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Abstract. Influence maximization is a well-studied problem of finding
a small set of highly influential individuals in a social network such that
the spread of influence under a certain diffusion model is maximized. We
propose new diffusion models that incorporate the time-decaying phe-
nomenon by which the power of influence decreases with elapsed time.
In standard diffusion models such as the independent cascade and linear
threshold models, each edge in a network has a fixed power of influence
over time. However, in practical settings, such as rumor spreading, it
is natural for the power of influence to depend on the time influenced.
We generalize the independent cascade and linear threshold models with
time-decaying effects. Moreover, we show that by using an analysis frame-
work based on submodular functions, a natural greedy strategy obtains
a solution that is provably within (1 − 1/e) of optimal. In addition,
we propose theoretically and practically fast algorithms for the proposed
models. Experimental results show that the proposed algorithms are scal-
able to graphs with millions of edges and outperform baseline algorithms
based on a state-of-the-art algorithm.

1 Introduction

Recently, the rapidly increasing popularity of online social networks has created
opportunities to study information diffusion that models the spread of news,
ideas, and product adoption throughout the population. Motivated by appli-
cations to marketing, Domingos and Richardson [8] introduced viral marketing,
which is a cost-effective marketing strategy that promotes products through
word-of-mouth. Formally, the influence maximization problem [17] asks, for a
parameter k, to find a set of k vertices in a social network such that the expected
number of activated vertices is maximized.

The independent cascade (IC) model and linear threshold (LT) model are two
of the most basic and widely studied diffusion models in influence maximization.
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The IC model proposed by Goldenberg et al. [10] focuses on individual (and
independent) interaction among friends in a social network. The LT model [14]
focuses on threshold behavior in influence propagation, where a user is influenced
when a sufficient number of friends are influenced. The two models are tractable
as they are shown to have submodularity [17], which has motivated substantial
theoretical and practical follow-up research [2,4,5,20,25,28,29].

Recent research into empirical social networks [11,15,16] reports that time
plays an important role in the spread of influence in a network. However, in the IC
and LT models, each edge in a network has a fixed power of influence over time.
This does not reflect reality. In a practical setting, such as rumor spreading,
the power of influence may decay over time. Moreover, the influence may be
propagated with delay. In this paper, we incorporate two types of temporal
phenomena, i.e., time-decaying phenomenon and time-delay propagation, into
both the IC and LT models.
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Fig. 1. Time transition of
the average edge probability.

Time-decaying Phenomenon. First, we consider
the “freshness” of information. Intuitively, a rumor
has a lifetime, and a new idea is often affected
by trends. One may also observe that information
becomes less attractive over time. To observe such
phenomenon in a real-world social network, we esti-
mate edge probabilities that represent the power of
influence at each time by applying the method of
[13] to the Digg dataset.1 Figure 1 shows the tran-
sition of the average edge probabilities among all
edges. As can be seen, the average edge probabil-
ity clearly decreases over time, especially halving in a day. Thus, the power of
word-of-mouth effects strongly depends on the elapsed time. This motivates us
to introduce a time-decaying phenomenon to information diffusion models.

Time-delay Propagation. In addition to the time-decaying effect, we incorporate
a time-delay effect, which has been studied extensively [11,13]. In many real-
world examples, the propagation of influence from one person to another may
have a certain time delay due to heterogeneity in human activities. Thus, the
speed of influence spread varies. We capture such time-delaying propagation in
our model by extending the model [11,22,26] with the time-decaying phenom-
enon.

1.1 Contributions

In this paper, we address the above temporal issues and extend well-studied
diffusion models. We first propose an IC model that incorporates time-decaying
probabilities and time-delay propagation. The salient feature of this model is that
the power of influence on edges decays over time, as shown in Fig. 1. This model is

1 http://www.isi.edu/∼lerman/downloads/digg2009.html.
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simple and sufficiently general to deal with various time-decaying probabilities.
It should also be noted that our model includes most previous models with
temporal effects, such as [12] (see Sect. 3.2). In addition, we propose an LT model
with time-decaying probabilities and time-delay propagation, which is another
interpretation of temporal phenomena with threshold behavior.

Our main contributions are summarized as follows.

– Time-varying IC model (Sect. 3): We extend the IC model with time-
decaying probabilities and time-delay propagation. We show that the expected
number of activated vertices under the extended model is monotone and sub-
modular with respect to an initial vertex set. Therefore, we can efficiently find
a solution that approximates an optimal solution within the ratio (1−1/e−ε)
using a greedy algorithm [24].

