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Abstract. Cardiac computed tomography is a non-invasive technique to
image the beating heart. One of the main concerns during the procedure
is the total radiation dose imposed on the patient. Prospective electro-
cardiographic (ECG) gating methods may notably reduce the radiation
exposure. However, very few investigations address accompanying prob-
lems encountered in practice. Several types of unique non-biological fac-
tors, such as the dynamic electrical field induced by rotating components
in the scanner, influence the ECG and can result in artifacts that can
ultimately cause prospective ECG gating algorithms to fail. In this paper,
we present an approach to automatically detect non-biological artifacts
within ECG signals, acquired in this context. Our solution adapts dis-
cord discovery, robust PCA, and signal processing methods for detecting
such disturbances. It achieved an average area under the precision-recall
curve (AUPRC) and receiver operating characteristics curve (AUROC)
of 0.996 and 0.997 in our cross-validation experiments based on 2,581
ECGs. External validation on a separate hold-out dataset of 150 ECGs,
annotated by two domain experts (88 % inter-expert agreement), yielded
average AUPRC and AUROC scores of 0.890 and 0.920. Our solution is
deployed to automatically detect non-biological anomalies within a con-
tinuously updated database, currently holding over 120,000 ECGs.

Keywords: Anomaly detection · Cardiac computed tomography ·
Electrocardiography · Prospective ECG gating

1 Introduction

Computed tomography (CT) is a non-invasive imaging technique, where a num-
ber of X-ray projections, taken from different angles, form a volumetric image of
an area inside the body. Here, we focus on images of the heart, i.e., cardiac CT,
which is often used to detect coronary artery disease or to evaluate the heart’s
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function and morphology [9]. Due to constant beating of the heart, cardiac CT
is particularly challenging: to ensure sharp motion-free images, multiple X-ray
projections need to be taken at the same cardiac phase. In addition, the imag-
ing protocol needs to be optimized to reduce the total radiation dose a patient
is exposed to, thereby lowering the risk of radiation-induced cancer [9]. Hence,
keeping a proper balance between low radiation exposure and image quality is
one of the major trade-offs in a cardiac CT [9].

One of the most effective imaging techniques in this field is based on prospec-
tive ECG gating [10], the central idea of which is to activate the X-ray source
only at the “right” time windows, namely during the cardiac phases of interest.
Such gating algorithms reduce radiation by over 70 %, while maintaining high
image quality [9]. On the other hand, relying on ECG makes the whole cardiac
CT workflow highly dependent on the quality of the ECG signal, which is influ-
enced by various factors specific to a patient, hospital, and physician. If the ECG
signal is corrupted by noise or artifacts, prospective ECG gating is prone to fail
and the resulting image of the heart will be of poor quality. In some cases, the
scan has to be repeated, which offsets the advantage of prospective ECG gating
in reducing radiation dose. We describe typical non-biological artifacts that may
disrupt the imaging workflow in Sect. 2.

While the field of ECG analysis is well-established, it addresses problems
distinct from ours. Common use case are clinical decision support and patient
monitoring, both of which use ECG to assess a patient’s health status. Conse-
quently, anomalies of biological origin are the primary focus. In contrast, this
work aims to accurately identify ECG signals that are corrupted by various non-
biological artifacts, disregarding any medical conditions a patient might have. In
addition, the characteristics of ECG signals and artifacts encountered in cardiac
CT differ from those encountered in clinical diagnosis (see Sects. 2 and 3). To
the best of our knowledge, this is the first scientific work that thoroughly inves-
tigates methods to automatically identify anomalies occurring in the context of
cardiac CT.

We developed a system that can process large pools of data from multiple
medical centers across the world and automatically identify CT scanners expe-
riencing anomalous behavior. Our approach has several advantages. First, it
dramatically reduces the time and effort of identifying problems compared to a
human analyst, which leaves more time to fix a particular problem. Second, our
customers benefit by reduced response times to an incident. Third, we expect
that our system helps to increase the rate of high quality cardiac CT images,
while maintaining a low radiation exposure. Our solution utilizes existing tech-
niques used in ECG analysis and incorporates two feature extraction methods,
which are based on robust PCA [3] and a discord discovery algorithm [13]. We
retrospectively analyzed 2,581 cardiac CT scans from 60 medical centers from
18 countries. We evaluated our solution by cross-validation and by comparing its
predictions to annotations of two domain experts on a hold-out set of 150 scans.
The results demonstrate that our system is highly discriminatory and allows
processing thousands of ECGs with minimal human interaction.
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The paper is structured as follows. In Sect. 2 and 3 we will describe the
most prevalent noise patterns encountered in the context of cardiac CT and our
dataset. Section 4 describes our system. Next, we present our evaluation results
in Sect. 5 and end with concluding remarks in Sect. 6.

