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Abstract. The convergence of Stochastic Gradient Descent (SGD)
using convex loss functions has been widely studied. However, vanilla
SGD methods using convex losses cannot perform well with noisy labels,
which adversely affect the update of the primal variable in SGD meth-
ods. Unfortunately, noisy labels are ubiquitous in real world applications
such as crowdsourcing. To handle noisy labels, in this paper, we present
a family of robust losses for SGD methods. By employing our robust
losses, SGD methods successfully reduce negative effects caused by noisy
labels on each update of the primal variable. We not only reveal the con-
vergence rate of SGD methods using robust losses, but also provide the
robustness analysis on two representative robust losses. Comprehensive
experimental results on six real-world datasets show that SGD meth-
ods using robust losses are obviously more robust than other baseline
methods in most situations with fast convergence.

1 Introduction

To handle large-scale optimization problems, a popular strategy is to employ
Stochastic Gradient Descent (SGD) methods because of two advantages. First,
they do not need to compute all gradients over the whole dataset in each itera-
tion, which lowers computational cost per iteration. Secondly, they only process
a mini-batch of data points [1] or even one data point [2] in each iteration, which
vastly reduces the memory storage. Therefore, many researchers have extensively
studied and applied various SGD methods [3,4]. For instance, Large-Scale SGD
[5] has been substantially applied to the optimization of deep learning models
[6]. Primal Estimated Sub-Gradient Solver (Pegasos) [7] is employed to speed
up the Support Vector Machines (SVM) methods, which is suitable for large-
scale text classification problems. However, vanilla SGD methods suffer from
the label noise problem since the noisy labels adversely affect the update of the
primal variable in SGD methods. Unfortunately, the label noise problems are
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Fig. 1. Left Panel: Squares represent real negative instances. Circles denote real pos-
itive instances, however one circle instance “A” is erroneously annotated as negative
class, which creates a noisy label. Right Panel: Red curve and blue curve respectively
denote Ramp Loss and Smooth Ramp Loss parameterized by s∗. Magenta curve, black
curve and green curve correspond to Logistic Loss, Hinge Loss and Reversed Gompertz
Loss accordingly. It can be observed that the incorrectly labeled instance “A” in the
left panel can be regarded as the outlier of negative class, and its loss value r(zA) is
upper bounded by Ramp Loss, Smooth Ramp Loss, and Reversed Gompertz Loss (see
“zA” in the right panel). (Color figure online)

very common in real-world applications. For instance, Amazon Mechanical Turk
(MTurk) is a crowdsourcing Internet platform that takes advantage of human
intelligence to provide supervision, such as labeling different kinds of bird pic-
tures and annotating keywords according to geoscience records. However, the
quality of annotations is not always satisfactory because many workers are not
sufficiently trained to label or annotate such specific data [8]. Another situation
is where the data labels are automatically inferred from user online behaviors or
implicit feedback. For example, the existing recommendation algorithms usually
consider a user clicking on an online item (e.g., advertisements on Youtube or
eBay) as a positive label indicating user preference, whereas users may click the
item for different reasons, such as curiosity or clicking by mistake. Therefore,
the labels inferred from online behaviors are often noisy.

The aforementioned issues lead to a challenging question- if the majority
of data labels are incorrectly annotated, can we reduce the negative effects on
SGD methods caused by these noisy labels? Our high-level idea is to design a
robust loss function with a threshold for SGD methods. We illustrate our idea by
using a binary classification example. In the left panel of Fig. 1, we notice that
the instance xA (i.e., data point “A”) is incorrectly annotated with the label
yA = −1, which is opposite to its predicted label value (+1) according to the
hyperplane. Moreover, this instance is far away from the distribution of negative
class. Therefore, this instance xA with the noisy label yA can be regarded as the
outlier of negative class.
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Let the output of the classifier fw for a given x be fw(x). Let z be the product
of the real label and the predicted label of an instance x (i.e., z = yfw(x)). Then,
given the outlier {xA, yA} in the left panel of Fig. 1, we have zA = yAfw(xA) < 0.
As illustrated in the right panel of Fig. 1, with z on the x-axis, the gradient of
Hinge Loss is non-zero on the zA, which will mislead the update of the primal
variable w in SGD methods. However, if the loss function has a threshold, for
example Ramp Loss [9] in Fig. 1 with a threshold 1 − s∗, the gradient of Ramp
Loss on the zA is zero, which minimizes the negative effects caused by this outlier
on the update. Therefore, it is reasonable to employ the loss with a threshold
for SGD methods in the label noise problem.

