
On Bitcoin Security in the Presence of Broken
Cryptographic Primitives

Ilias Giechaskiel(B), Cas Cremers, and Kasper B. Rasmussen

University of Oxford, Oxford, UK
{ilias.giechaskiel,cas.cremers,kasper.rasmussen}@cs.ox.ac.uk

Abstract. Digital currencies like Bitcoin rely on cryptographic prim-
itives to operate. However, past experience shows that cryptographic
primitives do not last forever: increased computational power and
advanced cryptanalysis cause primitives to break frequently, and moti-
vate the development of new ones. It is therefore crucial for maintaining
trust in a cryptocurrency to anticipate such breakage.

We present the first systematic analysis of the effect of broken primi-
tives on Bitcoin. We identify the core cryptographic building blocks and
analyze the ways in which they can break, and the subsequent effect on
the main Bitcoin security guarantees. Our analysis reveals a wide range
of possible effects depending on the primitive and type of breakage, rang-
ing from minor privacy violations to a complete breakdown of the cur-
rency. Our results lead to several observations on, and suggestions for,
the Bitcoin migration plans in case of broken or weakened cryptographic
primitives.

1 Introduction

Cryptocurrencies such as Bitcoin rely on cryptographic primitives for their guar-
antees and correct operation. Such primitives typically get weakened over time,
due to progress in cryptanalysis and advances in the computational power of
the attackers. It is therefore prudent to expect that, in time, the cryptographic
primitives used by Bitcoin will be partially, if not completely, broken.

In anticipation of such breakage, the Bitcoin community has created a wiki
page that contains draft contingency plans [46]. However, such plans are hand-
wavy and incomplete at best: no adequate transition mechanism has been built
into Bitcoin, and no plans for partial breakage (or weakening of a primitive) have
been considered. Primitives rarely break abruptly, but instead they break grad-
ually. With hash functions, for example, it is common that first a single collision
is found. This is then later generalized to multiple collisions, and only later do
arbitrary collisions become feasible to compute. In parallel, the complexity of
attacks decreases to less-than-brute-force, and computational power increases.
Finally, quantum computing will make some attacks easier, e.g., by Grover’s
pre-image attack [20], or Shor’s algorithm for discrete log computation [40].

Hence, even if such attacks are years away from being practical, it is crucial
to anticipate the impact of broken primitives, so that appropriate contingency
plans can be put in place. Our work contributes towards filling this gap.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 201–222, 2016.
DOI: 10.1007/978-3-319-45741-3 11

202 I. Giechaskiel et al.

Fig. 1. The blockchain data structure. This forms the basis of the public, append-only
ledger where all transactions are recorded.

Contributions. We provide the first systematic analysis of the impact of bro-
ken primitives on Bitcoin. By analyzing the failure of primitive properties, both
in isolation and in combination, we describe precisely the range of consequences
different breaks have, and pinpoint their exact cause. For example, the flexibil-
ity of the coinbase transaction is the reason why mining becomes trivial if an
adversary can easily compute pre-images of SHA256 hashes. In our analysis, we
introduce an oracle model for hash functions that unifies and extends several
existing types of breakage, allowing us to analyze more realistic attacks. Our
investigations raise concerns about the currently specified migration plans for
Bitcoin, being overly conservative in some respects, while inadequate in oth-
ers. To that end, we make concrete suggestions regarding future iterations of the
cryptocurrency in response to entirely broken and partially weakened primitives.

Overview. We provide background in Sect. 2 and propose our adversary model
in Sect. 3. We next analyze the effects of broken primitives: hashing in Sect. 4,
signature schemes in Sect. 5, and combinations of primitive breaks in Sect. 6. We
revisit the current Bitcoin implementation and its contingency plans in Sect. 7.
We discuss related work in Sect. 8 and conclude in Sect. 9.

2 Background

In this section, we give a description of Bitcoin, the popular peer-to-peer (P2P)
cryptocurrency introduced in 2008 by Satoshi Nakamoto [34]. Figure 1 shows a
high-level view of the main component of Bitcoin—the blockchain—which will
guide this section. The blockchain is a public log of all Bitcoin transactions that
have occurred, combined together in components called blocks. Transactions use
a scripting language that determines the owners of coins (Sect. 2.1), and it is up to
miners to ensure that only valid transactions occur. To ensure that nobody can
change or remove past transactions, miners have to solve a hard computational
puzzle, known as a Proof-of-Work (Sect. 2.2). The final component of Bitcoin is
its underlying P2P network which enables distributed communication (Sect. 2.3).
We do not consider components outside the main protocol, such as wallets.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 203

