj ||zi) (7)

where ΔG(zi, zj) = DKL(zj ||zi) is the Kullback-Leibler divergence between the
distributions of zi from zj :

DKL(zj ||zi) =
∫

x∈R

N (x;μj , Σj) log
N (x;μj , Σj)
N (x;μi, Σi)

dx

=
1
2

(
tr(Σ−1

i Σj) + (μi − μj)T Σ−1
i (μi − μj) − d − log

det(Σj)
det(Σi)

)

(8)
The loss LGraph is a sum over the neighbors Ni of i, where wij is the weight

of the edge between xi and xj . Other similarity measures between distributions
could be used as well, the Kullback-Leibler divergence having the advantage
of being asymmetric, which fits well the social network datasets used in the
experiments.

Algorithm. Learning the Gaussian embeddings z ∼ N (μ,Σ) and the classifiers
parameters θ consists in minimizing loss function in (1). We used here a Sto-
chastic Gradient Descent Method to learn the latent representations, i.e. the μi,
Σi as well as the parameters θ of the classifiers.

Our algorithm samples a pair of connected nodes and then makes a gradient
update of the nodes parameters. For each sampled node zi that is part of the
labeled training set L, the algorithm performs an update according to the first
term of (3). This update consists in successively modifying the parameters of
the classification functions θti and of the latent representations μi and Σi so as

1 the increase will be in the direction of the normal to the classifier hyperplane for the
diagonal variance model.
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to minimize the classification loss term. Then, the model updates its parameters
with respect to the smoothness term of (7). Note that, while we use a stochastic
gradient descent, other methods like mini-batch gradients or batch algorithms
could be used as well.

4 Experiments

4.1 Datasets

Experiments have been performed on three datasets respectively extracted from
DBLP, Flickr and LastFM. For all but the first dataset (DBLP), each node can
have multiple labels. The three datasets are described below and summarized in
Table 1.

Table 1. Datasets

DBLP Nodes Type Nb. Nodes Nb. Labeled Nodes Nb. Labels

Paper 14,376 14,376 20

Author 14,475 4,057 4

Edges Type Nb. Edges

Author↔Paper 41,794

Flickr Nodes Photos 46,926 8,766 21

User 4,760 3,476 42

Edges User↔User 175,779

User↔Photo 46,926

LastFM Nodes Users 1,013 321 59

Tracks 35,181 24,562 28

Albums 32,118 15,966 47

Artists 17,138 11,564 47

Edges User↔User 1,109

User↔Album 47,541

User↔Artist 47,812

User↔Track 47,807

Track↔Album 29,647

Track↔Artist 35,181

Album↔Artist 32,118

The DBLP dataset is a bibliographic network composed of authors and
papers. Authors are labeled with their research domain (4 different domains)
while papers are labeled with the conference name they were published in
(20 labels). Authors and papers are connected through an authorship relation.
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The graph is thus composed of two types of nodes and is bipartite with only one
relation type. Classification is monolabel on papers and authors.

The Flickr corpus is a dataset composed of photos and users. The photo
labels correspond to different possible tags while the user labels correspond to
their subscribed groups. The classification problem is multi-label: images and
users may belong to more than one category. Photos are related to users through
an authorship relation, while users are related to others through a following
relation. We have kept the image tags that appear in at least 500 images, and
user categories that also appear at least 500 times in the dataset resulting in 21
possible labels for photos and 42 for authors.

The LastFM dataset is a social network composed of users, tracks, albums
and artists. This dataset was extracted using the LastFM API2. The task is
multi-label, and all node types have their specific set of labels. Users are labeled
with the type of music they like (59 labels), tracks with the kind of music they
belong to (28 labels), albums with their type (47 labels) and artists with the kind
of music they play the most (47 labels). Users are related to users (friendship),
tracks (favorite tracks), albums (favorite albums) and artists (favorite artists).
Tracks are related to albums (belong to) and artists (singer). Finally, albums
are related to artists (sing in). Note that one track can be related to several
artists, and an album can be related to several artists. This dataset contains
tracks labeled by their genre (rock, indie, ...), users by the type of music they
like (female vocalists, ambient, ...), albums by their type (various artists, live,
...) and artists by the kind of music they make (folk, singer songwriter, ...). Some
labels may be the same string-wise for different types of nodes, but we consider
that labels of different types of nodes are distinct, e.g. pop is not the same for
an artist or a track.