Although the Ramp Loss is robust to outliers, it is computationally hard to
optimize due to its nonsmoothness and nonconvexity [10]. Therefore, we con-
sider to relax the Ramp Loss into smooth and locally strongly-convex loss. With
random initialization, SGD methods can converge into a qualified local minima
with a fast speed. Our main contributions are summarized as follows.

1. We present a family of robust losses, which specifically benefit SGD methods
to reduce the negative effects introduced by noisy labels, even under a high
percentage of noisy labels.

2. We reveal the convergence rate of SGD methods using the proposed robust
losses. Moreover, we provide the robustness analysis on two representative
robust losses.

3. Comprehensive experimental results on varying scale datasets with noisy
labels show that SGD methods using robust losses are obviously more robust
than other baseline methods in most situations with fast convergence.

2 Related Works

First, our work is closely related to SGD methods. For example, Xu proposes the
Averaged Stochastic Gradient Descent (ASGD) method [11] to lower the testing
error rate of the SGD [5]. However, their work is based on the assumption that
the data is clean, which significantly limits their applicability to the label noise
problem. Ghahdimi & Lan introduce a randomized stochastic algorithm to solve
nonconvex problems [12], and then generalize the accelerated gradient method to
improve the convergence rate if the problem is nonconvex [13]. However they do
not focus on learning with noisy labels specifically, and do not consider strongly
convex regularizer.

Second, our work is also related to bounded nonconvex losses for robust clas-
sification. For example, Collobert et al. propose the bounded Ramp Loss for
support vector machine (SVM) classification problems. Wang et al. further pro-
pose a robust SVM based on a smooth version of Ramp Loss for suppressing the
outliers [14]. Their models are commonly inferred by Concave-Convex Procedure
(CCCP) [9]. However, both of them do not consider that SGD methods suffer
from the label noise problem. In other words, our robust losses are tailor-made
for SGD methods to alleviate the effect of noisy labels while their loss is designed
only for robust SVM.
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Finally, our work is highly related to noisy labels. For instance, Reed &
Sukhbaatar focus on training deep neural networks using noisy labels [15].
Natarajan et al. propose a probabilistic model for handling label noise prob-
lems [16]. However, all these works are unrelated to SGD methods. Moreover,
they cannot be used in real-time or large-scale applications due to their high
computational cost. It is also demonstrated that the 0-1 loss function is robust
for outliers. However, the 0-1 loss is neither convex nor differentiable, and it is
intractable for real learning algorithms in practice. Even though the surrogates
of 0-1 loss is convex [17], they are very sensitive to outliers. To the best of our
knowledge, the problem of SGD methods for noisy labels has not yet been suc-
cessfully addressed. This paper therefore studies this problem and provides an
answer with theoretical analysis and empirical verification.

3 A Family of Robust Losses for Stochastic Gradient
Descent

In this section, we begin with the definition of a family of robust losses for
SGD methods. Under this definition, we introduce two representative robust
losses: Smooth Ramp Loss and Reversed Gompertz Loss. Then, we reveal the
convergence rate of SGD methods using robust losses, and provide the robustness
analysis on two representative robust losses.

3.1 Notations and Definitions

Let D = {xi, yi}n
i=1 be the training data, where xi ∈ R

d denotes the ith instance
and yi ∈ {−1,+1} denotes its binary label. The basic support vector machine
model for classification is represented as

min
w

G(w) = min
w

1
n

n∑

i=1

gi(w) (1)

where w ∈ R
d is the primal variable. Specifically, gi(w) = ρλ(w) + r(w;

{xi, yi}) where λ is the regularization parameter, ρλ(w) is the regularizer and
r(w; {xi, yi}) is a loss function.

Based on Restricted Strong Convexity (RSC) and Restricted Smoothness
(RSM) [18,19], we propose two extended definitions. We use ‖·‖ to denote the
Euclidean norm, and Bd(w∗, γ) to denote the d dimensional Euclidean ball of
radius γ centered at local minima w∗. And we assume that function G and gi

are continuously differentiable.