2.1 Transactions and Scripts

Bitcoin is an electronic cash system [34], so transactions to transfer coins between
users are central to its structure. A transaction is a list of inputs—unspent
transactions in the blockchain—and a list of outputs—addresses to which to
transfer the coins, whose unit is a “satoshi”, equal to 10−8 Bitcoins or BTCs.
To ensure that only the owner can spend his coins, each input and output is
accompanied by a script. For outputs, this “locking” script contains the condi-
tions under which the output can be redeemed (scriptPubKey), while for inputs,
an “unlocking” script contains a cryptographic signature (scriptSig) as proof
that these conditions have been met. These scripts are sequences of instructions
that get executed by special nodes called miners. To prevent Denial-of-Service
(DoS) attacks exploiting computationally intensive instructions, most nodes only
accept the five standard scripts:

1. Public-Key. The unlocking script must sign the transaction under this key.
2. Pay-to-Public-Key-Hash (P2PKH). The unlocking script must provide a pub-

lic key which hashes to the given value, and must then sign the transaction.
3. Multi-Signature. An M-of-N (N ≤ 15) multi-signature scheme provides N

public keys, and requires M signatures in the unlocking script.
4. Pay-to-Script Hash (P2SH). This script is the hash of a non-P2SH standard

transaction. The unlocking script provides the full script hashing to this value
and any necessary signatures. This script is typically used to shorten the
length of multi-signature transactions.

5. Data Output (OP RETURN). The output cannot be redeemed, but can be
used to store up to 40 arbitrary bytes, such as human-readable messages.

For a transaction to be valid, it must contain all the required fields, all
signatures must be correct, and the scripts must be standard. This is a task
that miners undertake for a small fee. Though some non-standard scripts can be
accepted by some miners for a higher fee, we do not cover these in our analysis.

2.2 Mining and Consensus

To ensure that no coin is used more than once, every transaction is made public
through a global, append-only ledger called the blockchain, consisting of blocks
combining transactions in a Merkle Tree [33]. New blocks become a part of the
blockchain through a process called mining: miners need to find a value (nonce)
such that the hash of a block’s header is less than a given target h(hdr||nonce) <
T . The idea behind this proof-of-work (PoW) scheme is that the probability of
creating the next block is proportional to the miner’s computational power, and
because miners receive transaction fees, they are incentivized to do the work,
which includes validating transactions and blocks. A summary is shown in Fig. 2,
with the full procedure at [45].

Due to the probabilistic nature of mining, the presence of adversaries, and
networking delays, miners may disagree on the current state of the blockchain.
This is known as a fork. To deal with this issue, there are hard-coded blocks

204 I. Giechaskiel et al.

Fig. 2. Procedure to verify a block’s cryptographic primitives.

included in the clients, known as checkpoints, starting from the first block,
called the genesis block. In addition, honest (non-adversarial) miners work on
the longest blockchain they become aware of, when other nodes announce new
blocks and transactions. This way, nodes eventually reach consensus [10,17].

These temporary forks enable double spending: an adversary can have differ-
ent transactions in different branches of the fork using the same inputs but dif-
ferent outputs. However, because the probability of “deep” forks where branches
differ in the top N blocks drops exponentially in N , receivers usually wait for
multiple confirmation blocks. If a miner or a group of collaborating miners (called
a pool) is in control of a high enough proportion of the total computational power
(51 % [29], or even less [16]), then they can possibly destabilize the system.

2.3 Network

The last key component is the Peer-to-Peer (P2P) network for distributed oper-
ation. Transactions and blocks are broadcast by nodes to their peers, and then
relayed further to flood the network if they meet the relay policies (to prevent
DoS attacks). Not every node is a miner or necessarily has access to the full
chain: “lightweight” clients that use Simple Payment Verification (SPV) only
download headers and the relevant transactions (with the corresponding Merkle
Trees).

Over time, the need for extensions or bugfixing motivates protocol changes.
Since not all nodes upgrade at the same time, this may introduce forks. If
the validation rules in the upgrade become stricter, then the protocol remains
backwards-compatible, resulting in a softfork. A hardfork, on the other hand, is
not backwards-compatible, and thus requires the entire network to upgrade, as
old software would reject new transactions and blocks as invalid.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 205

3 System and Adversary Model

In this section we describe our Bitcoin model and discuss the adversary’s goals
and powers in the presence of broken cryptographic primitives. We distinguish
between 4 entities: senders, receivers, miners, and networking nodes. Senders
and receivers, collectively referred to as users, wish to exchange Bitcoins via
transactions. They care about the amount of money under their control, but not
about the details of the underlying system.