– Time-varying LT model (Sect. 4): We introduce the LT model with time-
decaying probabilities and time-delay propagation, in which the influences
from neighbors decay over time. As with the extended IC model, the expected
number of activated vertices is monotone and submodular, and we can effi-
ciently find an approximate solution within the ratio (1 − 1/e − ε) using a
greedy algorithm.

– Scalable algorithms (Sect. 5): We propose scalable and accurate algorithms
for influence maximization under the proposed models by generalizing sketch-
ing methods [2,28]. To this end, we design novel dynamic programming that
can deal with time-decaying probabilities efficiently.

– Experimental evaluations (Sect. 6): We conduct experiments on real-
world social networks and demonstrate that the proposed algorithms out-
perform baseline methods in terms of both efficiency and accuracy.

Due to space limitations, we omit some of the proofs and the experimental
results, which will be found in the full version of this paper.

2 Related Work

Inspired by the work of Domingos and Richardson [8], Kempe et al. [17] formu-
lated the influence maximization problem as a discrete optimization problem.
They showed that the influence maximization problem is NP-hard for the IC and
LT models and that the expected number of activated vertices is a monotone and
submodular function with respect to an initial vertex set. This implies that an
optimal solution for the influence maximization problem can be approximated
efficiently within the ratio (1 − 1/e − ε) with a greedy-type algorithm [24].

Since Kempe et al.’s greedy algorithm suffers from poor scalability, a plethora
of scalable algorithms have been proposed. Existing approaches (for the IC
and LT models) can be roughly classified into three types. Simulation-based
methods [5,17,20,25] conduct Monte-Carlo simulations of the diffusion process
to estimate the influence spread accurately; however, they suffer from ineffi-
ciency. Heuristic-based methods [4,5,18] avoid using Monte-Carlo simulations
by restricting the spread of influence in a particular group, which often results
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in poor-quality solutions due to an absence of accuracy guarantees. Sketch-based
methods [2] resolved the inefficiency of Monte-Carlo simulations while preserv-
ing accuracy guarantees. Rather than directly simulating the diffusion process,
sketch-based methods build sketches in advance based on an outcome of reverse
simulations, and efficiently estimate the influence spread. Subsequently, several
strategies for bounding the sketch size have been developed [28,29]. In this paper,
we generalize sketch-based methods to our proposed models without significant
deterioration of efficiency.

Various information diffusion models with time-delay propagation have been
proposed in different contexts [3,11,13,22,26,27] to resemble actual cascade dis-
tribution. The influence maximization problem in such models has also been
studied [3,9,12,28]. We show in Sect. 3.2 that most previous models are included
in the proposed model. Note that, the existing models only consider the time dif-
ference between two vertices. In contrast, our model considers the time reached
from the seeds, which allows us to introduce the time-decaying probabilities, as
well as the time difference.

3 Time-Varying IC Model

3.1 Model Definition

Here we define the time-varying IC model formally. Let G = (V,E) be a directed
graph, where V is a vertex set of size n and E is an edge set of size m. For a vertex
v in V , N+(v) denotes the set of out-neighbors of v. Each individual vertex can
be either active (an adopter of the innovation) or inactive. In the time-varying
(TV) IC model, we begin with a seed set A of active vertices. Then, the process
unfolds according to the following randomized rule. When a vertex u becomes
active at time tu for the first time, it is given a single chance to activate each
current inactive neighbor v of u through the edge e = (u, v). Here unlike the
standard IC model, both the distance to v and the probability to activate v
depend on time. That is, the conditional likelihood that the influence reaches v
at time t is defined by fe(t | tu). We assume that the likelihood is shift invariant,
i.e., fe(t | tu) = fe(t − tu), and nonnegative, i.e., fe(s) = 0 for s < 0. Moreover,
when v receives the influence at time t, the probability to be activated is given
by a nonincreasing function pe : R+ → [0, 1] of the arrival time, i.e., pe(t). Thus,
the probability that v becomes active at time t is

Pr [v becomes active at time t | u is active at time tu] = pe(t)fe(t − tu). (1)

When v receives influence from more than one newly activated neighbors simul-
taneously, their attempts to activate v are sequenced independently in arbitrary
order. The process runs until no further activations are possible.

Intuitively, the term pe(t) represents the decrease in power of influence as
time passes, because pe is a nonincreasing function on elapsed time. On the
other hand, fe(t − tu) represents the time-delay effect on the edge e. Note that
if pe(t) is a constant ce for any t, then this model is identical to the IC model.
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3.2 Examples of TV-IC Models

Here we present examples of the TV-IC model. The first example is the influence
maximization problem with deadline.