Definition 1 (AugmentedRestricted StrongConvexity (ARSC)). If there
exists a constant α > 0 such that for any w, w̃ ∈ Bd(w∗, γ), we have

G(w) − G(w̃) − 〈∇G(w̃),w − w̃〉 ≥ α

2
‖w − w̃‖2 (2)

then G satisfies Augmented Restricted Strong Convexity.
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Definition 2 (Augmented Restricted Smoothness (ARSM)). If there
exists a constant β > 0 such that for any i ∈ {1, · · · , n} and w, w̃ ∈ Bd(w∗, γ),
we have

gi(w) − gi(w̃) − 〈∇gi(w̃),w − w̃〉 ≤ β

2
‖w − w̃‖2 (3)

then gi satisfies Augmented Restricted Smoothness.

3.2 A Family of Robust Losses

We first present the motivation and definition of a family of robust losses. Take
Support Vector Machines (SVM) with convex hinge loss as an example. SGD
methods are commonly used to optimize the SVM model for large-scale learning.
However, if data points with noisy labels deviate significantly from the hyper-
plane, these mislabeled data points can be equally viewed as outliers. These
outliers will severely mislead the update of the primal variable in SGD meth-
ods. Therefore, it is intuitive to design a loss function with a threshold, which
truncates the value that exceeds the threshold. Inspired by Ramp Loss [9], we
consider whether we can design a family of bounded, locally strongly-convex
and smooth losses. If we combine this new loss with strongly-convex regularizer,
the objective then satisfies the ARSC (i.e., Definition 1) and ARSM (i.e., Defi-
nition 2) simultaneously. Here, we define a family of robust losses r(z) for SGD
methods, where z is the variable of loss function in the x-axis of Fig. 1.

Definition 3. A loss function r(z) is robust for SGD methods if it simultane-
ously meets the following conditions:
1. Upper bound condition - it should be bounded such that lim

z→−∞ r′(z) = 0.
2. Locally λ-strongly convex condition - it should be locally λ-strongly convex if

there exists a constant λ > 0 such that r(z) − λ
2 ‖z‖2 is convex when z ∈

B1(z∗, γ), where B1(z∗, γ) denotes the 1 dimensional Euclidean ball of radius
γ > 0 centered at local minima z∗.

3. Smoothly decreasing condition - it should be monotonically decreasing and
continuously differentiable.

Remark 1. We explain three conditions on Definition 3. (1) Since the upper
bound can be equally viewed as the threshold, it is natural that the negative
effects introduced by outliers are removed by the upper bound. (2) The loss
function should be locally λ-strongly convex. If the loss function is locally λ-
strongly convex and the regularizer is globally λ-strongly convex (e.g., λ

2 ‖w‖2),
the objective G(w) is locally strongly-convex. Then, objective G(w) satisfies
the ARSC. (3) If the loss function is monotonically decreasing, we reasonably
assume that the objective is non-increasing around some local minima, which is
convenient to prove the convergence rate. If the loss function is differentiable at
every point, gi(w) satisfies the ARSM when λ

2 ‖w‖2 is used.

Then a family of robust losses for SGD methods can be acquired under
these conditions. Here, we propose two representative robust losses that perfectly
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satisfy the above three conditions. Both of them are presented in Fig. 1 and
employed through the whole paper.

The first one is the Smooth Ramp Loss (4), which is the smooth version of
Ramp Loss1. If we smooth the Ramp Loss around s∗ and around 1, it is much
easier to optimize and satisfy the ARSM. Therefore, we employ reversed sigmoid
function to represent the Smooth Ramp Loss.

r(s∗, z) =
1 − s∗

1 + eαs∗ (z+βs∗ ) (4)

where we set the s∗ of Ramp Loss, then the parameters αs∗ and βs∗ of Smooth
Ramp Loss are determined by minimizing the difference between Smooth Ramp
Loss and Ramp Loss.

The second one is the Reversed Gompertz Loss, which is a special case of the
Gompertz function and we reverse the Gompertz function by the y-axis.

r(c∗, z) = e−ec∗·z
(5)

where the curve of this loss is controlled by parameter c∗. The aforementioned
losses are integrated into the SVM model and SGD methods are employed to
update the primal variable w.