Transactions are transmitted via the underlying P2P network. Miners have
their own (possibly different) copy of the blockchain, and have different hashing
capacities. For our model, we consider pools as single miners with a large hashing
capability. We distinguish between two adversary roles: user and miner. As a
user, the adversary aims to make money, either by successfully double spending
or by spending from another user’s wallet. As a miner, the adversary controls
a proportion α < 0.5 of the mining power. We assume the adversary controls a
proportion β of the nodes in the P2P network, so that he can attempt to split
the network temporarily in the presence of a suitable vulnerability, but cannot
be confident that such attempt will succeed.

We consider the economic aspects of Bitcoin out of scope, and we also do
not consider developers as a threat. Finally, we do not investigate adversarial
attacks of an individual miner against his own pool, thus allowing us to consider
pools as single entities of more mining power.

4 Broken Hashing Primitives

In this section we look at the cryptographic hash functions in Bitcoin, and ana-
lyze the effect of a break in one of the properties of first and second pre-image
and collision resistance. We generalize these into a single property called chosen-
format bounded pre-image resistance.

4.1 Hashing in Bitcoin

In the original Bitcoin paper [34], the concrete primitives used are not specified:
there were no “addresses” but just public keys, and the hash used for mining
and the Merkle tree was just referred to as a hash function. The current Bitcoin
implementation, going back to at least version 0.1.0 [35] uses two hash functions.

Main Hash. This hash function has an output of 256 bits and requires applying
SHA256 twice: HM (x) = SHA256 (SHA256 (x)). It is the hash used for mining
(Proof-of-Work): miners need to find a nonce such that the double SHA256 hash
of a block header is less than a “target” hash. It is also used to hash transactions
within a block into a Merkle Tree, a structure which summarizes the transactions
present within a block. Finally, it is the hash used for transactions signed with
a user’s private key (see [39] for details).

Address Hash. The second hash function is used as part of the Pay-to-Public-
Key-Hash (P2PKH) and the Pay-to-Script-Hash (P2SH) scripts. Its output is 160
bits, and it is concretely instantiated as HA(x) = RIPEMD160 (SHA256 (x)).

206 I. Giechaskiel et al.

4.2 Modeling Hash Breakage

In this section we analyze how hashes break in terms of their building blocks,
and introduce our oracle model for their breakage.

Identifying Hashing Building Blocks. A good cryptographic hash function
h(x) should offer three properties:

1. Pre-image resistance Given y it is hard to find x with h(x) = y.
2. Second pre-image resistance Given x1, it is hard to find x2 �= x1 with h(x1) =

h(x2).
3. Collision resistance It is hard to find distinct x1 �= x2 such that h(x1) =

h(x2).

where “hard” refers to computational infeasibility. This is because hash functions
have a fixed-length output, so collisions always exist.

We consider attacks against HA and HM abstractly, so that our arguments
can be extended for any future version that uses the same structure. Currently,
HA and HM are built using RIPEMD160 and SHA256. To relate the attacks we
discover back to the concrete primitives in Sect. 7, we show in Appendix A that
for collisions and second pre-images, only one of the two nested hashes needs to
be broken, while for pre-images both need to be broken.

Modeling Hash Breakage Variants. The three properties discussed above do
not accurately capture all types of breakages, which typically exploit the internal
structure of the hash function. Thus, an adversary might have more control over
the structure of the pre-image or the target value. For example, mining expects
the hash to be smaller than a given target, a property which cannot be expressed
using traditional pre-image oracles, as we show in Sect. 4.3.

For this reason, we introduce a more general oracle model to enable our
analysis. We call the oracle a chosen-format bounded pre-image oracle P , which
on input (a, b, yl, yh, i[, s]) returns an xi such that yl ≤ h(a||xi||b) ≤ yh or ⊥ if
none exists. Thus, the oracle returns a value Xi = a||xi||b such that its beginning
and end are caller-supplied, and its hash is within a given target range. Moreover,
the oracle is deterministic such that the same xi is returned each time and
xi �= xj for i �= j. If given the optional parameter s, the returned xi has size
s bits. That is to say, the oracle can be called multiple times to get different
pre-images, and the user is also able to specify the length of the pre-image in
bits.

In Appendix B, we motivate these parameters and show that our oracle
captures breakages in the three properties. We summarize our results in Table 1.

