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Abstract. In 1963, Polyak proposed a simple condition that is sufficient
to show a global linear convergence rate for gradient descent. This condi-
tion is a special case of the �Lojasiewicz inequality proposed in the same
year, and it does not require strong convexity (or even convexity). In this
work, we show that this much-older Polyak-�Lojasiewicz (PL) inequality
is actually weaker than the main conditions that have been explored to
show linear convergence rates without strong convexity over the last 25
years. We also use the PL inequality to give new analyses of coordinate
descent and stochastic gradient for many non-strongly-convex (and some
non-convex) functions. We further propose a generalization that applies
to proximal-gradient methods for non-smooth optimization, leading to
simple proofs of linear convergence for support vector machines and L1-
regularized least squares without additional assumptions.

Keywords: Gradient descent · Coordinate descent · Stochastic
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1 Introduction

Fitting most machine learning models involves solving some sort of optimiza-
tion problem. Gradient descent, and variants of it like coordinate descent and
stochastic gradient, are the workhorse tools used by the field to solve very large
instances of these problems. In this work we consider the basic problem of mini-
mizing a smooth function and the convergence rate of gradient descent methods.
It is well-known that if f is strongly-convex, then gradient descent achieves a
global linear convergence rate for this problem [28]. However, many of the fun-
damental models in machine learning like least squares and logistic regression
yield objective functions that are convex but not strongly-convex. Further, if f
is only convex, then gradient descent only achieves a sub-linear rate.
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This situation has motivated a variety of alternatives to strong convexity
(SC) in the literature, in order to show that we can obtain linear convergence
rates for problems like least squares and logistic regression. One of the oldest
of these conditions is the error bounds (EB) of Luo and Tseng [22], but four
other recently-considered conditions are essential strong convexity (ESC) [20],
weak strong convexity (WSC) [25], the restricted secant inequality (RSI) [45], and
the quadratic growth (QG) condition [2]. Some of these conditions have different
names in the special case of convex functions: a convex function satisfying RSI
is said to satisfy restricted strong convexity (RSC) [45] while a convex function
satisfying QG is said to satisfy optimal strong convexity (OSC) [19] or (confus-
ingly) WSC [23]. The proofs of linear convergence under all of these relaxations
are typically not straightforward, and it is rarely discussed how these conditions
relate to each other.

In this work, we consider a much older condition that we refer to as the
Polyak-�Lojasiewicz (PL) inequality. This inequality was originally introduced
by Polyak [31], who showed that it is a sufficient condition for gradient descent
to achieve a linear convergence rate. We describe it as the PL inequality because
it is also a special case of the inequality introduced in the same year by
�Lojasiewicz [21]. We review the PL inequality in the next section and how it
leads to a trivial proof of the linear convergence rate of gradient descent. Next,
in terms of showing a global linear convergence rate to the optimal solution, we
show that the PL inequality is weaker than all of the more recent conditions
discussed in the previous paragraph. This suggests that we can replace the long
and complicated proofs under any of the conditions above with simpler proofs
based on the PL inequality. Subsequently, we show how this result implies gra-
dient descent achieves linear rates for standard problems in machine learning
like least squares and logistic regression that are not necessarily SC, and even
for some non-convex problems (Sect. 2.3). In Sect. 3 we use the PL inequality
to give new convergence rates for randomized and greedy coordinate descent
(implying a new convergence rate for certain variants of boosting), sign-based
gradient descent methods, and stochastic gradient methods in either the clas-
sical or variance-reduced setting. Next we turn to the closely-related problem
of minimizing the sum of a smooth function and a simple non-smooth function.
We propose a generalization of the PL inequality that allows us to show lin-
ear convergence rates for proximal-gradient methods without SC. This leads to
a simple analysis showing linear convergence of methods for training support
vector machines. It also implies that we obtain a linear convergence rate for �1-
regularized least squares problems, showing that the extra conditions previously
assumed to derive linear converge rates in this setting are in fact not needed.