By employing two above robust losses, we finally summarize the robust SGD
algorithm - Stochastic Gradient Descent with Robust Losses in Algorithm 1.
Specifically, the generalized algorithm consists of two special cases. For Stochas-
tic Gradient Descent with Smooth Ramp Loss, the algorithm employs “Set I
and Update I”. For Stochastic Gradient Descent with Reversed Gompertz Loss,
the algorithm employs “Set II and Update II”. In practical implementations, we
often choose option A and also provide averaging option B.

3.3 Convergence Analysis

When we apply SGD methods to SVM model with proposed robust losses, it
converges into the qualified local minima. According to the detailed explanation
about the three conditions in Sect. 3.2, the objective G(w) satisfies the ARSC
and gi(w) satisfies the ARSM. Based on the ARSC and ARSM, we can analyze
the convergence rate of SGD methods using robust losses. We use E

[ ·] to denote
the expectation.

Theorem 1. Consider that G(w) satisfies Augmented Restricted Strong Con-
vexity and gi(w) satisfies Augmented Restricted Smoothness. Define w∗ as a local
minima and β as the parameter of Augmented Restricted Smoothness. Assume
that learning rate η is sufficient to let G(w(t)) be a non-increasing update. After
T iterations, we have

G(w(T )) − G(w∗) ≤ E
[‖w(0) − w∗‖2]

(2η − 12η2β) · T

1 The common optimization method for Ramp Loss is using Concave-Convex Proce-
dure (CCCP). However, CCCP is time-consuming compared to SGD methods.
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Algorithm 1. Stochastic Gradient Descent with Robust Losses (SGDRL)
Input: λ ≥ 0, s∗, c∗, the learning rate η, the max number of epochs Tmax, and the

training set D = {xi, yi}n
i=1

Initialize: w̃(0) = 0

Set:

{
I : f(αs∗ , βs∗ , g) = eαs∗ (g+βs∗ )

II : f(c∗, g) = c∗g − ec∗g

for epoch = 1, 2, . . . , Tmax do

Preprocess: w(0) = w̃(epoch−1) and randomly shuffle n training instances in D
for t = 1, . . . , n do

Sequentially pick: {xit, yit} from D , it ∈ {1, ..., n}
Compute: g(w(t−1)) = (〈w(t−1),xit〉 + b)yit

w(t) =

⎧⎨
⎩

I : w
(t−1) − η

[
λw

(t−1) − (1 − s
∗
)αs∗xityit

f(αs∗ , βs∗ , g(w(t−1)))

(1 + f(αs∗ , βs∗ , g(w(t−1))))2

]

II : w
(t−1) − η

[
λw

(t−1) − c
∗
xityite

f(c∗,g(w(t−1)))]

end

option A: w̃(epoch) = w(n) or option B: w̃(epoch) = 1
n

∑n
t=1 w

(t)

end

Output: w̃(Tmax)

Proof Sketch for Theorem1

Proof. Due to space constraints, here we focus on key steps, and the detailed
proof is in the arXiv version2. According to stochastic gradient descent update
rule w(t) = w(t−1) − η∇git(w(t−1)) where random number it ∈ {1, ..., n}, and
E

[∇git(w(t−1))
]

= ∇G(w(t−1)) by (1), we construct the following inequality

E
[‖w(t) − w∗‖2]

= E
[‖w(t−1) − w∗‖2] + η2

E
[‖∇git(w(t−1))‖2]

− 2η〈∇G(w(t−1)),w(t−1) − w∗〉
≤ E

[‖w(t−1) − w∗‖2] + η2
E

[‖∇git(w(t−1))‖2]

− 2η
[
G(w(t−1)) − G(w∗)

]

(6)

where the inequality employs the ARSC. Then we construct an auxiliary function
ϕi(w)

ϕi(w) = gi(w) − gi(w∗) − 〈∇gi(w∗),w − w∗〉 (7)

And it is obvious that

ϕi(w∗) = gi(w∗) − gi(w∗) = 0 (8a)
∇ϕi(w) = ∇gi(w) − ∇gi(w∗) (8b)

∇ϕi(w∗) = ∇gi(w∗) − ∇gi(w∗) = 0 (8c)

2 Please search the arXiv version in https://arxiv.org/abs/1605.01623.

https://arxiv.org/abs/1605.01623
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Thus, w∗ is local minima of ϕi(w) by (8c) and we construct the following inequal-
ity from (7)