We compare our approach with four state-of-the-art models (see Sect. 2):

– LINE [22], which is representative of unsupervised learning of graph embed-
dings suitable for various tasks such as classification. We performed a logistic
regression with the learned representations as inputs.

– HLP [28], which is representative of transductive graph algorithms developed
for semi-supervised learning. As HLP is designed for homogeneous graphs, we
perform as many random walks as the number of node types, considering each
time that all the nodes are of a same given type.

– Graffiti [1], which is a state of the art model for the task of classification with
random walk in heterogeneous graph.

– LSHM [10], which is another state of the art model for the task of classifica-
tion with deterministic vector representations in heterogeneous graph.

Evaluation Measures and Protocol. For the evaluation, we have considered two
different evaluation measures. The Precision at 1 (P@1) measures the per-
centage of nodes for which the category with the highest score is among the
observed labels. The Precision at k (P@k) is the proportion of correct labels

2 To access the API go to http://www.lastfm.fr/api.

http://www.lastfm.fr/api
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in the set of k labels with the highest predicted scores. Here micro P@k is an
average on all the node types, with k set to the number of relevant categories.
This is a measure of the capacity of a model to correctly pick the k relevant
categories of any node. In the case of DBLP (mono-label dataset), we consider
that the predicted category is the category with the highest score. We make use
of the Precision at 1 (P@1) measure as there is at most one label per node.
We optimize and compare the different models with regard to micro-average,
and also report macro-average.

Regarding the experimental protocol, we partition a dataset into two dif-
ferent subsets, namely a training set and a testing set. As all the models have
hyperparameters, one subset of the training set is used as a validation set to opti-
mize by grid search the hyperparameters. The optimization is done with respect
to the Micro P@k measure, which corresponds to the mean of P@k over all
nodes. The other part of the training set is used to learn the parameters of the
different models. We then compare the different models based on the results on
the testing set, by using the model for which the performance over the validation
set was the best.

Experiments are performed with different training set sizes: 10%, 30%, 50%.
Within our transductive setting, the training set size refers to the proportion
of labeled nodes used in the training set3. The training nodes are selected at
random. The proportion of nodes used during the parameters training phase and
used for the hyperparameters selection depends on the size of the training set.
We use 50–50 for a training set size of 10% and 80–20 (train/validation) for the
others. Experiments are performed with 5 random splits. The hyper-parameters
are selected for each split using the validation set. We then average 5 runs over
each split.

4.2 Results

In this section we present the results of four variants of our Gaussian embedding
model, and compare to LINE [22], Graffiti [1], HLP [28] and LSHM [10]. The
experiments are performed on the three datasets described in Table 1 and the
results are described in Tables 2 (DBLP), 3 (FlickR) and 4 (LastFM). The best
performing classifier (on the test set) is presented in bold.

Concerning the four variants of our model, HCGE(Δ•, X) refers to the HCGE
model with the classification loss Δ• (ΔEV or ΔPr) and a spherical (X=S) or
diagonal (X=D) covariance matrix.

For micro P@k, our model generally outperforms the others on all the
datasets. Supervised models (HLP, Graffiti, LSHM and HCGE) using the class
information outperform unsupervised representation learning, which matches the
results reported in [10]. On all datasets, the performances of HLP are below the
performances of Graffiti, LSHM and HCGE. This clearly shows that model-
ing the heterogeneity of the graph brings noteworthy improvements. Comparing
the heterogeneous models, both LSHM and HCGE outperform Graffiti on all