2 Polyak-�Lojasiewicz Inequality

We first focus on the basic unconstrained optimization problem

argmin
x∈Rd

f(x), (1)



Linear Convergence Under the Polyak-�Lojasiewicz Condition 797

and we assume that the first derivative of f is L-Lipschitz continuous. This
means that

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
||y − x||2, (2)

for all x and y. For twice-differentiable objectives this assumption means that
the eigenvalues of ∇2f(x) are bounded above by some L, which is typically a
reasonable assumption. We also assume that the optimization problem has a
non-empty solution set X ∗, and we use f∗ to denote the corresponding optimal
function value. We will say that a function satisfies the PL inequality if the
following holds for some μ > 0,

1
2
||∇f(x)||2 ≥ μ(f(x) − f∗), ∀ x. (3)

This inequality simply requires that the gradient grows faster than a quadratic
function as we move away from the optimal function value. Note that this
inequality implies that every stationary point is a global minimum. But unlike
SC, it does not imply that there is a unique solution. Linear convergence of gra-
dient descent under these assumptions was first proved by Polyak [31]. Below we
give a simple proof of this result when using a step-size of 1/L.

Theorem 1. Consider problem (1), where f has an L-Lipschitz continuous gra-
dient (2), a non-empty solution set X ∗, and satisfies the PL inequality (3). Then
the gradient method with a step-size of 1/L,

xk+1 = xk − 1
L

∇f(xk), (4)

has a global linear convergence rate,

f(xk) − f∗ ≤
(
1 − μ

L

)k

(f(x0) − f∗).

Proof. By using update rule (4) in the Lipschitz inequality condition (2) we have

f(xk+1) − f(xk) ≤ − 1
2L

||∇f(xk)||2.

Now by using the PL inequality (3) we get

f(xk+1) − f(xk) ≤ −μ

L
(f(xk) − f∗).

Re-arranging and subtracting f∗ from both sides gives us f(xk+1) − f∗ ≤(
1 − μ

L

)
(f(xk) − f∗). Applying this inequality recursively gives the result. �	

Note that the above result also holds if we use the optimal step-size at each
iteration, because of the inequality

min
α

f(xk − α∇f(xk)) ≤ f

(
xk − 1

L
∇f(xk)

)
.
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A beautiful aspect of this proof is its simplicity; in fact it is simpler than the
proof of the same fact under the usual SC assumption. It is certainly simpler than
typical proofs which rely on the other conditions mentioned in Sect. 1. Further, it
is worth noting that the proof does not assume convexity of f . Thus, this is one
of the few general results we have for global linear convergence on non-convex
problems.

2.1 Relationships Between Conditions

As mentioned in the Sect. 1, several other assumptions have been explored over
the last 25 years in order to show that gradient descent achieves a linear conver-
gence rate. These typically assume that f is convex, and lead to more complicated
proofs than the one above. However, it is rarely discussed how the conditions
relate to each other. Indeed, all of the relationships that have been explored
have only been in the context of convex functions [19,25,44]. In Appendix 2.1,
we give the precise definitions of all conditions and also prove the result below
giving relationships between the conditions.

Theorem 2. For a function f with a Lipschitz-continuous gradient, the follow-
ing implications hold:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL) → (QG).

If we further assume that f is convex then we have

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

This result shows that (QG) is the weakest assumption among those considered.
However, QG allows non-global local minima so it is not enough to guarantee
that gradient descent finds a global minimizer. This means that, among those
considered above, PL and the equivalent EB are the most general conditions
that allow linear convergence to a global minimizer. Note that in the convex
case QG is called OSC, but the result above shows that in the convex case it
is also equivalent to EB and PL (as well as RSI which is known as RSC in this
case).