0 = ϕi(w∗) ≤ min ϕi(w − γ∇ϕi(w))

≤ min ϕi(w) +
βγ2

2
‖∇ϕi(w))‖2 − γ‖∇ϕi(w))‖2

= ϕi(w) − 1
2β

‖∇ϕi(w)‖2 (9)

where the last inequality satisfies the ARSM and the function is minimized at
the parameter γ = 1

β . We construct the following inequality based on (7), (8b)
and (9)

‖∇gi(w) − ∇gi(w∗)‖2
≤ 2β

[
gi(w) − gi(w∗) − 〈∇gi(w∗),w − w∗〉] (10)

Therefore, we have

E
[‖∇gi(w) − ∇gi(w∗)‖2]

≤ 2β
[
G(w) − G(w∗) − 〈∇G(w∗),w − w∗〉]

≤ 4β
[
G(w) − G(w∗)

]
(11)

where the second last inequality satisfies the ARSC. Because ‖A + B + C‖2 ≤
3‖A‖2+3‖B‖2+3‖C‖2 and w∗ is a local minima, we have the following inequality
with ∇G(w∗) = 0 and (11)

E
[‖∇git(w(t−1))‖2]

≤ 3E
[‖∇git(w(t−1)) − ∇git(w∗)‖2]

+ 3E
[‖∇git(w∗) − ∇G(w∗)‖2] + 3E

[‖∇G(w∗)‖2]

≤ 12β
[
G(w(t−1)) − G(w∗)

]
(12)

Therefore, (6) equals to the following inequality

E
[‖w(t) − w∗‖2]

≤ E
[‖w(t−1) − w∗‖2] + η2

E
[‖∇git(w(t−1))‖2]

− 2η
[
G(w(t−1)) − G(w∗)

]

≤ E
[‖w(t−1) − w∗‖2]

+ (12η2β − 2η)
[
G(w(t−1)) − G(w∗)

]

(13)

Based on (13), when t varies from 1 · · · T , we get T inequalities respectively, and
then simultaneously add the left hand side and right hand side of T inequalities
to get

E
[‖w(T ) − w∗‖2] ≤ E

[‖w(0) − w∗‖2]

+ (12η2β − 2η)
[ T∑

t=1

G(w(t−1)) − T · G(w∗)
] (14)
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Under the assumption of a non-increasing update, we have the following
inequality

(2η − 12η2β)
[
T · G(w(T )) − T · G(w∗)

]

≤ (2η − 12η2β)
[ T∑

t=1

G(w(t−1)) − T · G(w∗)
]

≤ E
[‖w(0) − w∗‖2] − E

[‖w(T ) − w∗‖2]
(15)

We thus obtain

G(w(T )) − G(w∗) ≤ E
[‖w(0) − w∗‖2] − E

[‖w(T ) − w∗‖2]

(2η − 12η2β) · T

≤ E
[‖w(0) − w∗‖2]

(2η − 12η2β) · T
=

d

η · T
= ε (16)

where d =
E

[
‖w(0)−w∗‖2

]

(2−12ηβ) . Therefore we conclude that when T = d
η·ε , SGD

methods using robust losses have ε-solution and the convergence rate is O(1/T ).
Therefore, to achieve a ε-solution, the complexity of Algorithm1 is O(n·d

η·ε ).

4 Robustness Analysis

Theorem 2. Assume that an instance xi is annotated with noisy label yi, which
means yi(KT

i α + b) < 0. Its corresponding weighted coefficient φi for Smooth
Ramp Loss with (s∗, αs∗ , βs∗) is

φi =
(1 − s∗)αs∗δeαs∗ (yiKT

i α+yib)

(1 − (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2

for Reversed Gompertz Loss with c∗ is

φi =
c∗ec∗(yiKT

i α+yib)−ec∗(yiKT
i α+yib)

1 − (yiKT
i α + yib)

if |fw(xi)| = |(KT
i α + b)| increases, which means xi with noisy label yi becomes

an outlier, then both φi will definitely decrease. It indicates that the proposed
Robust Losses do reduce the negative effects introduced by noisy labels.