2 Noise Patterns in Cardiac CT

Fig. 1. Typical ECG wave-
form describing the heart-
beart of a healthy patient.

In this section, we will describe the most preva-
lent noise patterns encountered in cardiac CT. But
first, let us provide a brief insight into the ECG
signal’s morphology. The letters P, Q, R, S, and
T name the key features of an ECG waveform. A
typical heartbeat starts with a so-called P wave,
continues with a QRS complex – characterized by
a narrow spike called R peak – and ends with a
T wave (see Fig. 1). Each feature corresponds to a
particular phase in the cardiac cycle.

Prospective ECG gating relies on detection of
R peaks to predict the time of future R peaks. Since the R peak occurs at a
distinct phase during the cardiac cycle, its detection enables imaging the heart
in a predefined cardiac phase [9]. However, the presence of noise or non-biological
artifacts in the ECG signal may result in false positive R peaks, which, in turn,
may cause desynchronization of the whole workflow, resulting in a low quality
image and the need for a repeat scan.

Typical non-biological artifacts observed in an ECG during cardiac CT can
be classified into the following 6 categories:

– Powerline noise is caused by the interference of an ECG signal with an
external power supply (Fig. 2a), for instance, if a power cord is placed across
the patient or close to an ECG electrode.

– Baseline wandering is typically caused by breathing and movement of the
patient, and becomes particularly strong when cardiograph’s electrodes are
unreliably connected to the body (Fig. 2b).

– Rotational noise is caused by an electrostatic charge near to or within the
scanning area, which results in a rapid change of the electric field formed by
the local static charge and rotating high-voltage generators of the CT scanner
(Fig. 2c). Note that the noise is eliminated once the scanning process begins,
because the X-ray leads to a discharge.

– X-ray artifacts are usually due to an X-ray beam hitting a piece of metal.
This may happen when an electrode moves in the scanning area or the patient
has one or more implants (Fig. 2e,f).

– Table motion artifacts are characterized by a noticeable fall of the ECG
signal quality while the examination table is moving. Localized baseline and
high frequency disturbances are sometimes observed after the table starts
moving due to movements of the patient, improper wiring of the electrodes,
or other reasons (Fig. 2g).
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Fig. 2. Noise patterns observed during a cardiac CT scan. (a) powerline interference,
(b) baseline wandering, (c) rotational noise, (d) other ubiquitous noise, (e-f) X-ray
artifacts, (g) table motion artifact, and (h) localized disturbance. The purple lines
indicate time intervals, during which the X-ray scanner was active.

– A wide range of other noise types due to a variety of reasons that are either
unknown or do not fall into the abovelisted categories (Fig. 2d, h).

Although noise can be minimized by calibrating the CT equipment, not all med-
ical centers may follow the best practices. By proactively identifying potentially
unsuccessful scans, we mitigate the aforementioned health concerns and improve
customer experience.

3 Dataset

Our dataset comprised 2,581 ECG signals from 60 medical centers from 18 coun-
tries annotated by a human expert as either “good” or contaminated with one
or more of the noise patterns described above. Each ECG signal was sampled
at a frequency of 100 Hz and on average ranged between 30 and 40 seconds in
duration. In addition, each trace contained information about the time intervals,
where the X-ray source was activated and the positions of QRS complexes, esti-
mated by a proprietary R peak detection algorithm during image acquisition.
Analyzing the dataset was challenging due to the following properties:

– ECG signals were highly heterogeneous due to different equipment used, dif-
ferent physicians performing the scan, and different technical and professional
standards among countries.

– The ECG signal consisted only of the recording from a single lead, in contrast
the conventional 12 lead ECG for clinical diagnosis.

– In cardiac CT, electrodes are placed outside of the patient’s chest to not inter-
fere with the X-ray scanner, which often results in atypical ECG waveforms,
where only the R peak can be identified reliably.
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– Relatively short ECG recordings, with the average length of 23 cardiac cycles
and the minimal length of only 5 cycles.