Example 1 (Influence maximization with deadline). Let ce ∈ [0, 1] be a
constant for each edge e and let T be a positive number. Consider the TV-IC
model where a function pe is given by pe(t) = ce if t ≤ T and pe(t) = 0 if t > T .
This case means that the influence will expire at time T . Therefore, the influence
maximization problem over such a model is to maximize the expected number
of vertices activated before deadline T .

Moreover, the TV-IC model extends previous models properly.

Example 2 (Continuous-time independent cascade (CTIC) model [11,
22,26]). The TV-IC model where a function pe is a constant includes various
previously proposed models. For example, Saito et al. [26,27] considered the case
where fe is an exponential function. In their model, the time-delay parameters
re > 0 and diffusion parameters ce ∈ (0, 1) for each edge e = (u, v) are given.
When u is activated at time tu, u will activate an inactive neighbor v with
probability ce. If it succeeds, a delay time δ is sampled from the exponential dis-
tribution re exp(−reδ), and v will become active at time tu+δ. Gomez-Rodriguez
et al. [11] dealt with more general functions of fe. However, in their model, pe(t)
is set to 1 for all e and t, which means that a vertex u always activates its neigh-
bor v at some time. A similar model was also proposed in [13,22]. However, in
all these models, pe is a constant independent of time t.

Example 3 (Independent cascade model with meeting events [3]). In
this model, we are given meeting probabilities me and propagation probabil-
ities ce. When a vertex u is activated at time tu, u will attempt to meet an
inactive neighbor v with probability me, where e = (u, v). Thus a time-delay
δ ∈ {1, 2, . . .} occurs with probability me(1 − me)δ−1. When they meet, u will
activate v with probability ce at that time. This means that the probability that
u will activate v at time tu + δ is ceme(1 − me)δ−1. Thus, it is included in our
model, where pe is a constant.

The following example is one in which the probability decays at arrival time t.
However, the time delay effect is not considered.

Example 4. Assume that pe is given by pe(t) = reα(t) for some constant re and
a nonincreasing function α : R+ → [0, 1], which represents the influence decay
factor. This is the IC model wherein the probability is decreased by a factor of
α(t) when the influence is reached at time t. This case includes the temporal
factor proposed by Cui et al. [7], where pe(t) = re exp(−ct) for some constant c.
Note that the model proposed by Cui et al. [7] is more general in order to resemble
actual cascade distribution, which does not clearly possess submodularity. Thus,
their model has no theoretical guarantee for influence maximization.
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3.3 Submodularity of the Influence Spread Function

We say that a set function f : 2V → R is monotone if f(S) ≤ f(T ) for all
S ⊆ T ⊆ V , and submodular if f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ) for all
S ⊆ T ⊆ V and v ∈ V \T .

Let σ(A) be the expected number of vertices activated after running the
process of the TV-IC model with an initial seed set A. The following theorem is
the main technical result in this section, which generalizes Kempe et al. [17].

Theorem 1. For the TV-IC model, σ is a monotone submodular function.

We here present the proof idea. The detailed proof is deferred to the next
section. First, we remove the time-delay factor fe, similar to the proof of [12].
Consider the probability distribution obtained by fe of all possible time differ-
ences between each pair of nodes in the network and sample a length de of each
edge e from the probability space. Let σd be the expected number of vertices
activated, assuming that the length of an edge e is de. Since σ is the expected
value of σd, it is sufficient to show that σd is monotone and submodular.

Here we focus on the time-decay factor pe. Note that a standard “coin flip-
ping” technique for the IC model [17] would not work to show the submodularity
when pe depends on time. The key observation was that a set of activated vertices
corresponds to the reachability of a random graph generated by “coin flipping”
on each edge. Then, the expected size of the reachable vertices is shown to be
monotone and submodular. This technique tells us that we do not have to con-
sider time in the IC model. However, due to the time dependency of probability,
we cannot directly apply this observation to our problem setting.

To overcome this difficulty, we prepare a random variable xe in the range
[0, 1] on each edge e before the process. Based on these values, we construct a
graph in a deterministic manner such that the reachability of the graph is equal
to the activated vertices. Note that the obtained graph depends on a seed set, in
contrast to Kempe et al. [17]. This requires more careful analysis in the proof.