4.3 Main Hash

In this section we analyze the main hash HM , which is used for mining, in Merkle
Trees, and with signatures. We discuss all three use-cases separately.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 207

Table 1. Summary of the effects on Bitcoin for different types of hash breakage.

Breakage Address hash (HA) Main hash (HM)

Collision Repudiate payment Steal and destroy coins

Second pre-image Repudiate payment Double spend and steal coins

Pre-image Uncover address Complete failure of the blockchain
(2n calls)

Bounded pre-image All of the above Complete failure of the blockchain
(n calls)

4.3.1 Mining
We first investigate pre-image attacks against the block headers under three dif-
ferent attack scenarios, before turning to collision and second pre-image attacks.

Attack 1: Pre-Image against Fixed Merkle Root. We show that the prob-
ability that an adversary with access to a pre-image oracle can break mining is
negligible. Miners search for block headers whose n-bit hash is below a target,
which we assume starts with d zeros. This assumption only introduces up to
1 bit of extra work, as there is always a unique d with T ≤ 2d < 2T , for any
target T .

If the adversary controls b ≤ n bits of the input, there are 2b possible inputs
to the hash function. These need to map to one of the 2n−d values in the range
[0, 0d1n−d), and will be uniformly distributed across 2n values. This gives the
expected number of b-bit pre-images as E[# pre-images] = 2b · (2n−d)/(2n) =
2b−d. The adversary can only query the pre-image oracle for specific target
hashes. Because there are 2b−d b-bit pre-images, distributed across the 2n−d

values, the probability that a given hash in [0, 0d1n−d) has a b-bit pre-image is:
P [correct pre-image] = (2b−d)/(2n−d) = 2b−n. This probability does not depend
on d, as one might expect. This is because by increasing d to reduce the number of
valid hashes, the adversary also reduces the expected number of b-bit pre-images.
Assuming the adversary is allowed 2a queries to the oracle, the probability of
breaking mining becomes P [success] = 2a · 2b−n = 2a+b−n.

To calculate b, we explore all fields in the block header. The version number
(nVersion), as well as the hashes of the previous block header (hashPrevBlock),
and of the current Merkle root hash (hashMerkleRoot) are fixed. However,
the adversary has partial control over the remaining fields in the header. For
the timestamp field (nTime), the value can be within 7200 seconds of the cur-
rent median/average, giving the adversary approximately 13 bits of freedom.
Moreover, the adversary has complete control over the 32 bits of the nonce
(nNonce). The nBits field 0xAABBCCDD describes the target difficulty as
0xBBCCDD · 2560xAA−3, with the protocol only checking that the produced
number is at most the target value given by the consensus. At the time of writing,
the target value is 0x180928f0, granting the adversary 28 bits of freedom.

Together the fields give b = 73. With n = 256, and allowing 280 calls to the
oracle, the probability of success is only 280+73−256 = 2−103, which is negligible.

208 I. Giechaskiel et al.

Attack 2: Pre-Image against Variable Merkle Root. By varying the
Merkle root, an adversary can break mining, though by the discussion of Attack
1, this cannot be achieved by simply reordering or excluding transactions. Instead
the adversary must work backwards, by querying the oracle for a target Merkle
hash and repeatedly querying the oracle to reconstruct the entire Merkle tree.
This would normally fail, as the transactions generated would not be valid due
to incorrect signatures, but Bitcoin does not enforce a minimum number of
transactions in a block. Hence, miners can mine blocks with just the coinbase
transaction which generates new coins, and which has a variable-length input of
up to 100 bytes that is controlled by miners [39]. A malicious miner with access
to the pre-image oracle can then:

1. Pick an arbitrary target T and get a pre-image for HM (a||x||b) = T where
the desired x is the hashMerkleRoot field, and a, b are the remaining fields
in a block header. Because the root is 256 bits, there is a pre-image with
high-probability, but if not, repeat with some other random target T ′.

2. Pick a length l for the script, and fix all other fields for the coinbase trans-
action. Solve HM (a′||y||b′) = x where a′, b′ are the remaining fields for the
coinbase transaction. Because the number of free bytes is up to 100, there is
an l-bit pre-image y with high probability. The miner then generates a coin-
base transaction using a′, y, b′ and combines it into a block using a, b. This
block will have a hash of T as desired.

Attack 3: Bounded Pre-Image. An adversary with access to our chosen-
format, bounded pre-image oracle P can break mining with half as many calls
to the oracle compared to the above attack using the simple pre-image oracle
(Attack 2). Indeed, this is accomplished by calling P on (hdr,⊥, 0, yt, 0, s), where
yt is the target hash, hdr is the beginning of the block header, and s = 32 is the
size of the required nonce such that 0 ≤ HM (hdr||nonce) ≤ yt.