4 Methods

In this section, we present our system to automatically quantify non-biological
artifacts and noise in ECG signals. First, we present a high-level overview of our
system. Subsequently, we explain our feature extraction technique for describing
anomalous ECG signals. Finally, we illustrate how these features were incorpo-
rated into an ensemble of classification models.

4.1 High-Level Overview

Our general strategy is to first split the overall problem into multiple subprob-
lems and address each individually, before combining our separate solutions into
a unified system, which yields probabilistic scores representing the magnitude
of noise in a given ECG trace. We can formulate two subproblems based on
characteristics of the noise patterns depicted in Fig. 2:

1. Global noise patterns comprise disturbances that, once present, tend to con-
taminate the whole signal. This category includes baseline wandering, power-
line interference, rotational noise caused by electromagnetic interference, and
a subset of other noise types (Fig. 2a-d).

2. Localized noise patterns comprise non-biological artifacts that affect the ECG
signal only within certain, relatively short, time intervals. It includes X-ray
artifacts, disturbances related to movement of the examination table, and
other miscellaneous localized disturbances (Fig. 2e-h).

For each category, we develop a feature extraction method tailored to that
particular subproblem and train an ensemble of classification models on top of
the extracted features to distinguish anomalous ECGs from normal ECGs and
to quantify the extent of noise in a trace (see Fig. 3). Our approach can be
summarized as follows.

Fig. 3. High-level overview of our system.
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1. A filter bank extracts features describing global noise patterns.
2. Each ECG trace is decomposed into a set of non-overlapping intervals con-

stituting a full cardiac cycle – referred to as beat – based on the provided
locations of QRS complexes.

3. Each beat is analyzed by a modified discord discovery algorithm [13], which
identifies the most unusual beat based on the dynamic time warping distance
[17] and a test for outliers [16].

4. At the same time, beats are combined into an inter-beat matrix, which is
supplied to robust PCA [3] to detect anomalous patterns within this matrix.

5. Next, we compute features describing localized noise patterns based on the
output of the previous two steps, i.e., discord discovery and robust PCA.

6. Finally, we use the features describing global and localized noise patterns to
train three different ensembles of various classification models, each yielding
an anomaly score in the interval [0; 1]:
– The 1st model is trained to exclusively recognize global noise patterns. Its

score represents the extent of global noise in a trace.
– The 2nd model quantifies the extent of localized noise patterns in a trace.
– The 3rd model, called unified model, is trained on the union of features

describing global and localized noise patterns. It ought to quantify the
overall amount of noise, disregarding the category of noise.

Let us now present individual steps in more detail.

4.2 Global Noise Patterns: Filter Bank Approach

Global noise patterns (Fig. 2a-d), by definition, should be detectable by looking
at general properties of the signal. A straightforward approach would consider
the signal-to-noise ratio of an ECG signal. Typically, it is estimated as the ratio
of the signal’s power (Psignal) to the power of the noise (Pnoise):

SNR = 20 · log10 (Psignal/Pnoise) .

Obviously, we are unable to estimate the SNR in such a straightforward manner,
as we do not know the noise component or the reference signal in advance.
Instead, we develop a set of filters that separate the noise component from the
observed signal. The extracted noise signal can subsequently be used to compute
the SNR and to extract other features describing the signal. Next, we compose
a set of features that describe the characteristics of global noise patterns.

To filter out powerline interference and baseline wandering (Fig. 2a,b), we
utilize that both noise patterns are characterized by certain frequency bands,
which would be either absent or much less explicit in unaffected signals. We
employ a two-pass median filter [5] to extract noise stemming from baseline
wandering, and a notch filter [18] to capture noise due to powerline interference.
For clean signals, the extracted noise signal would be negligible and the denoised
signal would largely correspond to the original signal.

Separating the remaining noise types is more challenging due to a large over-
lap between frequencies of the true (biological) signal and the noise. Standard
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band-pass filters affect both the noise and the actual signal, thereby distorting
the ECG waveform, in particular the QRS complexes. We observed that many
artifacts in the rotational noise and “other global noise” category (Fig. 2c,d)
resembled white Gaussian noise, which can be filtered efficiently by utilizing the
wavelet shrinkage technique [6], which works as follows. First, using the discrete
wavelet transform [15], we represent the signal as a weighted sum of basis func-
tions with different time and frequency resolutions. The weights or coefficients
of basis functions corresponding to high frequency signals tend to capture the
white Gaussian noise, which can be eliminated by applying the soft thresholding
operator to the wavelet coefficients and reconstructing the signal via the inverse
transform [6]. The result is a denoised version of the input signal with well pre-
served morphological features of the ECG waveform, in particular R peaks. In
addition, we compute the median absolute deviation of wavelet coefficients at the
highest resolution level, which quantifies noise based on the wavelet coefficients
itself [6]. The features derived from wavelet coefficients and the denoised signal
ought to differentiate clean signals from signals affected by rotational noise and
various global noise patterns (Fig. 2c,d).