Proof Sketch for Theorem 2

Proof. Firstly, we assume that {xi, yi}k
i=1 is a random subset of training data

D and fw is the decision function, according to the representer theorem, zi =
yifw(xi) = yi(

∑k
j=1 K(xj ,xi)αj + b) = yiKT

i α + yib, where α = (α1, α2, ..., αk)′,
K = (K1,K2, ...,Kk)′ and Ki = (K(x1,xi),K(x2,xi), ...,K(xk,xi))′. λ > 0 is
a regularizer parameter, K is a mercer kernel and HK is a Reproducing Kernel
Hilbert Space (RKHS). For a family of robust losses r(z), we define two functions
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ρ(z) and �(z) such that r(z) = ρ(1 − z) and �(z) = ρ′(z)
z . Therefore, our robust

model can be presented as

f∗
w = arg min

fw

1
k

k∑

i=1

r(zi) +
λ

2
‖fw‖2

= arg min
fw

1
k

k∑

i=1

r(fw(xi) · yi) +
λ

2
fT
wfw

= arg min
α,b

1
k

k∑

i=1

ρ(1 − yiKT
i α − yib) +

λ

2
αT Kα

(17)

The last equation satisfies the second condition of robust losses r(z) = ρ(1−z).
Due to �(z) = ρ′(z)

z , we define coefficient φi = �(1 − yiKT
i α − yib), then

ρ′(1 − yiKT
i α − yib) = (1 − yiKT

i α − yib)φi (18)

Because our proposed loss is nonconvex, we assume that (α̂, b̂) is one of
the critical points for above minimization problem (17). Let’s set Q(α, b) =
1
k

∑k
i=1 ρ(1 − yiKT

i α − yib) + λ
2αT Kα, therefore: ∂Q(α̂,b̂)

∂α = 0 and ∂Q(α̂,b̂)
∂b = 0.

Then, we have two equations below

1
k

k∑

i=1

(1 − yiKT
i α̂ − yib̂)(yiKi)φi − λKT α̂ = 0 (19)

1
k

k∑

i=1

(1 − yiKT
i α̂ − yib̂)yiφi = 0 (20)

The solution (α̂, b̂) of Eqs. (19) and (20) can be achieved by solving the fol-
lowing L2-SVM

min
α,b

1
k

k∑

i=1

(yi − KT
i α − b)2φi +

λ

2
αT Kα (21)

When k = 1, we solve it by streaming stochastic gradient descent. If k > 1,
we solve it by mini-batch stochastic gradient descent. Currently, we consider φi

as an important coefficient that affects the update of stochastic dual variable α,
and therefore, we analyze robust statistics briefly from coefficient φi view.

If an instance xi is annotated with noisy label yi, it means that yifw(xi) < 0.
By the representer theorem, we can easily find yi(KT

i α+b) < 0 for this instance.
We consider |(KT

i α + b)| as the degree where this instance is far away from the
hyperplane. So we define φi = �(1 − yiKT

i α − yib). To analyze the robustness
of r(z), we only take Smooth Ramp Loss as an example here due to space
constraints. And the robustness analysis of Reversed Gompertz loss can be found
in the arXiv version. We define δ = eαs∗ βs∗ and according to our inference
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φi = �(1 − yiKT
i α − yib)

=
(1 − s∗)αs∗δeαs∗ (yiKT

i α+yib)

(1 − (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2
(22)

Remark 2. If {xi, yi} is an instance with a noisy label (yi(KT
i α + b) < 0),

then the mislabeled instance becomes an outlier when |fw(xi)| = |(KT
i α + b)|

increases. It means this mislabeled instance is far away from the hyperplane.
The coefficient φi will then decrease because 1 − (yiKT

i α + yib) will increase

while eαs∗ (yiKT
i α+yib)

(1+δeαs∗ (yiKT
i

α+yib))2
will decrease. This indicates that the coefficient φi

will decrease with the increase of |fw(xi)| for outlier instance xi and does not
play a significant role in the update of the dual variable. Therefore, Smooth
Ramp Loss can reduce the negative effects introduced by noisy labels.

5 Experiments

In this section, we mainly perform experiments on noisy datasets to verify the
convergence and robustness of SGD methods with two representative robust
losses. The datasets range from small to large scale. For convenience, we abbre-
viate SGD with Smooth Ramp Loss as SGD(SRamp) and SGD with Reversed
Gompertz Loss as SGD(RGomp) respectively.