3 We did not prune the graph.
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Table 2. P@1 DBLP

Train size Model Train Val Test

Micro Micro Macro Author Paper

10 % LINE 25.1 18.9 19.5 23.0 29.1 16.8

HLP 100 24.7 24.1 27.2 32.6 21.8

Graffiti 100 32.4 30.9 38.1 50.8 25.3

LSHM 99.8 33.8 32.1 40.0 53.9 26.0

HCGE(ΔEV , S) 99.7 33.1 30.9 38.5 52.1 24.9

HCGE(ΔEV , D) 95.6 31.4 30.4 37.4 49.9 24.9

HCGE(ΔPr, S) 83.8 29.0 27.9 34.3 45.6 22.9

HCGE(ΔPr, D) 92.9 29.0 28.3 34.3 45.1 23.6

30 % LINE 24.0 21.5 21.9 24.8 30.1 19.5

HLP 100 35.8 36.0 41.9 52.4 31.4

Graffiti 100 39.6 38.5 46.6 61.1 32.1

LSHM 99.7 43.0 41.2 52.9 73.8 31.9

HCGE(ΔEV , S) 98.5 44.4 42.3 52.6 71.0 34.3

HCGE(ΔEV , D) 98.8 42.9 41.2 50.8 68.0 33.6

HCGE(ΔPr, S) 97.5 41.8 41.3 52.1 71.4 32.8

HCGE(ΔPr, D) 97.4 43.8 42.3 54.1 75.0 33.1

50 % LINE 24.2 21.1 22.3 25.0 29.8 20.2

HLP 100 39.7 39.4 46.5 59.3 33.7

Graffiti 100 41.5 41.2 49.4 64.1 34.8

LSHM 99.9 45.5 44.4 56.8 79.2 34.5

HCGE(ΔEV , S) 99.3 45.6 44.6 55.2 74.1 36.3

HCGE(ΔEV , D) 98.1 44.7 43.9 53.7 71.0 36.3

HCGE(ΔPr, S) 99.4 45.8 45.5 57.1 77.8 36.4

HCGE(ΔPr, D) 97.6 45.9 45.7 57.7 79.2 36.2

datasets. On average, compared to Graffiti, LSHM is 2.4 better on DBLP, 2.1
better on FlickR and 2.5 better on LastFM. We observed the same behavior
for HCGE, with +2.8 on DBLP, +4.4 on FlickR and +6.0 on LastFM. We can
note that the more complex the dataset, the higher the gap compared to the
baselines. This also shows that the use of representations can clearly improve
the performances.

On each dataset, our model outperforms LSHM (and the other competitors)
8 times over 9, with on average +1.0 points for DBLP, +2.3 for FlickR, and +3.8
for LastFM over the second ranked model. According to the results, introducing
uncertainty in representations clearly improves results when compared to LSHM.
Let us also point out that, according to our initial intuition, the effect of using
uncertainty has more impact when the amount of training data is lower: the
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Table 3. P@k FlickR

Train size Model Train Val Test

Micro Micro Macro User Photo

10 % LINE 24.4 19.4 20.7 23.2 29.1 17.3

HLP 100 26.0 26.3 27.8 31.3 24.3

Graffiti 100 24.3 24.5 27.0 32.7 21.2

LSHM 99.3 29.6 29.3 29.1 28.6 29.5

HCGE(ΔEV , S) 98.9 33.5 32.7 32.6 32.4 32.8

HCGE(ΔEV , D) 99.1 33.4 32.6 32.6 32.7 32.5

HCGE(ΔPr, S) 96.0 30.4 29.7 29.2 28.1 30.3

HCGE(ΔPr, D) 98.7 31.7 31.9 32.2 33.0 31.5

30 % LINE 23.0 21.6 21.5 24.2 30.6 17.9

HLP 100 47.6 47.7 43.7 34.5 53.0

Graffiti 100 47.5 47.0 43.7 36.1 51.3

LSHM 100 49.2 48.4 43.6 32.5 54.7

HCGE(ΔEV , S) 99.1 51.5 50.0 45.6 35.4 55.8

HCGE(ΔEV , D) 98.7 51.6 50.1 45.7 35.3 56.0

HCGE(ΔPr, S) 98.3 50.1 49.0 44.4 33.8 55.1

HCGE(ΔPr, D) 98.5 50.6 50.0 45.8 36.1 55.5

50 % LINE 23.2 21.8 21.8 24.6 31.0 18.2

HLP 100 54.2 54.1 48.6 35.8 61.4

Graffiti 100 54.4 54.0 48.8 36.9 60.8

LSHM 99.9 55.1 54.0 47.9 33.7 62.0

HCGE(ΔEV , S) 97.9 56.7 55.8 50.0 36.5 63.4

HCGE(ΔEV , D) 97.3 56.6 55.8 50.0 36.5 63.4

HCGE(ΔPr, S) 98.8 55.7 54.8 49.0 35.5 62.5

HCGE(ΔPr, D) 98.4 56.4 55.9 50.3 37.2 63.3

difference between LSHM and HCGE decreases in general when more training
data is available (except for DBLP).