Up to this point, we addressed baseline wandering, powerline interference,
rotational noise, and other types of ubiquitous noise independently. We combine
these individual approaches into a filter bank: the separated noise and signal
components are used to estimate the SNR and the original signal and its fre-
quency domain representation to compute a number of statistics (normalized
max. and min. amplitudes, mean, variance, skewness, kurtosis, and entropy). In
total, we compute 65 features describing global noise patterns.

4.3 Localized Noise Patterns: Considerations

In contrast to global noise patterns, localized noise patterns (Fig. 2e-h) are char-
acterized by pointwise, temporal changes in the signal, which requires methods
operating at a high temporal resolution. Most existing work on ECG analysis is
related to clinical diagnosis [11] and human identification [1]. For clinical diagno-
sis, feature extraction should focus on aspects that characterize a disease and at
the same time account for the natural variability of ECG waveforms and heart
rhythms across patients. For human identification, features need to differentiate
individuals, while mitigating factors that vary across multiple measurements for
the same individual, such as heart rate and signal quality. In both applications,
the key morphological features of the ECG waveform, such as P wave, T wave,
QRS complex, and so forth, often convey sufficient information about diseases
and individuals. In our case, we require features that are robust to variations
across CT scanners, imaging protocols, and individuals and their diseases. Most
importantly, the source of noise patterns considered here is almost always inde-
pendent from the individual and her heartbeat characteristics. Consequently,
standard features of an ECG waveform may not be reliable in our context.

The notion of a localized noise pattern implies that there is a part of the
signal, which notably deviates from the rest of the ECG. This suggests to first
identify the most anomalous subsequences within the signal and then to assess
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Fig. 4. ECG of a patient with a preliminary ventricular contraction (PVC).

type and degree of these anomalies. One of the key challenges is that such anom-
alies can be caused by technological as well as biological factors. A biological
anomaly in the ECG signal is due to a physiological condition of the heart, such
as preliminary ventricular contraction (PVC) depicted in Fig. 4. Therefore, arti-
facts of biological origin usually occur during specific cardiac phases and repeat
themselves over time. In contrast, a technological anomaly, such as a sudden
discharge caused by an X-ray, is not associated with a specific cardiac phase,
instead, it can occur during any phase. Furthermore, the unique waveform of a
technological artifact rarely occurs more than once in the same ECG trace, i.e.,
it is an outlier. Only in severe cases, when the noise results in a falsely detected
R peak, we observe not one, but two beats with an unusual morphology.

Next, we present two feature extraction methods that detect anomalous
structures within a signal, while mitigating the natural variability across diseases,
patients, and medical centers. The first approach is based on a discord discov-
ery algorithm, which finds the most unusual subsequence within a time series.
The second approach utilizes robust PCA for identifying anomalous structures
within a signal. These methods operate at the beat level, i.e., the time between
two R peaks. We argue that this is the most reasonable level of detail for three
reasons: (1) it provides necessary and sufficient information to identify repetitive
and anomalous subsequences; (2) as mentioned in Sect. 3, only R peaks are well
preserved across all signals; and (3) those traces, where an R peak was misde-
tected, are usually contaminated with non-biological artifacts and we have ways
to recognize them, which we will describe next.

4.4 Localized Noise Patterns: Discord Beat Discovery

Discord beat discovery (DBD) performs a series of comparisons of ECG beats
to identify the most anomalous beats. First, the ECG signal is decomposed
into multiple beats based on the detected QRS complexes. Next, the beats are
normalized to uniform length and compared with each other using a suitable
distance measure. The result is an inter-beat dissimilarity matrix (see Fig. 5).