Collisions, Second Pre-Images. Collisions and second pre-images are only
useful for mining if the pre-images start with d zeros. Assuming the pre-images
contain valid transactions and signatures, a miner can fork the chain, but this
only occurs with negligible probability.

4.3.2 Merkle Trees
Altering existing blocks. A similar argument as for mining (Attack 1) shows
that an adversary cannot find a valid second pre-image of an entire block except
with negligible probability. Pre-images do not give the adversary new informa-
tion, as they already accompany the hash value. Collisions are also not useful,
as both values are attacker-controlled and cannot alter existing blocks.

Attacking new blocks. For new blocks and transactions, an adversary with
sufficient network control can use a collision or second pre-image to split the net-
work, reject both blocks or reverse transactions, thus enabling double-spending.
This can occur even with invalid pre-images: a similar situation occurred when
some miners generated invalid blocks which were not detected by clients [1].
Pre-images are again not useful, as they always accompany the hashed value.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 209

4.3.3 Main Hash Usage in Signatures
In Bitcoin, signatures are over messages hashed with HM . Therefore, a second
pre-image attack or a collision on HM can be used to destroy and possibly steal
coins: an adversary can ask for a signature on an innocuous transaction (e.g.,
pay 1 satoshi to address X), but transmit a malicious one instead (e.g., pay 100
BTC to address Y) since there are enough bytes that the adversary controls to
guarantee success with high probability.

Though external to the protocol, signatures of HM are also used by Bitcoin
developers to transmit alerts. A pre-image attack again does not give useful
information to the adversary, as the pre-image always accompanies the signature.
Collisions are also not useful, as the adversary cannot sign them. However, a
second pre-image allows the adversary to reuse an old signature on a new alert.

4.4 Address Hash

The address hash is used in two contexts. First, in Bitcoin addresses, using Pay-
to-Public-Key-Hash (P2PKH) scripts: an address is essentially y = HA(p) =
RIPEMD160 (SHA256 (p)) where p is the public key (together with a check-
sum [4]). Payments to addresses only use the hashed value y, but transactions
to addresses require the full public key p and the signature on the transaction.
The second use is in Pay-to-Script-Hash (P2SH) scripts. A P2SH is y = HA(s)
where s is a standard script, typically a multi-signature transaction. Payments
to a P2SH script do not reveal the pre-image, but transactions spending the
coins require it and the signatures of the corresponding parties. We discuss them
jointly, since the only difference between a P2PKH and a P2SH in this context
is the number of required signatures.

Pre-image. For previously spent outputs, or for reused addresses, HA is already
accompanied by its pre-image. A pre-image thus can only reveal the public key(s)
for unspent outputs. This has minimal privacy consequences since public keys
are not tied to real identities, but it could enable an offline attack on the key.
Assuming that the key was not chosen with bad randomness and there is no
weakness in the signature scheme, the probability of success is still negligible.

Second pre-image. A second pre-image gives the adversary access to a different
public key or script with the same hash. However, because the adversary does
not control the corresponding private key, he cannot use this to change existing
transactions or create new ones. This is because pre-images (whether a key or a
script) are only revealed and verified when spent in transactions.

Collision. Collisions are similar, though in this case both public keys are under
the adversary’s control, and again the adversary does not have access to the
private keys. In both scenarios, there is a question of non-repudiation external
to the protocol itself: by presenting a second pre-image of a key used to sign a
transaction, a user/adversary can claim that his coins were stolen.

210 I. Giechaskiel et al.

Table 2. Effects of a broken signature scheme.

Breakage Effect

Selective forgery Steal coins from public key

Integrity break Claim payment not received

Repudiation -

5 Broken Signature Primitives

In this section we describe the use of digital signatures in Bitcoin, and analyze
how a break in their unforgeability, integrity, or non-repudiation impacts Bitcoin.
We summarize our results in Table 2.

5.1 Digital Signatures in Bitcoin

Bitcoin’s digital signature scheme is the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) with the secp256k1 [43] parameters, and is used to sign the
main hash HM of transactions. These signatures can be over different parts
of the message based on the hashtype [39], leading to transaction malleability
attacks [13], as the same transaction can be encoded multiple ways without
invalidating the signature. The signature scheme is also used for alerts by devel-
opers to announce critical information. The signature is over the main hash HM

of the entire alert structure. The effects on alerts are not summarized in the
table as they are external to the protocol.