2.2 Invex and Non-convex Functions

While the PL inequality does not imply convexity of f , it does imply the weaker
condition of invexity. Invexity was first introduced by Hanson in 1981 [12], and
has been used in the context of learning output kernels [8]. Craven and Glover [7]
show that a smooth f is invex if and only if every stationary point of f is a
global minimum. Since the PL inequality implies that all stationary points are
global minimizers, functions satisfying the PL inequality must be invex. Indeed,
Theorem 2 shows that all of the previous conditions except (QG) imply invexity.
The function f(x) = x2 + 3 sin2(x) is an example of an invex but non-convex
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function satisfying the PL inequality (with μ = 1/32). Thus, Theorem 1 implies
gradient descent obtains a global linear convergence rate on this function.

Unfortunately, many complicated models have non-optimal stationary points.
For example, typical deep feed-forward neural networks have sub-optimal sta-
tionary points and are thus not invex. A classic way to analyze functions like
this is to consider a global convergence phase and a local convergence phase. The
global convergence phase is the time spent to get “close” to a local minimum,
and then once we are “close” to a local minimum the local convergence phase
characterizes the convergence rate of the method. Usually, the local convergence
phase starts to apply once we are locally SC around the minimizer. But this
means that the local convergence phase may be arbitrarily small: for example,
for f(x) = x2 + 3 sin2(x) the local convergence rate would not even apply over
the interval x ∈ [−1, 1]. If we instead defined the local convergence phase in
terms of locally satisfying the PL inequality, then we see that it can be much
larger (x ∈ IR for this example).

2.3 Relevant Problems

If f is μ-SC, then it also satisfies the PL inequality with the same μ (see Appen-
dix 2.3). Further, by Theorem 2, f satisfies the PL inequality if it satisfies any
of ESC, WSC, RSI, or EB (while for convex f , QG is also sufficient). Although
it is hard to precisely characterize the general class of functions for which the
PL inequality is satisfied, we note one important special case below.

Strongly-convex composed with linear: This is the case where f has the
form f(x) = g(Ax) for some σ-SC function g and some matrix A. In Appen-
dix 2.3, we show that this class of functions satisfies the PL inequality, and we
note that this form frequently arises in machine learning. For example, least
squares problems have the form

f(x) = ‖Ax − b‖2,
and by noting that g(z) � ‖z − b‖2 is SC we see that least squares falls into this
category. Indeed, this class includes all convex quadratic functions.

In the case of logistic regression we have

f(x) =
n∑

i=1

log(1 + exp(bia
T
i x)).

This can be written in the form g(Ax), where g is strictly convex but not SC.
In cases like this where g is only strictly convex, the PL inequality will still be
satisfied over any compact set. Thus, if the iterations of gradient descent remain
bounded, the linear convergence result still applies. It is reasonable to assume
that the iterates remain bounded when the set of solutions is finite, since each
step must decrease the objective function. Thus, for practical purposes, we can
relax the above condition to “strictly-convex composed with linear” and the PL
inequality implies a linear convergence rate for logistic regression.
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3 Convergence of Huge-Scale Methods

In this section, we use the PL inequality to analyze several variants of two
of the most widely-used techniques for handling large-scale machine learning
problems: coordinate descent and stochastic gradient methods. In particular,
the PL inequality yields very simple analyses of these methods that apply to
more general classes of functions than previously analyzed. We also note that
the PL inequality has recently been used by Garber and Hazan [9] to analyze
the Frank-Wolfe algorithm. Further, inspired by the resilient backpropagation
(RPROP) algorithm of Riedmiller and Braun [32], in Appendix 3 we also give
the first convergence rate analysis for sign-based gradient descent methods.

3.1 Randomized Coordinate Descent

Nesterov [29] shows that randomized coordinate descent achieves a faster con-
vergence rate than gradient descent for problems where we have d variables and
it is d times cheaper to update one coordinate than it is to compute the entire
gradient. The expected linear convergence rates in this previous work rely on
SC, but in this section we show that randomized coordinate descent achieves an
expected linear convergence rate if we only assume that the PL inequality holds.