One of the key aspects of this approach is the choice of an appropriate dis-
tance measure. The two primary criteria for choosing a distance metric are the
ability to handle ECGs with variable waveform morphology and its runtime per-
formance. The latter criteria is crucial, because we require O(B2) comparisons
for each ECG signal, where B is the number of beats in the signal, and we want
to analyze thousands of ECG traces in a short amount of time. The Euclidean
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(a) Dynamic Time Warping (b) Euclidean distance (c) SAX

Fig. 5. Inter-beat dissimilarity matrices based on different distance measures. The
yellow bands correspond to ECG beats contaminated with an X-ray artifact. SAX:
symbolic aggregate approximation [14].

distance is fast to compute, but by definition is not tolerant to temporal incon-
sistencies within time series [17]. The dynamic time warping (DTW) algorithm
[17] accounts for such differences and thereby mitigates natural morphological
variabilities within the ECG waveform. The symbolic aggregate approximation
(SAX) metric performs dimensionality reduction prior to distance comparison
and is robust to changes in waveform morphology too [14]. Empirically, we have
found that DTW provides the most optimal trade-off between accuracy and
computational complexity for our purposes.

Our DBD approach can be considered as a modification of the brute force dis-
cord discovery (BFDD) algorithm [13]. The BFDD algorithm often performs well
in finding the most unusual part of a time series, but has a runtime complexity
of O(L2), where L denotes the length of the time series. Moreover, it requires us
to specify the length of the anomaly, which is rarely known in advance. Instead,
we adapt the BFDD algorithm with the following change: instead of compar-
ing all possible subtraces of a fixed length with all others, we split the signal
into non-overlapping beats first, and only compare beats with each other. This
modification has the following consequences:

1. Focusing on the comparison between beats eliminates the need to specify a
fixed window length and better suits the ECG analysis context.

2. Significantly faster runtime of O(B2) – the number of beats B is about two
orders of magnitude smaller than the number of samples L in a signal.

3. It allows for an integration of domain knowledge in the form of predefined
patterns (discussed below).

Identifying localized noise patterns can be challenging when the ECG signal
contains both technological and biological anomalies, such as PVC beats (Fig. 4).
Our DBD approach accounts for the presence of biological anomalies by utilizing
that they tend to reappear over time. Therefore, for each beat – regular or
biologically abnormal – we can find another beat within the trace whose similar
(its distance is small). In contrast, a beat corrupted by a technological artifact
possesses a unique waveform – it will have a large distance to all other beats
in the trace. The DBD approach is suitable, given the following two conditions:
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Fig. 6. Example of the discord beat discovery approach. Time intervals, where the
X-ray source is active, are marked with red bars. Bottom: distance to the closest beat.

(1) there are at least two biologically abnormal beats, and (2) at least one of
them occurs outside of time intervals where the X-ray source was active. These
preconditions are met in most scenarios. In a few rare cases, it may happen that
there is only one biological anomaly and it appears exactly under an X-ray region,
in which case we might assume the presence of a non-biological X-ray artifact.
Our solution for such cases is to maintain a set of patterns of typical biological
anomalies. Each discord with a statistically significant deviation [16] from its
closest beat should be additionally aligned with these patterns. In case a close
match is found, the anomaly is likely of biological origin; otherwise, the observed
discord is either a technological anomaly or a novelty, i.e., an unexpected form of
a biological artifact. In either case, the trace would be of interest for the analyst.
Considering the computational overhead of this approach and the rarity of these
cases, we decided not to include predefined patterns in our deployed system, but
this remains as a potential future improvement.

Figure 6 illustrates the DBD algorithm on an ECG contaminated with several
X-ray artifacts. The main disadvantage of the algorithm is that it can only
determine the presence of an anomalous beat, but not the exact location and
structure of the anomaly. In the next section, we describe a technique that
overcomes these limitations.

4.5 Localized Noise: Robust PCA

In this section, we present a technique based on robust PCA [3] that allows for a
very precise localization of an anomaly at the sub-beat level, which is particularly
useful for capturing X-ray artifacts (Fig. 2e,f). Moreover, this approach allows
extracting anomalous structures and reconstructing the true, noise-free signal.