It should also be noted that the time decay of probabilities is essential to sat-
isfy the submodularity of σd. To demonstrate this, consider a graph consisting of
a directed triangle (u, v), (v, w), (u,w) with a directed path (w,w1), (w1, w2), . . . ,
(w�−1, w�) of length � > 1. The length d of the edges is defined as duw = 3 and
de = 1 for any edge e �= (u,w). The probabilities are set to pvw(t) = 0 for
t < 2, pvw(t) = 1 for t ≥ 2, pww1(t) = 0 for t < 4, pww1(t) = 1 for t ≥ 4,
and pe(t) = 1 for any other edge e and any time t. This is illustrated in Fig. 2.
For this graph, if we take {u} as the seed set, then u activates v in time t = 1,
v activates w in time t = 2, and w fails to activate w1 in time t = 3, which
stops diffusion. If we take {v}, then v fails to activate w in time t = 1 and
diffusion terminates. However, if we take {u, v}, then v fails to activate w in
time t = 1, but u succeeds in time t = 3, and w activates w1 in time t = 4,
which eventually results in influence spreading to all vertices. Thus, we have
σd({u, v}) − σd({u}) = (� + 3) − 3 > 1 = σd({v}) − σd(∅), which violates sub-
modularity.
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u

v w w1 w −1 ww2

Fig. 2. Example violating submodularity when probability increases.

It follows from Theorem 1 that, using Monte-Carlo simulations to estimate
σ(A), we can maximize σ within (1 − 1/e − ε) approximation factor by a greedy
algorithm [24]. However, naive Monte-Carlo simulations require significant time
to estimate σ(A). Because the proof of Theorem 1 has a nice combinatorial struc-
ture, we provide a theoretically efficient algorithm in Sect. 5.

3.4 Proof of Theorem 1

Here we prove Theorem 1. Let G = (V,E) be a directed graph and pe : R+ →
[0, 1] be a nonincreasing function for each edge e. As described in Sect. 3.3, we
may assume that if u becomes active at time t, then the influence reaches a
neighbor v at time t+de, and the probability that v becomes active is pe(t+de).

For each edge e, we choose a number xe in the range [0, 1] uniformly at
random. We assume that we can use the edge e = (u, v) to activate v in the
TV-IC model if the arrival time t satisfies pe(t) > xe. Then, the probability that
e can activate v in time t is equal to pe(t), which is the case when xe is the range
[0, pe(t)].

Let X = (xe) be a choice of random numbers xe for all edges e ∈ E. Then,
the number of activated vertices is determined uniquely by such X. σX(A) is
defined as the total number of vertices activated by a seed set A by running the
process with X. Since each edge is used at most once in the process, σ(A) can
be described by the functions σX(A):

σ(A) =
∫

Pr[X]σX(A)dX.

The function σX can be characterized by the reachability of a graph. For
each edge e, we say that e is live in time t if pe(t) > xe. For each vertex v, we
denote N+

t (v) = {w ∈ N+(v) | (v, w) is live in t + dvw}. For a seed set A, we
construct a graph GX(A) as follows.

Procedure to obtain GX(A) from X and A.
Step 0. Set rv = 0 for each v ∈ A and rv = +∞ for each v ∈ V \ A. Set t = 0.
Step 1. While t < +∞ do the following:
1-1. Define Vt = {v ∈ V | rv = t}.
1-2. For each v ∈ Vt and each w ∈ N+

t (v), replace rw with min{rv + dvw, rw}.
1-3. Increase t to min{rv | rv > t}.
Step 2. Return GX(A) = (R,F ), where R =

⋃
t<+∞ Vt and F = {(v, w) | rw =

rv + dvw}.
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Note that this procedure simulates the TV-IC model when we fix a choice
X. The obtained vertex set R is the set of vertices activated by A.

By the above procedure, we show in Lemma 1 that σX is monotone and
submodular, which implies Theorem1. Note that the construction of GX(A)
depends on the given seed set A; thus, we cannot extend the proof in [17] directly,
and we must consider the dynamics of reachability.

Lemma 1. The function σX is monotone and submodular.

4 Time-Varying LT Model

Let G = (V,E) be a directed graph. Each vertex v chooses a threshold θv ∈ [0, 1]
uniformly at random. Each edge e has a nonincreasing function qe : R+ → [0, 1]
and has a function fe : R → [0, 1] that represents the shift invariant conditional
likelihood as in the TV-IC model. We suppose that

∑
e:e=(u,v) qe(0) ≤ 1 for each

v ∈ V .
Given a seed set A, the diffusion process in the time-varying (TV) LT model

unfolds, similar to the LT model. The difference is that the distance to a neighbor
and the amount of influences from neighbors depend on arrival times. Consider
the case wherein a vertex u becomes active in time tu. Then, each edge (u, v)
delivers an influence to v, where the likelihood that the influence reaches v at
time t is fe(t − tu). When the influence reaches v at time t, the amount of
influence that v receives is qe(t). The vertex v becomes activated once the total
influence exceeds the threshold θv.