To analyze coordinate descent methods, we assume that the gradient is
coordinate-wise Lipschitz continuous, meaning that for any x and y we have

f(x + αei) ≤ f(x) + α∇if(x) +
L

2
α2, ∀α ∈ R, ∀x ∈ R

d, (5)

for any coordinate i, and where ei is the ith unit vector.
Theorem 3. Consider problem (1), where f has a coordinate-wise L-Lipschitz
continuous gradient (5), a non-empty solution set X ∗, and satisfies the PL
inequality (3). Consider the coordinate descent method with a step-size of 1/L,

xk+1 = xk − 1
L

∇ikf(xk)eik . (6)

If we choose the variable to update ik uniformly at random, then the algorithm
has an expected linear convergence rate of

E[f(xk) − f∗] ≤
(
1 − μ

dL

)k

[f(x0) − f∗].

Proof. By using the update rule (6) in the Lipschitz condition (5) we have

f(xk+1) ≤ f(xk) − 1
2L

||∇ikf(xk)||2.
By taking the expectation of both sides with respect to ik we have

E [f(xk+1)] ≤ f(xk) − 1
2L

E
[||∇ikf(xk)||2]

≤ f(xk) − 1
2L

∑
i

1
d
||∇if(xk)||2

= f(xk) − 1
2dL

||∇f(xk)||2.
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By using the PL inequality (3) and subtracting f∗ from both sides, we get

E[f(xk+1) − f∗] ≤
(
1 − μ

dL

)
[f(xk) − f∗].

Applying this recursively and using iterated expectations yields the result. �	
As before, instead of using 1/L we could perform exact coordinate optimization
and the result would still hold. If we have a Lipschitz constant Li for each
coordinate and sample proportional to the Li as suggested by Nesterov [29],
then the above argument (using a step-size of 1/Lik) can be used to show that
we obtain a faster rate of

E[f(xk) − f∗] ≤
(
1 − μ

dL̄

)k

[f(x0) − f∗],

where L̄ = 1
d

∑d
j=1 Lj .

3.2 Greedy Coordinate Descent

Nutini et al. [30] have recently analyzed coordinate descent under the greedy
Gauss-Southwell (GS) rule, and argued that this rule may be suitable for prob-
lems with a large degree of sparsity. The GS rule chooses ik according to the
rule ik = argmaxj |∇jf(xk)|. Using the fact that

max
i

|∇if(xk)| ≥ 1
d

d∑
i=1

|∇if(xk)|,

it is straightforward to show that the GS rule satisfies the rate above for the
randomized method.

However, Nutini et al. [30] show that a faster convergence rate can be
obtained for the GS rule by measuring SC in the 1-norm. Since the PL inequality
is defined on the dual (gradient) space, in order to derive an analogous result we
could measure the PL inequality in the ∞-norm,

‖∇f(x)‖2∞ ≥ 2μ1(f(x) − f∗).

Because of the equivalence between norms, this is not introducing any additional
assumptions beyond that the PL inequality is satisfied. Further, if f is μ1-SC
in the 1-norm, then it satisfies the PL inequality in the ∞-norm with the same
constant μ1. By using that |∇ikf(xk)| = ‖∇f(xk)‖∞ when the GS rule is used,
the above argument can be used to show that coordinate descent with the GS
rule achieves a convergence rate of

f(xk) − f∗ ≤
(
1 − μ1

L

)k

[f(x0) − f∗],

when the function satisfies the PL inequality in the ∞-norm with a constant of
μ1. By the equivalence between norms we have that μ/d ≤ μ1, so this is faster
than the rate with random selection.
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Meir and Rätsch [24] show that we can view some variants of boosting algo-
rithms as implementations of coordinate descent with the GS rule. They use the
error bound property to argue that these methods achieve a linear convergence
rate, but this property does not lead to an explicit rate. Our simple result above
thus provides the first explicit convergence rate for these variants of boosting.