Robust PCA [3] is a modification of classical PCA designed to handle strong
outliers. It seeks a decomposition of a matrix X into two components, X = L+S,
such that L is a low-rank matrix that comprises regular patterns within the data,
and S is a sparse matrix, which captures irregular structures. There are no strong
assumptions about the irregularities – the only requirement is that they appear
unusual with respect to the rest of the data, such that the sparsity condition
of the S matrix holds. This enables us capturing a wide range of anomalies.
The objective function of robust PCA consists of two terms: the nuclear norm
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‖X‖∗ =
∑

i σi(X), with σi(X) denoting the i-th singular value of X; and the
L1 norm ‖X‖1 =

∑
ij |Xij |. The resulting optimization problem has the form:

minL,S ‖L‖∗ + λ‖S‖1, subject to L + S = X,λ > 0.

In many applications, the data can be modeled as a sum of such low-rank and
sparse components [3]. In the context of cardiac CT, we want L to capture the
biological signal and S arbitrary localized non-biological anomalies.

Here, the rows of matrix X correspond to the beats in a single ECG trace:
first, we segment the ECG into beats and scale individual beats to uniform
length; next, the beats are stacked to form the inter-beat matrix X. Applying
the robust PCA procedure to X yields the decomposition into the matrices L
and S (see Fig. 7 a and b). An ECG waveform that is severely corrupted by a
localized noise pattern, such as an X-ray artifact, can have its true waveform
captured by the L matrix and the non-biological anomaly by the S matrix. As a
result, the information we are interested in tends to accumulate in the S matrix.

We use S to answer two questions: (1) whether the ECG contains a significant
anomaly and (2) whether this anomaly only occurs when the X-ray source is
active. First, we apply a test for outliers [16] to the values of S and compute
noise quantification measures such as the median absolute deviation. Next, we
build a binary X-ray matrix M by splitting the vector of X-ray flags according
to R peaks (Fig. 7), and compute the correlation between values in S and the
positive flags in M . Finally, we divide S into groups corresponding to different
values of the binary X-ray matrix M and perform t-tests to determine whether
their mean significantly differs from each other.

We identified three requirements for this approach to yield good results:

1. There are enough beats within the trace to infer repetitive structures (15
beats are usually sufficient).

2. There is either a single beat corrupted by a non-biological artifact or multiple
corrupted beats, each with its own unique waveform.

3. Artifacts of biological origin, if present, do repeat over time.

(a) Low-rank matrix L. (b) Sparse matrix S. (c) X-ray matrix M .

Fig. 7. The low rank (a) and the sparse (b) components produced by the robust PCA
procedure applied to the ECG signal in Fig. 6, as well as the binary matrix of X-ray
flags (c). Two anomalies are captured by the S matrix (marked by arrows). Overlaying
(b) and (c) reveals that both anomalies are X-ray artifacts.
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Our empirical findings and cross-validation results, which will be presented
below, suggest that these three conditions hold for most of the noise patterns.
Considering the third condition, in some cases an ECG signal contains few bio-
logically abnormal beats (<15 %) such that the robust PCA mistakes them for
outliers, i.e., they are captured by the S matrix. To address this ambiguity, we
use our discord beat discovery approach described above, which can handle cases
with two to three ectopic beats. By combining features extracted during discord
beat discovery and robust PCA, we end up with over 100 features describing
localized noise patterns.

4.6 ECG Trace Classification

After developing features describing global and localized noise patterns, respec-
tively, we obtained two sets of features. These sets adequately describe the noise
patterns in Fig. 2, but are applicable to their respective domain only and only
some of them, such as SNR, directly provide information about the magnitude
of noise in a given ECG trace. Therefore, we employ a classification model that
utilizes all 181 extracted features to yield a probabilistic score representing the
magnitude of noise, global or local. We refer to this model as the unified model.

Moreover, we noticed a considerable redundancy in the feature set and that
some features contribute little to the overall model. Thus, prior to training, we
rank features by importance – using the improvement in out-of-bag error esti-
mated from a random forest (RF) model [2] – and retain all features in the top
half. Subsequently, multiple classification models are trained on the selected fea-
tures to distinguish good from anomalous ECGs. We use RF [2], linear SVM,
SVM with RBF kernel [4], k nearest neighbors classification [8], and logistic
regression. Although a single model trained on the selected feature set can pro-
vide satisfactory results (see Table 1), each model has its own biases determined
by its learning principle and its hyper-parameter configuration. Thus, to further
raise the reliability of our system, we construct an ensemble of the above men-
tioned models using the model stacking technique [19], where an SVM with RBF
kernel is used as meta-model. This increases the complexity of training, but we
believe this is acceptable, because the model is rarely re-trained once deployed
(the additional costs during prediction are negligible).