Similar to the TV-IC model, qe(t) represents the time decay of influence,
and fe(t − tu) represents the time-delay of propagation. Note that if qe(t) is a
constant ce for any t, this model coincides with the LT model. Moreover, we can
consider the same situations as given in Sect. 3.2.

Example 5 (Influence maximization with deadline). Let T be a positive
number. For each edge e, define a function qe to be qe(t) = ce if t ≤ T and
qe(t) = 0 if t > T , where ce ∈ [0, 1]. The TV-LT model with such a function qe

represents that the influence will expire at time T .

Example 6 (Continuous-time diffusion model). For each edge e = (u, v),
we are given the time-delay parameters re > 0 and the power of influence
ce ∈ (0, 1). Consider the TV-LT model where qe(t) = ce and fe(t − tu) =
re exp(−re(t − tu)) for each edge e. The model is a continuous-time variant of
the LT model, in which the time-delay on edges occurs based on exponential
distribution.

Let σ(A) be the expected number of vertices activated after running the
process of the TV-LT model with an initial seed set A. Using a technique similar
to Theorem 1, σ is shown to be monotone and submodular. As a corollary, an
optimal solution for the influence maximization problem under the TV-LT model
can be approximated efficiently within the ratio (1 − 1/e − ε).

Theorem 2. For the TV-LT model, σ is a monotone submodular function.
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5 Scalable Greedy Algorithms for the Proposed Models

In this section, we propose scalable greedy algorithms for influence maximization
under the proposed diffusion models by extending a sketching method [2]. We
first describe the sketching method and its generalization, and then discuss how
to extend it to the proposed models.

5.1 Sketching Method and Generalization

The pseudocode of the sketching method is presented in Algorithm1. Given a
directed graph G = (V,E), a diffusion model M, and a seed size k, the sketching
method performs the following two stages. In the first stage, beginning with an
empty family R = ∅, it repeats the following procedure: sample a target vertex
z from V uniformly at random, compute the vertex set R that would influence
z in an outcome of the diffusion process of M, and add R to R. The above
repetition terminates when R includes a sufficient number of vertex sets for
accurate influence estimation. In the second stage, it computes an approximate
solution A of the maximum coverage problem, which seeks to select a set of k
vertices from V that intersects the maximum number of vertex sets in R, by the
greedy algorithm. Finally, it returns a solution A.

Here we discuss why A is influential. Let FR(A) be the fraction of sets in
R intersecting A, i.e., FR(A) = |{R∈R|R∩A �=∅}|

|R| . Then, for any vertex set A,
n · FR(A) is an unbiased estimator of σ(A), i.e., E[n · FR(A)] = σ(A) [2], where
σ(A) is the influence spread of A under M. Therefore, as long as this estimator
gives accurate influence estimations, A is likely to have a large influence spread.

Now we consider applying the sketching method to the diffusion models pro-
posed in this paper. There are two main challenges. The first one is to devise a
procedure for generating a (random) vertex set that would influence a certain
target vertex (line 4 in Algorithm1) under the proposed models. The second is
guaranteeing the accuracy and time complexity of the sketching method with
the devised procedure. For the purpose, we adopt reverse influence (RI) sets, a
model-independent notion introduced by Tang et al. [28], defined as follows.

Algorithm 1. Sketching method for influence maximization.
Require: a directed graph G = (V, E), a diffusion model M, a seed size k.
1: R ← ∅. � Building sketches.
2: repeat
3: z ← a vertex chosen from V uniformly at random.
4: R ← a vertex set that would influence z in an outcome of the process of M.
5: R ← R ∪ {R}.
6: until R includes a sufficient number of vertex sets for accurate influence estimation.
7: A ← ∅. � Selecting a seed set.
8: while |A| < k do

9: s ← argmaxv∈V FR(v). � FR(v) is defined as
|{R∈R|R∩{v}�=∅}|

|R| .

10: A ← A ∪ {s} and remove vertex sets including s from R.