3.3 Stochastic Gradient Methods

Stochastic gradient (SG) methods apply to the general stochastic optimization
problem

argmin
x∈IRd

f(x) = E[fi(x)], (7)

where the expectation is taken with respect to i. These methods are typically
used to optimize finite sums,

f(x) =
1
n

n∑
i

fi(x). (8)

Here, each fi typically represents the fit of a model on an individual training
example. SG methods are suitable for cases where the number of training exam-
ples n is so large that it is infeasible to compute the gradient of all n examples
more than a few times.

Stochastic gradient (SG) methods use the iteration

xk+1 = xk − αk∇fik(xk), (9)

where αk is the step size and ik is a sample from the distribution over i so that
E[∇fik(xk)] = ∇f(xk). Below, we analyze the convergence rate of stochastic
gradient methods under standard assumptions on f , and under both a decreasing
and a constant step-size scheme.

Theorem 4. Consider problem (7). Assume that each f has an L-Lipschitz
continuous gradient (2), f has a non-empty solution set X ∗, f satisfies the PL
inequality (3), and E[‖∇fi(xk)‖2] ≤ C2 for all xk and some C. If we use the SG
algorithm (9) with αk = 2k+1

2μ(k+1)2 , then we get a convergence rate of

E[f(xk) − f∗] ≤ LC2

2kμ2
.

If instead we use a constant αk = α < 1
2μ , then we obtain a linear convergence

rate up to a solution level that is proportional to α,

E[f(xk) − f∗] ≤ (1 − 2μα)k[f(x0) − f∗] +
LC2α

4μ
.
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Proof. By using the update rule (9) inside the Lipschitz condition (2), we have

f(xk+1) ≤ f(xk) − αk〈f ′(xk),∇fik(xk)〉 +
Lα2

k

2
||∇fik(xk)||2.

Taking the expectation of both sides with respect to ik we have

E[f(xk+1)] ≤ f(xk) − αk〈∇f(xk),E [∇fik(xk)]〉 +
Lα2

k

2
E[‖∇fi(xk)‖2]

≤ f(xk) − αk||f ′(xk)||2 +
LC2α2

k

2

≤ f(xk) − 2μαk(f(xk) − f∗) +
LC2α2

k

2
,

where the second line uses that E[∇fik(xk)] = f ′(xk) and E[‖∇fi(xk)‖2] ≤ C2,
and the third line uses the PL inequality. Subtracting f∗ from both sides yields:

E[f(xk+1) − f∗] ≤ (1 − 2αkμ)[f(xk) − f∗] +
LC2α2

k

2
. (10)

Decreasing step size: With αk = 2k+1
2μ(k+1)2 in (10) we obtain

E[f(xk+1) − f∗] ≤ k2

(k+1)2 [f(xk) − f∗] + LC2(2k+1)2|
8μ2(k+1)4 .

Multiplying both sides by (k + 1)2 and letting δf (k) ≡ k2
E[f(xk) − f∗] we get

δf (k + 1) ≤ δf (k) +
LC2(2k + 1)2

8μ2(k + 1)2

≤ δf (k) +
LC2

2μ2
,

where the second line follows from 2k+1
k+1 < 2. Summing up this inequality from

k = 0 to k and using the fact that δf (0) = 0 we get

δf (k + 1) ≤ δf (0) + LC2

2μ2

∑k
i=0 1 ≤ LC2(k+1)

2μ2

⇒ (k + 1)2E[f(xk+1) − f∗] ≤ LC2(k+1)
2μ2

which gives the stated rate.