Analogous, we train two additional ensembles to recognize global and local-
ized patterns exclusively. Three anomaly scores in the range [0; 1] form the out-
put. The main score is produced by the unified model and represents the final
conclusion about the quality of the ECG, because it is equally sensitive to the
presence of global and localized noise patterns. The remaining two scores exclu-
sively quantify the amount of global and localized noise, respectively.

5 Evaluation

We evaluated our solution using cross-validation and a hold-out set consisting of
annotations from two domain experts. The system’s performance was measured
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by the area under the precision-recall curve (AUPRC) and the area under the
receiver operating characteristics curve (AUROC). It is important to mention that
our deployed system allows choosing a user-defined threshold on the predicted
probabilities, because users have different requirements regarding precision and
recall (see Sect. 5.2). Hence, we did not optimize the choice of a threshold, but
provide accuracy, precision, and recall for a threshold of 0.6 for illustration.

5.1 Cross-Validation

Cross-validation was based on the dataset consisting of 2,581 cardiac CT scans
presented in Sect. 3. It contained 1,733 “good” ECGs, 501 corrupted with global
noise, and 391 with localized noise. Note that many traces were contaminated
with multiple noise patterns of both categories. Experimental results with respect
to the global, localized, and unified model are summarized in Table 1.

The results demonstrate that even individual models achieve high perfor-
mance scores, with a negligible difference in AUPRC and AUROC between RF
and SVM, but a slight advantage for RF with respect to precision. We achieved
an additional improvement in precision and recall when combining several mod-
els into an ensemble. Although the improvement may seem minor, it becomes
relevant when considering >10,000 traces. In production, the cost of not iden-
tifying a problem, i.e., a false negative, is generally higher than the cost of a
false positive. Moreover, our primary objective is to assist technicians in iden-
tifying anomalous cardiac CT scanners and not individual ECGs, which results
in Table 1 show. Therefore, multiple corrupted ECGs obtained from the same
device need to be identified before action is taken, which justifies trading a higher
recall for a lower precision – a corrupted ECG should not be missed. We allow the
user to individually adjust the threshold, because the trade-off between precision
and recall is often situational.

5.2 External Validation

We deployed our system at Siemens Healthcare, where it is used to automatically
analyze previously unobserved ECG traces in a real world setting. Our ensemble

Table 1. Cross-validation results for global noise patterns, localized noise patterns,
and both types of noise patterns (All) as defined in Sect. 4.1. Accuracy, precision, and
recall were computed at a threshold of 0.6.

Metric Global(RF) Localized(RF) All(SVM) All(RF) All(Ensemble)

mean AUROC 0.998 0.996 0.996 0.997 0.997

mean AUPRC 0.997 0.989 0.993 0.994 0.996

mean accuracy 0.990 0.981 0.973 0.978 0.983

mean precision 0.990 0.963 0.964 0.979 0.985

mean recall 0.970 0.934 0.952 0.954 0.964
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of binary classification models was trained on all 2,581 ECG traces before deploy-
ment and processed 150 ECG traces during our evaluation period. Two domain
experts independently analyzed these traces manually and assigned each trace to
one of 5 categories: (1) perfect (no artifact), (2) good (only very minor artifacts),
(3) corrupted (considerable amount of artifacts), (4) strongly corrupted, and (5)
extremely corrupted. Overall, the inter-expert agreement was high, as indicated
by Kendall’s coefficient of concordance (W = 0.938, P < 0.001, corrected for ties)
[12]. Most disagreements (24 of 53; 45.3 %) were due to traces of the 3rd category
being assigned to the 2nd (15) or 4th category (9) instead, which indicates that
it is difficult, even for experts, to draw a sharp line between clean and corrupted
ECGs (see Table 2). We evaluated our system based on AUPRC, AUROC, and
Kendall’s coefficient of concordance [12], which measures the degree of agreement
between our system and the experts on the five-level Likert-scale.