Let us compare the performance of the variants ΔEV and ΔPr. Globally,
ΔPr seems to be disadvantaged by a low number of training examples, when
ΔEV seems to be more stable in comparison to other baselines. However, the
more training data, the closer the ΔPr variant is to ΔEV . For example, on the
DBLP dataset, moving from 10 % to 30 % improves on average ΔPr results by
+13.7 but only by +11.1 for ΔEV . For a training set size of 50 %, the difference
between ΔPr and ΔEV is +1.1 on DBLP, and +0.1 on FlickR. For LastFM, the
difference is resp. −14.6 for 10 %, −6.5 for 30 % and −1.5 for 50 % of the dataset
used for training. On the three datasets, the lower the training set size, the
better ΔEV seems to be compared to ΔPr. We could not explain this difference
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Table 4. P@k LastFM

Train size Model Train Val Test

Micro Micro Macro User Track Album Artist

10 % LINE 20.8 20.6 20.4 15.9 5.6 26.0 14.5 17.4

HLP 98.7 38.1 38.4 30.0 9.9 47.8 27.2 35.1

Graffiti 100 40.1 40.0 31.4 10.6 49.0 28.1 38.1

LSHM 99.9 36.4 36.3 27.2 9.0 48.4 26.2 25.3

HCGE(ΔEV , S) 99.8 44.4 44.0 34.1 9.6 52.3 35.0 39.7

HCGE(ΔEV , D) 99.3 44.0 43.6 34.0 10.5 52.2 34.4 38.7

HCGE(ΔPr, S) 97.6 27.7 27.8 20.7 4.1 34.9 21.0 23.0

HCGE(ΔPr, D) 96.0 30.3 29.4 21.9 6.7 38.7 22.1 20.2

30 % LINE 20.5 20.9 20.5 17.0 10.1 25.9 14.4 17.5

HLP 98.9 50.2 49.7 40.0 17.2 60.5 37.7 44.8

Graffiti 100 50.8 50.3 40.4 17.2 61.7 36.2 46.5

LSHM 99.8 54.2 53.3 40.3 9.7 65.8 42.7 42.9

HCGE(ΔEV , S) 99.6 58.2 57.3 45.0 14.8 68.2 45.9 51.2

HCGE(ΔEV , D) 99.5 57.9 57.0 45.3 16.8 67.5 45.7 51.3

HCGE(ΔPr, S) 97.5 50.5 50.4 37.7 9.9 66.4 32.6 42.0

HCGE(ΔPr, D) 96.9 51.5 50.8 38.5 13.2 65.0 41.4 34.4

50 % LINE 20.5 20.5 20.5 17.0 10.3 26.0 14.4 17.5

HLP 98.8 51.9 52.1 42.3 19.4 63.1 40.2 46.4

Graffiti 100 53.2 53.5 43.2 19.1 65.4 39.5 48.7

LSHM 99.7 56.6 56.7 43.2 11.0 68.8 45.6 47.6

HCGE(ΔEV , S) 99.4 60.3 60.4 48.7 20.4 71.2 48.8 54.4

HCGE(ΔEV , D) 99.9 60.1 60.3 48.6 20.1 71.1 48.7 54.3

HCGE(ΔPr, S) 99.2 58.6 58.5 45.0 11.8 69.8 47.4 51.0

HCGE(ΔPr, D) 99.9 58.9 58.9 47.2 18.9 70.2 46.4 53.4

in the behavior between ΔEV and ΔPr, but believe that this is due to the fact
that the covariance matrix is only optimized in the graph regularization term
in the case of ΔEV . Let us now compare the use of a spherical and a diagonal
covariance matrix. For the ΔEV variant, it looks like moving from a spherical
covariance matrix to a diagonal one brings no improvement. It even decreases
the performance on DBLP. Concerning the ΔPr variant, for which the covariance
matrix plays a role in the classification cost, conclusions are reversed and using
diagonal covariance matrices improves the results. On the FlickR dataset, using
a diagonal variance improves the results by 1.4 on average. However, it looks like
the more training data, the less the improvement, with +2.2 improvement for a
training set size of 10 %, +1.0 for 30 % and +1.1 for 50 %.

4.3 Qualitative Discussion

In this section, we focus on studying qualitatively the representations found by
HCGE. We consider the most robust variant of our model (ΔEV , S), and the
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most challenging dataset, LastFM (similar observations were made on the other
datasets). We will examine the respective role of regularization and classification
costs on labeled training nodes, and the relationship between the learned variance
of a node and the local node properties (like its number of neighbors).