11: return A.
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Definition 1 (Reverse influence set from Definition 3 in [28]). For a
graph G = (V,E) and a diffusion model M, a reverse influence (RI) set for a
vertex z in V is a random vertex set R ⊆ V such that for any vertex set S ⊆ V ,
the probability that R∩S �= ∅ is equal to the probability that the initial activation
of vertices in S results in the activation of z under the diffusion process of M.
A random RI set is defined as an RI set for a vertex randomly sampled from V .

Thus, if we are given a family R of random RI sets for M, then we have n ·
FR(S) = σ(S) for every set S [28]. Furthermore, given a procedure for generating
random RI sets under M, Tang et al. [28] proved the time complexity and
approximation ratio of a sketching algorithm IMM [28] shown as follows.

Theorem 3 (Theorem 5 in [28]). Under a diffusion model for which a ran-
dom RI set takes O(EPT) expected time to generate, IMM returns a (1−1/e−ε)-
approximation with probability at least 1 − 1

n� , and runs in O(EPT
OPT (k + �)(n +

m) log n
ε2 ) expected time, where OPT = maxS⊆V :|S|=k σ(S).

In summary, it suffices to design efficient and correct computation of RI sets.
Remark that such a procedure may not exist depending on M. In the following,
we describe an algorithm that produces RI sets under each proposed model and
analyze its correctness and computation time.

5.2 Efficient RI Set Generation Under TV-IC Model

Algorithm Description. Here we describe an efficient algorithm for generating RI
sets under the TV-IC model. Note that existing approaches for RI set generation,
such as a BFS-like algorithm for the IC and LT models [2,28,29] and a Dijkstra-
like algorithm for the CTIC model [28], cannot be applied to the TV-IC model
due to the time dependency of probability.

For this purpose, we exploit the graph introduced in the proof of Theorem1.
Given the choice of de’s and xe’s, a target vertex z will be activated in the dif-
fusion process with an initial seed vertex v if v can reach z in GX({v}), which
is obtained by the procedure discussed in Sect. 3.4. However, a naive implemen-
tation of the procedure requires at least quadratic time.

We now present a more efficient algorithm. The key idea is to introduce the
latest activation time τ [v] of v, which is defined as the maximum number τ [v]
such that the activation of v within time τ [v] results in the activation of z given
the choice of xe’s and de’s. Obviously, τ [z] = +∞. For each vertex u (�= z), u’s
influence must pass through one of its out-going edges in order to influence z.
Specifically, u influences z by passing through (u, v) if u was activated within
time τ [v] − duv and puv(τ [u] + duv) > xuv. Thus, the latest activation time τ [u]
of u is determined by

τ [u] = max
v∈N+(u)

min{τ [v] − duv, p−1
uv (xuv)},

where p−1
uv (xuv) is the maximum number t such that puv(t + duv) > xuv (note

that p−1
e (x) can be ±∞). From the equation, the values τ [v] for all vertices v

can be obtained efficiently by performing dynamic programming.
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Algorithm 2. Efficient RI set generation under the TV-IC model.
Require: a directed graph G = (V, E), edge probability functions pe : R+ → [0, 1], edge

length likelihoods fe : R → [0, 1], a target vertex z.
1: τ [z] ← +∞ and τ [v] ← −∞ for all v ∈ V \ {z}.
2: Q ← a queue with only one element z.
3: while Q �= ∅ do
4: Dequeue v with the maximum τ [v] from Q.
5: for all u with e = (u, v) ∈ E do
6: de ← an edge length sampled according to fe.
7: xe ← a uniform random number in [0, 1].

8: ρ ← min{τ [v] − de, p−1
e (xe)}.

9: if ρ > τ [u] and ρ ≥ 0 then
10: τ [u] ← ρ and enqueue u onto Q. � O(log n) time

11: return the set of visited vertices, i.e., {v ∈ V | τ [v] ≥ 0}.

The pseudocode of the RI set generation under the TV-IC model is given in
Algorithm 2. Beginning with a queue with a target vertex z with τ [z] = +∞, we
determine the latest activation time of each vertex iteratively. For each iteration,
we extract a vertex v with the maximum τ [v] (≥ 0) from the queue (thereafter,
v’s latest activation time will not be updated), sample a random number xuv

and an edge length duv of each vertex u in the in-neighbors of v, and update its
latest activation time τ [u] if min{τ [v]−duv, p−1

uv (xuv)} > τ [u]. When τ [u] ≥ 0 at
that time, we insert u into the queue. When the queue is empty, we return the
set of vertices v with τ [v] ≥ 0 as an RI set for z. Note that by using a binary
heap, both selecting a vertex from the queue (line 4) and inserting a vertex into
the queue (line 10) can be performed in O(log n) time.