Constant step size: Choosing αk = α for any α < 1/2μ and applying (10)
recursively yields

E[f(xk+1) − f∗] ≤ (1 − 2αμ)k[f(x0) − f∗] +
LC2α2

2

k∑
i=0

(1 − 2αμ)i

≤ (1 − 2αμ)k[f(x0) − f∗] +
LC2α2

2

∞∑
i=0

(1 − 2αμ)i

= (1 − 2αμ)k[f(x0) − f∗] +
LC2α

4μ
,

where the last line uses that α < 1/2μ and the limit of the geometric series. �	
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The O(1/k) rate for a decreasing step size matches the convergence rate of
stochastic gradient methods under SC [27]. It was recently shown using a non-
trivial analysis that a stochastic Newton method could achieve an O(1/k) rate for
least squares problems [4], but our result above shows that the basic stochastic
gradient method already achieves this property (although the constants are worse
than for this Newton-like method). Further, our result does not rely on convexity.
Note that if we are happy with a solution of fixed accuracy, then the result with
a constant step-size is perhaps the more useful strategy in practice: it supports
the often-used empirical strategy of using a constant size for a long time, then
halving the step-size if the algorithm appears to have stalled (the above result
indicates that halving the step-size will at least halve the sub-optimality).

3.4 Finite Sum Methods

In the setting of minimizing finite sums, it has recently been shown that there
are methods that have the low iteration cost of stochastic gradient methods
but that still have linear convergence rates [33]. While the first methods that
achieved this remarkable property required a memory of previous gradient val-
ues, the stochastic variance-reduced gradient (SVRG) method of Johnson and
Zhang [16] does not have this drawback. In Appendix 3.4, we give a new analysis
of the SVRG method that shows that it achieves a linear convergence rate under
the PL inequality. Similar results for finite-sum methods under the PL inequality
recently appeared in the works of Reddi et al. [36,37]. Garber and Hazan [10]
have also given a related result in the context of an improved algorithm for prin-
cipal component analysis (PCA), showing that the fi do not need to be convex
in order to achieve a linear convergence rate. However, their result still assumes
that f is SC while our analysis only assumes the PL inequality is satisfied.

4 Proximal-Gradient Generalization

Attouch and Bolte [3] consider a generalization of the PL inequality due to
Kurdyak to give conditions under which the classic proximal-point algorithm
achieves a linear convergence rate for non-smooth problems (called the KL
inequality). However, in practice proximal-gradient methods are more relevant
to many machine learning problems. While the KL inequality has been used to
show local linear convergence of proximal-gradient methods [6,18], in this section
we propose a different generalization of the PL inequality that yields a simple
global linear convergence analysis.

Proximal-gradient methods apply to problems of the form

argmin
x∈Rd

F (x) = f(x) + g(x), (11)

where f is a differentiable functionwith anL-Lipschitz continuous gradient and g is
a simple but potentially non-smooth convex function. Typical examples of simple
functions g include a scaled �1-norm of the parameter vectors, g(x) = λ‖x‖1, and
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indicator functions that are zero if x lies in a simple convex set and are infinity
otherwise.

In order to analyze proximal-gradient algorithms, a natural (though not par-
ticularly intuitive) generalization of the PL inequality is that there exists a μ > 0
satisfying

1
2
Dg(x,L) ≥ μ(F (x) − F ∗), (12)

where

Dg(x, α) ≡ −2α min
y

[〈∇f(x), y − x〉 +
α

2
||y − x||2 + g(y) − g(x)]. (13)

We call this the proximal-PL inequality, and we note that if g is constant (or
linear) then it reduces to the standard PL inequality. Below we show that this
inequality is sufficient for the proximal-gradient method to achieve a global linear
convergence rate.

Theorem 5. Consider problem (11), where f has an L-Lipschitz continuous
gradient (2), F has a non-empty solution set X ∗, g is convex, and F satisfies
the proximal-PL inequality (12). Then the proximal-gradient method with a step-
size of 1/L,

xk+1 = argmin
y

[〈∇f(xk), y − xk〉 +
L

2
||y − xk||2 + g(y) − g(xk)] (14)

converges linearly to the optimal value F ∗,

F (xk) − F ∗ ≤
(
1 − μ

L

)k

[F (x0) − F ∗].