5.1 Experimental Settings

All experimental datasets come from the LIBSVM datasets webpage3. The sta-
tistics of the datasets are summarized in the Table of the arXiv version. Among
them, REAL-SIM, COVTYPE, MNIST38 and IJCNN1 are manually split into
the training set and testing set by about 4 : 1. We normalize the data by scal-
ing each feature to [0,1]. To generate the datasets with noisy labels, we follow
the settings in [16]. Specifically, we proportionally flip the class label of training
data. For example, we randomly flip 20 % of data labels from −1 to 1 or 1 to
−1, and assume that the data has 20% of noisy labels. We then repeat the same
process to produce 40 % and 60 % of noisy labels on all datasets.

In the experiments, the baseline methods are classified into two categories.
The first category consists of SGD methods with different losses ranging from
convex losses to robust nonconvex losses, which can verify the convergence and
robustness of SGD methods with two representative losses for noisy labels.
For example, we choose SGD with Logistic Loss (SGD(Log)), Hinge Loss
(SGD(Hinge)) and Ramp Loss (SGD(Ramp)). We also choose ASGD [11] with
Logistic Loss (ASGD(Log)) and PEGASOS [7] as baseline methods. For the sec-
ond category, we compare proposed methods with LIBLINEAR (We abbreviate
L2-regularized L2-loss SVM Primal solution as LIBPrimal and Dual solution
as LIBDual) due to its wide popularity in large-scale machine learning. All the

3 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1. Testing error rate (in %) with standard deviation on datasets without noisy
labels. Methods are indicated by “-”due to running out of memory.

Methods A7A IJCNN1 REAL-SIM COVTYPE MNIST38 SUSY

LIBPRIMAL 14.99 8.25 2.57 24.35 5.71 21.34

LIBDUAL 15.02 8.20 2.67 24.25 6.09 35.32

PEGASOS 17.62 ± 1.56 8.50 ± 0.19 3.32 ± 0.06 26.36 ± 1.99 - -

SGD(Log) 15.16 ± 0.06 9.08 ± 0.48 2.62 ± 0.03 25.07 ± 0.28 5.73 ± 0.09 20.93 ± 0.01

ASGD(Log) 14.99 ± 0.14 8.04 ± 0.04 2.54 ± 0.01 24.38 ± 0.01 5.54 ± 0.01 20.83 ± 0.09

SGD(Hinge) 15.45 ± 0.09 8.40 ± 0.22 2.69 ± 0.13 24.62 ± 0.54 5.77 ± 0.16 20.89 ± 0.08

SGD(Ramp) 15.54 ± 0.54 8.50 ± 0.03 4.02 ± 0.02 24.22 ± 0.10 6.04 ± 0.08 21.36 ± 0.05

SGD(SRamp) 15.11 ± 0.06 6.49 ± 0.12 2.55 ± 0.03 23.69 ± 0.04 5.76 ± 0.06 20.81 ± 0.03

SGD(RGomp) 15.10 ± 0.01 6.45 ± 0.02 2.45 ± 0.03 23.29 ± 0.03 5.56 ± 0.01 20.94 ± 0.01

methods are implemented in C++. Experiments are performed on a computer
with a 3.20 GHz Inter CPU and 8 GB main memory running on a Windows 7.

The regularization parameter λ is chosen by 10-fold cross validation for all
methods in the range of {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. For SGD
methods with different losses, the number of epochs is normally set to 15 for
convergence comparison and the primal variable w is initialized to 0. For LIB-
LINEAR, we set the bias b to 1 and the stopping tolerance ε to 10−2 for primal
solution and 10−1 for dual solution by default. For PEGASOS, the number of
epochs for convergence is set to 10

λ by default and the block size k is set to 1
for training efficiency. For SGD(SRamp), the parameter s∗ is chosen by 10-fold
cross validation in the range of [−2, 0] according to real-world datasets. There-
fore, the parameter (s∗, αs∗ , βs∗) is optimized to (−0.7, 3,−0.15), (−1, 2,−0.03)
or (−2, 1.5, 0.5). For SGD(RGomp), the parameter c∗ is randomly fixed to 2. All
the experiments are repeated ten times and the results are averaged over the 10
trials. Methods are indicated by “-”in Table 1 due to running out of memory.
Methods are not reported in Figs. 3 and 4 due to running out of memory or too
long training time.4

5.2 The Performance of Convergence

First, we verify the convergence of SGD methods with two representative losses
for noisy labels. Due to the limit of space, we provide the primal objective
value of SGD(SRamp) with the number of epochs on representative small-scale
IJCNN1 and large-scale SUSY datasets in the arXiv version. We observe that
SGD(SRamp) converges within 15 epochs. This observation is consistent with
our convergence analysis in Sect. 3.3. Since SGD(SRamp) and SGD(RGomp) are
very similar, the convergence curve of SGD(RGomp) is also similar to that of
SGD(SRamp). Thus, we do not report the results of SGD(RGomp).