5.2 Modeling Signature Breakage Variants

The security of digital signature schemes is usually discussed in terms of three
properties, which we define as follows:

1. Unforgeability No-one can sign a message m that validates against a public
key p without access to the secret key s.

2. Integrity A valid signature {m}s does not validate against any m′ �= m.
3. Non-repudiation A valid signature {m}s does not validate against any public

key p′ �= p.

where there is an implicit “except with negligible probability”, due to hashing.
These properties are linked and a breakage in one usually implies a breakage

in the others. In addition, they are often discussed in a much more abstract way:
non-repudiation refers to the property that the signature proves to all parties
the origin of the signature, but in this case we introduce it in a way that is more
akin to Duplicate Signature Key Selection (DSKS) attacks [9].

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 211

5.3 Broken Signature Scheme Effects

We now analyze a break in each of these properties separately, starting with the
last two, as neither of them can lead to an attack on their own.

Integrity. In order for a break in the integrity of the signature scheme to be
useful in Bitcoin, a signature of HM (m) must also be valid for HM (m′). This
involves HM in a non-trivial way, so we discuss this further in Sect. 6, but note
that transaction malleability can cause the issuer of a transaction to think that
his payment was not confirmed [13].

Non-repudiation. For non-repudiation, we note that for transactions, even if
a signature verifies under a different key, the address hashes of the two public
keys must match. A break thus involves HA, so we discuss this case further in
Sect. 6. For the alert mechanism, however, if given a message m and a public
key p, one can find p′ (with its secret key s′) such that {m}s′ validates against
p, then an adversary can send fake alert messages. This can have an external
impact on Bitcoin, for instance by asking users to manually shut down clients.

Unforgeability. When it comes to unforgeability, we can distinguish between
various types of breaks [19]: Total break to recover the private key, universal
forgery to forge signatures for all messages, selective forgery to forge signature
on a message of the adversary’s choice, and existential forgery to produce a valid
signature that is not already known to the adversary.

Because the message to be signed must be the hash of a valid transaction,
an existential forgery is not sufficient since the probability that it corresponds
to a valid message is negligible. Selective forgery on the other hand can be used
to drain a victim’s wallets. From this perspective, selective forgery and a total
break have the same effect. However, as we discuss later, the type of breakage
influences how to upgrade to a new system. It is worth noting that an adversary

Table 3. The effects of a multi-breakage: combining broken hashes and signatures.

Signature property

Hash property Selective forgery Integrity break Repudiation

Address hash (HA)

Collision Repudiate transaction - Change existing paymenta

Second pre-image Steal all coins - Change existing payment

Pre-image Steal all coins - -

Bounded pre-image All of the above - Change existing payment

Main hash (HM)

Collision Steal coins Steal coinsa -

Second pre-image Steal coins Double spenda -

Pre-image - - -

Bounded pre-image Steal coins All of the above -
aAchieving this requires a slight modification of the definitions. See text for details.

212 I. Giechaskiel et al.

does not necessarily have access to a user’s public key, since addresses that have
not been reused are protected by the address hash HA.

6 Multi-Breakage

In this section we analyze how combinations of breakages in different primitives
can impact Bitcoin. Because HA and HM are not used together, we only consider
a break in the signature algorithm in combination with a break in one of the two
hashes. Since the extra power of our oracle is not needed, we discuss breakage in
terms of the three traditional properties. The results are summarized in Table 3.

6.1 Address Hash and Signature Scheme

Signature Forgery. Combining a selective forgery with a first or second pre-
image break of the address hash can be used to steal all coins that are unspent.
Generating two public keys p, p′ with HA(p) = HA(p′) (collision) whose signa-
tures the adversary can forge does not have a direct impact, since the adversary
controls both addresses. However, it appears as if two different users are attempt-
ing to use the same coin, thus raising a question of repudiation, which we discuss
in Sect. 7.

Signature Integrity. As the messages signed for alerts or transactions do not
involve HA, this combination does not increase the adversary’s power.

Signature Repudiation. A pre-image attack on HA is not useful as the public
key is already known. For a second pre-image, assume that given a message m
(the hash of a transaction) and a public key p, an oracle returns p′ such that
HA(p) = HA(p′) and the signature of m under p also validates against p′. Since
the same signature validates for both keys, an adversary can replace p by p′ in the
unlocking script. Though this does not give the adversary immediate monetary
gain, a transaction in the blockchain has been partially replaced.