Theoretical Analysis. We first give the correctness and time complexity.

Lemma 2. Algorithm2 produces an RI set for z for the TV-IC model.

Proof. We show that for any vertex z and any vertex set S ⊆ V , the probability
p1 that the algorithm’s output intersects S is equal to the probability p2 that
the initial activation of vertices in S leads to the activation of z.

From the construction of the algorithm, p1 is the probability of the following
event over the choice of xe’s and de’s: For some vertex s in S, there is a path
v1 = s, v2, . . . , v�−1, v� = z of length � such that τ1 ≥ 0 where τ� = +∞ and
τi = min{τi+1 − dvivi+1 , p

−1
vivi+1

(xvivi+1)} (1 ≤ i ≤ � − 1).
From the procedure to obtain GX(A) in Sect. 3.4, p2 is the probability of the

following event over the choice of xe’s and de’s: For some vertex s in S, there is
a path v1 = s, v2, . . . , v�−1, v� = z of length � such that pvivi+1(τ

′
i + dvivi+1) >

xvivi+1 (1 ≤ i ≤ � − 1) where τ ′
1 = 0 and τ ′

i+1 = τ ′
i + dvivi+1 (1 ≤ i ≤ � − 1).

It is easy to see that the two events given the choice of xe’s and de’s are
equivalent. Therefore, p1 = p2 and thus the lemma holds. �
Lemma 3. Algorithm2 runs in O(m·OPT

n log n) expected time for a randomly
selected vertex z.

Then, by Theorem 3 and Lemmas 2 and 3, we obtain the following.
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Theorem 4. Under the TV-IC model, IMM with Algorithm2 returns a (1 −
1/e−ε)-approximation with probability at least 1− 1

n� and runs in O((k+�)(m+
m2

n ) log
2 n

ε2 ) expected time.

Although a factor m2/n in the time complexity can be O(m
√

m) for dense
graphs, real-world social networks are sparse, i.e., m/n is small, and thus the
proposed algorithm scales approximately linearly to real-world social networks.

5.3 Efficient RI Set Generation Under TV-LT Model

Similar to the TV-IC model, we develop an efficient algorithm for generating
random RI sets under the TV-LT model and obtain the following theorem.

Theorem 5. Under the TV-LT model, IMM with the above procedure for RI set
generation returns a (1 − 1/e − ε)-approximation with probability at least 1 − 1

n�

and runs in O((k + �)(m + m2

n ) log
2 n

ε2 ) expected time.

6 Experimental Evaluations

In this section, we demonstrate the efficiency and accuracy of our algorithms
through experiments on real-world networks. We conducted the experiments on
a Linux server with an Intel Xeon E5540 2.53 GHz CPU and 48 GB memory.
All algorithms were implemented in C++ and compiled using g++ 4.8.2 with
the -O2 option. We used five real-world social networks (Table 1).

6.1 Experiments with TV-IC Model

Settings of Edge Probability Functions and Edge Length Likelihoods. Motivated
by the empirical evidence shown in Fig. 1, we adopt two nonincreasing functions
for edge probabilities. One is the weighted exponential (WE) IC model, which
assigns puv(t) = 1

d−(v) exp(−ct) to each edge (u, v), where c is sampled randomly
in the range [1, 10]. Here d−(v) is the in-degree of a vertex v. The other is the
weighted reciprocal (WR) IC model, which assigns puv(t) = 1

d−(v)ct , where c is
sampled randomly in the range [1, 10]. Note that these models represent fast and

Table 1. Datasets.

Dataset n m Type

Physicians [1] 241 1, 098 Social

ca-GrQc [21] 5, 241 28, 968 Collaboration

wiki-Vote [21] 7, 115 103, 689 Social

soc-Epinions1 [21] 75, 879 508, 837 Social

ego-Twitter [21] 81, 306 2, 420, 744 Social
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Fig. 3. Influence spreads for TV-IC.
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Fig. 4. Running times for TV-IC.

slow decay of the power of influence, respectively. We show that such differences
in the speed of time-decaying are crucial to the expected size of the cascades.

For each edge e, we set the edge length likelihood to the Weibull distribu-
tion [19], whose probability distribution function is defined as:

fe(δ) = αe

βe
·
(

δ
βe

)αe−1

· exp
(
−

(
δ
βe

)αe
)

, (2)

where αe and βe are randomly sampled in the range [0, 10]. Note that this dis-
tribution has been adopted in continuous-time diffusion model literature [9,28].