We first examined the respective role of classification and regularization costs.
In (1), the max-margin classification cost implies that the gradient of a node x is 0
if yk

Ez[fk
θt(z)] is above 1. In this case, the only constraints on the node are due

to the graph regularization cost. We can see how many of the nodes are used by
the classification cost by looking at the number of cases for which yk

Ez[fk
θt(z)]

is below or equal to 1. In Fig. 1a, we have shown a histogram of yk
Ez[fk

θt(z)] for
labeled nodes in the training set (after convergence). For around one third of the
nodes, the value of the classifier is above 1.1 – they could be removed from the
labeled set without harming the solution (however, these could have been useful
in early stages of optimization). This is clearly in agreement with the experiments
where we have shown that representation-based models were performing better
than the others, and suggests that it would be interesting to use these statistics
to predict the performance of the model on held-out data.

(a) Histogram of yk
Ez fk

θt(z) . (b) σ against the log-PageRank.

Fig. 1. Qualitative results for the model HCGE(ΔEV , S) on the LastFM dataset with
50 % of the dataset used for training. In Fig. 1b, we computed Gaussian kernel density
to show high density regions in the plot.

Regarding the relationship between the learned variance and the local prop-
erties of each node, we looked at the relationship between the PageRank4 [16]
of a node and its variance. Figure 1b shows that high PageRank implies a small
variance. Which means that for central nodes, representations are less uncertain.
However, the reverse implication is not true.

4 Using a standard damping factor of 0.15.
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5 Conclusion

We have explored the use of uncertainty for learning to represent nodes in the
challenging task of heterogeneous graph node classification. The proposed model,
Heterogeneous Classification with Gaussian Embeddings (HCGE), learns for
each node a Gaussian distribution over the representation space, parameterized
by its mean and covariance matrix, by optimizing a loss function that includes a
classification loss and graph regularization loss. We have examined four variants
of this model, by using either spherical and diagonal covariance matrices, and
by using two different loss functions for classification. Our model can easily be
extended to inductive learning by defining the Gaussian representation z as a
parameterized function of the input features.

Based on the experimental results obtained on datasets representative of
different situations, our main findings are that (i) integrating uncertainty in rep-
resentations improved classification (ii) according to our initial intuition, the
effect of using uncertainty has generally more impact when the amount of train-
ing data is lower and (iii) according to our expectation, highly central nodes
seem to have less variance associated to their representation.

Future work will address more in detail the relationship between the variance
and node properties, as well as understanding the interplay between regulariza-
tion and classification loss when both include the variance in their formulation.

Acknowledgement. This work has been partially supported by: Xu Guangqi 2016
Deep learning for Large Scale Dynamic and Spatio-Temporal Data; REQUEST
Investissement d’Avenir 2014; LOCUST ANR-15-CE23-0027-01; FUI PULSAR (BPI
France, Rgion Ile de France).

References

1. Angelova, R., Kasneci, G., Weikum, G.: Graffiti: graph-based classification in het-
erogeneous networks. World Wide Web 15(2), 139–170 (2012)

2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7,
2399–2434 (2006). http://portal.acm.org/citation.cfm?id=1248547.1248632

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Bengio, Y., Delalleau, O., Le Roux, N.: Label propagation and quadratic criterion.
Semi-supervised learning 10 (2006)

5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

6. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Conference on Artificial Intelligence, No. EPFL-CONF-
192344 (2011)

7. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with
gaussian embedding. In: Proceedings of the 24th ACM CIKM, pp. 623–632. ACM
(2015)

http://portal.acm.org/citation.cfm?id=1248547.1248632


Multilabel Classification on Heterogeneous Graphs 621

8. Jaakkola, M.S.T., Szummer, M.: Partially labeled classification with Markov Ran-
dom walks. Adv. Neural Inform. Process. Syst. (NIPS) 14, 945–952 (2002)

9. Jacob, Y., Denoyer, L., Gallinari, P.: Classification and annotation in social corpora
using multiple relations. In: Proceedings of the 20th ACM international CIKM,
pp. 1215–1220. ACM Press (2011)

10. Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for
classifying in heterogeneous social networks. In: Proceedings of the 7th ACM Inter-
national Conference on Web Search and Data Mining, pp. 373–382. ACM (2014)

11. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
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