For collisions, assume that given a message m, an oracle returns two public
keys p, p′ such that HA(p) = HA(p′) and the signature of m under p validates
under p′. If the adversary does not have access to the private keys, he cannot
sign the transaction. Otherwise, the effect is identical to the second pre-image
case, where the adversary can replace part of a transaction in the blockchain.

6.2 Main Hash and Signature Scheme

Signature Forgery. As explained in Sect. 4.3, none of the potential attacks
using the hash HM required a break in the signature scheme. The partial excep-
tions were mining under a pre-image break, alerts with collisions, and trans-
actions with second pre-image or collision breaks. We discuss each possibility
below.

For mining, a pre-image attack is useful when working backwards from a
fixed target to get a pre-image for the Merkle root, and turn it into a tree of

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 213

transactions. The problem identified in Sect. 4.3 was that there is only negligible
probability that the transactions refer to valid, unspent outputs, so a forgery
does not solve this issue. For alerts, collisions require forgery. Though the effect
of signing and transmitting two different alert messages with the same hash
is unclear, it could potentially be used to cause external effects to Bitcoin by
making the different messages ask the users to take different actions. Finally,
for transactions, collisions and second pre-images on their own can be used to
destroy coins, or steal coins. If the adversary can also forge signatures, he is
guaranteed to be able to steal coins no matter what address they went to, as
long as it is not protected by the address hash.

Signature Integrity. A collision or a second pre-image attack trivially breaks
the integrity of the scheme as messages are always hashed, and reduces to the
case discussed in Sect. 4.3, so we modify the definitions slightly to consider a
joint break in the two algorithms.

A collision integrity oracle given a public key p produces m,m′ such that
the signature of HM (m) is also valid for HM (m′). The adversary can ask for
a signature on an innocent transaction, but transmit the malicious one with
the still valid signature. Unlike in the regular collision case, the two hashes
HM (m) and HM (m′) are different. Hence, the adversary cannot just replace the
transaction in the block, but he can opt never to transmit the innocent one
instead.

A second pre-image integrity oracle given a public key p and a message m
produces m′ such that the signature of HM (m) is also valid for HM (m′). This
case also resembles the break on just HM , but, again, because the hashes are
not equal, the adversary cannot simply replace an existing transaction, unless it
has not yet been confirmed in a block. This can split the network and destroy
coins.

Signature Repudiation. The non-repudiation property of the signature
scheme necessarily involves a break of HA, as was explained in Sect. 5.3. This
combination therefore does not increase the adversary’s power.

7 Current Bitcoin Implementation

In this section, we revisit the current Bitcoin implementation, its choice of prim-
itives and contingency plans, using observations from the previous sections.

7.1 Current Cryptographic Primitives

In the current version of Bitcoin, HA(x) = RIPEMD160 (SHA256 (x))), and
HM (x) = SHA256 (SHA256 (x)). Because there are no critical breaks for HA, a
break in RIPEMD160 is not cause for concern. Moreover, because HM only uses
SHA256, an attack against SHA256 is equivalent to an attack against HM . We
can thus summarize the effect of concrete primitive breakage in Table 4.

214 I. Giechaskiel et al.

Table 4. Effects of concrete primitive breakage on the current version of Bitcoin.

Breakage Effect

SHA256

Collisions Steal and destroy coins

Second pre-image Double spend and steal coins

Pre-image Complete failure

Bounded pre-image All of the above

RIPEMD160

Any of the above Repudiate payments

ECDSA

Selective forgery Steal coins

Integrity break Claim payment not received

Repudiation -

7.2 Existing Contingency Plans

A break of the primitives has interested the community from the early days of
Bitcoin. Informal recommendations by Satoshi in forums [36,37] evolved into a
“wiki” page which describes contingency plans for “catastrophic failure[s]” [46].
Such a failure for primitives is defined in terms of an adversary that can defeat
the algorithm with “a few days of work” [46], and the focus is on notifying users
(since alerts may be compromised), and protecting the OP CHECKSIG operation
to prevent people from stealing coins.

Concretely, for a “severe, 0-day failure of SHA-256” [46], the plans propose
switching to a new hashing algorithm H ′, and hard-coding known public keys
with unspent outputs as well as the Merkle root of the blockchain under H ′.
For a broken signature scheme, if the attacker cannot recover the private key,
and there is a drop-in replacement using the same key-pair, the plan is to sim-
ply switch over to the new algorithm. Otherwise, the new version of Bitcoin
“should automatically send old transactions somewhere else using the new algo-
rithm” [46].