Proof. By using Lipschitz continuity of the function f we have

F (xk+1) = f(xk+1) + g(xk) + g(xk+1) − g(xk)

≤ F (xk) + 〈∇f(xk), xk+1 − xk〉 +
L

2
||xk+1 − xk||2 + g(xk+1) − g(xk)

≤ F (xk) − 1
2L

Dg(xk, L)

≤ F (xk) − μ

L
[F (xk) − F ∗],

which uses the definition of xk+1 and Dg followed by the proximal-PL inequal-
ity (12). This subsequently implies that

F (xk+1) − F ∗ ≤
(
1 − μ

L

)
[F (xk) − F ∗], (15)

which applied recursively gives the result. �	
We note that the condition μ ≤ L is implicit in the definition of the proximal-PL
inequality, but this is not restrictive since we can simply set μ to a smaller value
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to satisfy this. While other conditions have been proposed to show linear con-
vergence rates of proximal-gradient methods without SC [17,44], their analyses
tend to be much more complicated than the above while, as we discuss in the
next section, the proximal-PL inequality includes the standard scenarios where
these apply.

4.1 Relevant Problems

As with the PL inequality, we now list several important function classes that
satisfy the proximal-PL inequality (12). We give proofs that these classes satisfy
the inequality in Appendices 4.1, 4.2, and 4.4.

1. The inequality is satisfied if f satisfies the PL inequality and g is constant.
Thus, the above result generalizes Theorem 1.

2. The inequality is satisfied if f is SC. This is the usual assumption used to show
a linear convergence rate for the proximal-gradient algorithm [34], although
we note that the above analysis is much simpler than standard arguments.

3. The inequality is satisfied if f has the form f(x) = h(Ax) for a SC function
h and a matrix A, while g is an indicator function for a polyhedral set.

4. The inequality is satisfied if F is convex and satisfies the QG property. In
Appendices 4.2 and 4.4 we show that L1-regularized least squares and the
support vector machine dual (respectively) fall into this category, and we
discuss these two notable cases further below.

We expect that it is possible to show the proximal-PL inequality holds in other
cases where the proximal-gradient achieves a linear convergence rate like the
case of group L1-regularization [40] and nuclear-norm regularization [14].

4.2 Least Squares with L1-Regularization

Perhaps the most interesting example of problem (11) is the �1-regularized least
squares problem,

argmin
x∈IRd

1
2
‖Ax − b‖2 + λ‖x‖1,

where λ > 0 is the regularization parameter. This problem has been studied
extensively in machine learning, signal processing, and statistics. This problem
structure seems well-suited to using proximal-gradient methods, but the first
works analyzing proximal-gradient methods for this problem only showed sub-
linear convergence rates. There subsequently have been a variety of works show-
ing that linear convergence rates can be achieved under additional assumptions.
For example, Gu et al. [11] prove that their algorithm achieves a linear conver-
gence rate if A satisfies a restricted isometry property (RIP) and the solution is
sufficiently sparse. Xiao and Zhang [43] also assume the RIP property and show
linear convergence using a homotopy method that slowly decreases the value of λ.
Agarwal et al. [1] give a linear convergence rate under a modified restricted strong
convexity and modified restricted smoothness assumption. In Appendix 4.2 we
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show that any L1-regularized least squares problem satisfies the QG property if
we use a descent method and thus by convexity also satisfies the proximal-PL
inequality. Thus, Theorem 5 implies a global linear convergence rate for these
problems without making additional assumptions or making any modifications
to the algorithm. A similar result recently appeared in the work of Necoara and
Clipici [26] under a generalized EB, but with a much more complicated analysis.