First, we treated categories 3, 4 and 5 as positive class and the remainder as
negative class to allow comparison to our cross-validation results. We obtained
an AUPRC and AUROC score of 0.875 and 0.898 with respect to expert 1 and
0.905 and 0.942 with respect to expert 2. Although performance scores dropped
compared to our cross-validation experiment, it is noteworthy that the expert,
who annotated the training set, did not participate in annotating the hold-out
set. Thus, corner cases between “good” and corrupted signals are likely biased.
The AUROC score still indicates a highly discriminatory model (� 0.9) and the
drop in AURPC can be attributed to a decrease in precision. Note that expert 1
assigned more ECGs to the positive class (cat. 3-5) than expert 2, thus only 80 %
(56/70) of positive annotations of expert 1 match that of expert 2. In contrast,
93 % (56/60) of positive annotations of expert 2 match that of expert 1 (cf.
Table 2). Consequently, we would expect that the AUPRC, or average precision,
of our system would be around 0.9 at best. We obtained AUPRC scores of 0.875
and 0.905, indicating a highly discriminatory model.

When considering in which range our predicted probabilities fell, we noticed
that predicted probabilities of ECGs belonging to categories 2 and 3 were incon-
sistent. Table 3 shows confusion matrices obtained after dividing predicted prob-
abilities into 5 equally spaced bins ([0; 0.2[, [0.2; 0.4[, . . . ). The table reveals that
ECGs of categories 2 and 3 have been assigned probabilities in the whole interval
[0; 1], which results in a low precision. The recall remains high when disregarding

Table 2. Confusion matrix illustrat-
ing inter-expert agreement.

Expert 1
1 2 3 4 5

E
xp

er
t
2

1 32 21
2 23 11 3
3 4 23 6
4 3 12
5 5 7

Table 3. Confusion matrices demonstrat-
ing results of external validation.

Expert 1 Expert 2
1 2 3 4 5 1 2 3 4 5

P
re
di
ct
ed

1 27 32 6 1 45 19 2
2 3 5 7 5 5 5
3 5 4 6 3
4 2 3 5 5 3 1 1
5 2 4 17 20 7 3 2 20 14 11
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category 3: the system recognizes 59 out of 60 ECGs of categories 4 and 5 by
predicting a probability above 0.6, whereas the recall drops to 0.838 (109/130)
when including category 3. At the same time the precision increases from merely
0.492 for categories 4 and 5, to 0.790 for categories 3-5 due to less false positives.
We concluded that predicted probabilities are not well calibrated, because very
high and very low probabilities are over-represented. In fact, this is a problem for
many machine learning methods, which can perform well by means of standard
metrics for classification, but yield poorly calibrated probabilistic scores, or vice
versa [7]. Alternate learning regimes, such as ordinal regression and learning-to-
rank, could remedy this problem. However, in contrast to classification, richer
annotations are required, which places more burden on human annotators and
makes obtaining labels prohibitively costly in our case.

Next, we compared the model’s predictions to the five-level Likert scale,
which resulted in Kendall’s coefficient of concordance of 0.863 (P < 0.001) based
on the two expert annotations and the predicted probabilities (corrected for
ties). The results demonstrate that most predictions were concordant with the
experts’ annotations (87.5 % and 82.8 %, excluding ties), thus the agreement
between predicted probabilities and expert annotations is substantial.

Although results of the external validation suggest a less discriminatory sys-
tem, compared to our cross-validation results, the overall performance of the sys-
tem is still high. Moreover, we allow the user to individually adjust the threshold
to identify only severe cases (categories 4 and 5) with very high recall but mod-
erate precision, or all cases (categories 3–5), which increases precision. Overall,
the external validation confirmed the practical applicability of our system. Most
importantly, the automated analysis operates at a speed that allows processing
over thousand ECGs per hour (single-threaded), compared to a few hundred per
day of a human analyst.

6 Conclusion

The main goal of this work was to develop a system to automatically detect var-
ious non-biological artifacts and noise patterns in ECG signals acquired during
cardiac CT. We adapted a discord discovery technique for detecting the most
abnormal heartbeats and applied robust PCA for a more precise localization
of non-biological anomalies. As a result, we produced a feature set that cap-
tures differentiating properties of various global and local noise patterns and
used it to train an ensemble of classification models. We validated our system
internally via cross-validation and externally in a real world setting. The results
demonstrate that our system is highly discriminatory and allows processing thou-
sands of ECGs with minimal human interaction. In the future, we would like to
improve our model with regard to calibration, such that predicted scores accu-
rately reflect the true severity of an artifact. Our system is currently deployed at
Siemens Healthcare, where it continuously analyzes cardiac CT scans collected
from various medical centers. The ultimate benefit of our work can be deter-
mined retrospectively as time passes, based on the overall reduction of reported
problems and the time needed to resolve them.
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