Then, we further observe the convergence comparison of SGD methods with
different losses for noisy labels in Fig. 2 where, with the increase of number

4 On MNIST38 and SUSY datasets, PEGASOS run out of memory, and the training
time of LIBDual is several orders of magnitude more than that of other baselines.
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Fig. 2. Testing error rate (in %) with the number of epochs on A7A and REAL-SIM.
Datasets have varying percentages (in %) of noisy labels (20 %, 40 % and 60 %). For
PEGASOS, the number of epochs for convergence is set to 10

λ
by default. Therefore,

we do not report its result

of epochs, the testing error rate of SGD(SRamp) and SGD(RGomp) not only
decrease faster than that of other baseline methods but also keep relative stable
in the most cases. In other words, our method takes 1–5 epochs to converge while
SGD(Hinge) takes more than 15 epochs to converge. Even worse, SGD(Hinge)
diverges in presence of 60% of noisy labels.

5.3 The Performance of Robustness

Finally, we verify the robustness of SGD methods with two representative losses
for noisy labels. Figures 3 and 4 respectively report testing error rate and variance
with varying percentages of noisy labels. From Figs. 3 and 4, we have the follow-
ing observations. (a) On all datasets, SGD(SRamp) and SGD(RGomp) obviously
outperform the other baseline methods in testing error rate beyond 40% of noisy
labels. Between 0% to 40%, SGD(SRamp) and SGD(RGomp) still have compar-
ative advantages. In particular, for a high-dimensional dataset REAL-SIM, the
advantage of SGD(SRamp) and SGD(RGomp) is extremely obvious in the whole
range of the x-axis. (b) Meanwhile, we notice that the variance of testing error
rate for baseline methods (e.g., PEGASOS) gradually increases with the growing
percentage of noisy labels, but the variance of testing error rate for SGD(SRamp)
and SGD(RGomp) remains at the lowest level in the most cases. Therefore, the
robustness of SGD(SRamp) and SGD(RGomp) have been validated by their test-
ing error rate and variance. Although two losses are comparable in the perfor-
mance of robustness, the parameter of SGD(RGomp) is easier to tune.
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Fig. 3. Testing error rate (in %) on datasets with varying percentages (in %) of noisy
labels. We provide the subfigures to compare the testing error rate with 0 % to 40 % of
noisy labels on all datasets except for REAL-SIM. The y-axis is in log-scale.
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Fig. 4. Variance on datasets with varying percentages (in %) of noisy labels. The y-axis
is in log-scale. Note that there is no variance for LIBPrimal and LIBDual because in
each update of the primal variable, they compute full gradients instead of stochastic
gradients.
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In the most cases, the proposed SGD(SRamp) and SGD(RGomp) outper-
form other baseline methods not only on datasets with varying percentage of
noisy labels but also on clean datasets. For example, Table 1 demonstrates that
in terms of the testing error rate with the standard deviation, SGD(SRamp)
and SGD(RGomp) outperform other baseline methods on IJCNN1, REAL-SIM,
COVTYPE and SUSY datasets without noisy labels.

6 Conclusions

This paper studies SGD methods with a family of robust losses for the label
noise problem. For convenience, we mainly introduce two representative robust
losses including Smooth Ramp Loss and Reversed Gompertz Loss. Our theoret-
ical analysis not only reveals the convergence rate of SGD methods using robust
losses, but also proves the robustness of two representative robust losses. Com-
prehensive experimental results show that, on real-world datasets with varying
percentages of noisy labels, SGD methods using our proposed losses are robust
enough to reduce negative effects caused by noisy labels with fast convergence. In
the future, we will extend our proposed robust losses to improve the performance
of SGD methods for regression problems with noisy labels.
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