4.3 Proximal Coordinate Descent

It is also possible to adapt our results on coordinate descent and proximal-
gradient methods in order to give a linear convergence rate for coordinate-wise
proximal-gradient methods for problem (11). To do this, we require the extra
assumption that g is a separable function. This means that g(x) =

∑
i gi(xi)

for a set of univariate functions gi. The update rule for the coordinate-wise
proximal-gradient method is

xk+1 = argmin
α

[
α∇ikf(xk) +

L

2
α2 + gik(xik + α) − gik(xik)

]
, (16)

We state the convergence rate result below.

Theorem 6. Assume the setup of Theorem 5 and that g is a separable function
g(x) =

∑
i gi(xi), where each gi is convex. Then the coordinate-wise proximal-

gradient update rule (16) achieves a convergence rate

E[F (xk) − F ∗] ≤
(
1 − μ

dL

)k

[F (x0) − F ∗], (17)

when ik is selected uniformly at random.

The proof is given in Appendix 4.3 and although it is more complicated than
the proofs of Theorems 4 and 5, it is still simpler than existing proofs for prox-
imal coordinate descent under SC [39]. It is also possible to analyze stochas-
tic proximal-gradient algorithms, and indeed Reddi et al. use the proximal-PL
inequality to analyze finite-sum methods in the proximal stochastic case [38].

4.4 Support Vector Machines

Another important model problem that arises in machine learning is support
vector machines,

argmin
x∈IRd

λ

2
xT x +

n∑
i=1

max(0, 1 − bix
T ai). (18)

where (ai, bi) are the labelled training set with ai ∈ R
d and bi ∈ {−1, 1}. We

often solve this problem by performing coordinate optimization on its dual, which
has the form

min
w̄

f(w̄) =
1
2
w̄T Mw̄ −

∑
w̄i, w̄i ∈ [0, U ], (19)
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for a particular matrix M and constant U . This function satisfies the QG prop-
erty and thus Theorem 6 implies that coordinate optimization achieves a linear
convergence rate in terms of optimizing the dual objective. Further, since Hush
et al. [15] show that we can obtain an ε-accurate solution to the primal prob-
lem with an O(ε2)-accurate solution to the dual problem, this also implies a
linear convergence rate for stochastic dual coordinate ascent on the primal prob-
lem. Global linear convergence rates for SVMs have also been shown by oth-
ers [23,41,42], but again we note that these works lead to much more compli-
cated analyses. Although the constants in these convergence rate may be quite
bad (depending on the smallest non-zero singular value of the Gram matrix), we
note that the existing sublinear rates still apply in the early iterations while, as
the algorithm begins to identify support vectors, the constants improve (depend-
ing on the smallest non-zero singular value of the block of the Gram matrix
corresponding to the support vectors).

The result of the previous section is not only restricted to SVMs. Indeed,
the result of the previous section implies a linear convergence rate for many
�2-regularized linear prediction problems, the framework considered in the sto-
chastic dual coordinate ascent (SDCA) work of Shalev-Shwartz and Zhang [35].
While Shalev-Shwartz and Zhang [35] show that this is true when the primal
is smooth, our result gives linear rates in many cases where the primal is non-
smooth.

5 Discussion

We believe that this work provides a unifying and simplifying view of a variety
of optimization and convergence rate issues in machine learning. Indeed, we have
shown that many of the assumptions used to achieve linear convergence rates can
be replaced by the PL inequality and its proximal generalization. Throughout
the paper, we have also pointed out how our analysis implies new convergence
rates for a variety of machine learning models and algorithms. Some of these
were previously known, typically under stronger assumptions or with more com-
plicated proofs, but many of these are novel. Note that we have not provided
any experimental results in this work, since the main contributions of this work
are showing that existing algorithms actually work better on standard prob-
lems than we previously thought. We expect that going forward, efficiency will
no longer be decided by the issue of whether functions are SC, but rather by
whether they satisfy a variant of the PL inequality.
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