Comparative Algorithms. For the proposed algorithm for the TV-IC model, i.e.,
IMM with Algorithm 2, we set ε = 0.5 and � = 1, as described in [28]. Here we
compare the proposed algorithm with the following baseline algorithms.

– LazyGreedy [23]: An accelerated simulation-based greedy algorithm for
monotone submodular function maximization. We conducted Monte-Carlo
simulations 10,000 times to estimate the influence spread.

– IMM-CTIC [28]: A sketching method for the CTIC model. Since this method
takes care of “deadlines” rather than time-decaying edge probabilities, we set
its deadline to 1.

– IMM-IC [28]: A sketching method for the IC model. We set the probability of
each edge e to pe(d̄e), where d̄e is the average edge length.

– Degree: Select k vertices in decreasing degree order.

Results. Figure 3 shows the influence spreads for seed sets of sizes 1, 10, 20, . . . ,
100 computed by each algorithm.2 We omitted the results for Physicians, wiki-
Vote, and soc-Epinions1, which exhibit similar behaviors, due to space limitations.
2 We take the average after conducting simulations of the TV-IC 10,000 times.
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LazyGreedy did not finish in 10,000 seconds with ca-GrQc (WR-IC, k = 100),
ego-Twitter (WE-IC, k ≥ 30), and ego-Twitter (WR-IC). Consequently, we were
unable to obtain seed sets with these settings. Our method and LazyGreedy
returned nearly the best results for most settings. Although IMM-IC is close to
the best results, its influence spread (=4,336) with ego-Twitter (WR-IC, k = 1)
is 30 % worse than the best (=6,279). IMM-CTIC provided ineffective seed sets,
e.g., with ego-Twitter (WR-IC, k = 1). As expected, Degree gave poor seed sets.
We can also see that the WR-IC setting gives larger influence spreads compared
to the WE-IC setting, which demonstrates the critical importance of the time-
decaying phenomenon.

Figure 4 shows the running times required to select seed sets of sizes 1, 10,
20, . . . , 100 for each algorithm. Note that the running times do not include the
time required to read the input graph from secondary storage. LazyGreedy even
did finish in 10,000 seconds with ca-GrQc (k = 100), which is a small network,
due to the computation cost of the Monte-Carlo simulations. Our method and
IMM-IC required only several thousands of seconds for each graph, which is
several orders of magnitude faster than LazyGreedy .

6.2 Experiments for TV-LT Model

Settings of Edge Weight Functions and Edge Length Likelihoods. Similar to the
TV-IC model, we adopt two nonincreasing functions for edge weights, i.e., the
weighted exponential (WE) LT model, which assigns quv(t) = 1

d−(v) exp(−ct),
and the weighted reciprocal (WR) LT model, which assigns quv(t) = 1

d−(v)c(t+1) ,
where c is randomly sampled in the range [1, 10].

We set the edge length likelihood to the Weibull distribution (2).

Comparative Algorithms. For the proposed algorithm for the TV-LT model, i.e.,
IMM with the algorithm in Sect. 5.3, we set ε = 0.5 and � = 1 [28]. Since
there are no algorithms for continuous-time LT models, we compare our method
to LazyGreedy [23] and Degree, the same as for the TV-IC model, and IMM-
LT [28], which is a sketching method for the LT model with edge weights qe(d̄e).
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Results. Figure 5 shows the influence spreads for seed sets computed by each
algorithm. We observe similar behaviors as TV-IC model, LazyGreedy gave the
best solutions, and the proposed method significantly outperformed IMM-LT
and Degree for most settings.

Figure 6 shows the running times required to select seed sets for each algo-
rithm. As in the case of the TV-IC model, the proposed method has much better
scalability than LazyGreedy .

7 Conclusions

In this paper, we proposed diffusion models that incorporate time-decaying phe-
nomenon and time-delay propagation by generalizing two standard diffusion
models, i.e., independent cascade and linear threshold. We demonstrated that
our models include most previous models with temporal effects, and the influ-
ence functions are monotone and submodular. Moreover, we devised scalable
algorithms for influence maximization under the proposed models and experi-
mentally verified their efficiency and accuracy compared to baseline algorithms.

A possible future direction is to learn edge probability functions from cascade
logs. It might also be interesting to consider the influence maximization over
diffusion models where cascades may recur [6], i.e., the power of influence is
not necessarily nonincreasing. Note, however, that the case does not fall into
submodular maximization as described in Sect. 3.3.
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