7.3 Potential Migration Pitfalls

The contingency plans suggest that “code for all of this should be prepared” [46],
but no such mechanism currently exists. Moreover, no plans are in place for a
break in RIPEMD160. Since sudden breaks are unlikely, neither is cause for
immediate concern, but should be included in future plans.

Broken SHA256. By our analysis, it is clear that new transactions should not
use a broken hash. However, existing historical transactions and blocks cannot
be altered, except in a majority mining attack. Thus, hard-coding public keys,
and rehashing the entire blockchain are more prudent than necessary. It should
be noted that a sudden migration necessitates a hardfork for Bitcoin.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 215

Broken ECDSA. For a broken ECDSA, a transition is indeed easy if there is a
drop-in replacement and the private key is safe. Otherwise, a gradual transition
scheme is necessary as users will need to manually switch over to a new key pair.

7.4 Recommendations

In this section we make recommendations to more properly anticipate primitive
breakage. Recognizing that there are financial considerations in addition to the
technical ones, we do not propose a full upgrade mechanism, but merely make
suggestions to the Bitcoin developers and community.

First of all, our analysis reinforces the idea that users should not reuse
addresses, not just for privacy reasons, but also because they protect against
some types of primitive breakage. For instance, if the signature scheme is bro-
ken, addresses are still protected by the hash.

The plans for a sudden breakage should address when to freeze the blockchain,
and whether to roll back transactions in the case of a sudden break. Moreover,
the centralized approach of hard-coding well-known keys is perhaps not entirely
in line with Bitcoin’s decentralized philosophy and can lead to lost coins. If keys
are to be hard-coded, there is a trade-off between complexity and risking making
coins unspendable: developers must decide whether the migration would occur
at once, or whether periodic alert-like messages would be used to distribute new
key pairs periodically. An alternative and perhaps better approach would be to
use Zero-Knowledge Proofs to tie the old address still protected by their hash
to the new public key.

Given that sudden breaks are unlikely, there is a need for a separate plan for
weakened primitives. Based on our analysis, we recommend the following:

– Introduce a minimum number of transactions per block to increase the dif-
ficulty of performing the pre-image attack against the mining header target
(Proof-of-Work or PoW) using the coinbase transaction.

– To migrate from old addresses, whether due to a weakened hash or signature
scheme, introduce new address types using stronger hashing and signature
schemes. This can be achieved with a softfork by making transactions appear
to old clients as “pay-to-anybody”, akin to how P2SH was introduced.

– Instead of using nested hashes for HA, HM , combine primitives in a way that
increases defense-in-depth (see related work in Sect. 8).

– Given that HM has multiple use-cases, consider whether each of its functions
should have a different instantiation, whether through distinct primitives, by
pre-pending different values, or by using an HMAC with different keys.

– Since alerts are external to the Bitcoin mechanism itself, send alerts using
a new signature and hash scheme to new clients, and duplicate the message
using old primitives for old clients.

– Consider a hardfork in response to a weakened HM , with re-designed headers
and transactions, and without any use of the old primitives.

A softfork is insufficient for properly upgrading a weakened hash function
HM = H1 to the stronger H2, because HM forms the core of the PoW scheme.

216 I. Giechaskiel et al.

Specifically, since any changes must be backwards compatible, the old validation
rules must still apply, so for every new block, H1(hdr) < T , where the target T
is still calculated by the same algorithm. New blocks would also need to satisfy
some additional constraint H2(hdr′) < T ′, where the target T ′ is calculated
independently and hdr′ is the block header, possibly excluding some fields. As a
result, new clients would have to solve two PoW computational puzzles. Though
every instance of H1 (transaction, Merkle root, etc.) could be accompanied by
an instance of H2, fundamentally blocks and transactions are identified by their
H1 hash, which an attacker could exploit. There are also questions of incentives,
and whether new iterations of Bitcoin would still use a PoW scheme, but this is
left as future work.

8 Related Work

Since no other systematic analysis exists regarding primitive breakage for Bit-
coin, we consider papers which have focused on Bitcoin security in general, and
also explore related work focusing on the security of the primitives themselves.

Bitcoin. Multiple papers have identified or formalized properties such as stabil-
ity and anonymity in Bitcoin and other cryptocurrencies [10,17,44]. Anonymity
and privacy issues have also been explored extensively [3,8,41,42].

Research on adversarial miners has shown that there are infinitely many Nash
equilibria for mining strategies [29], and some strategies allow miners control-
ling α < 50% of the power to gain disproportionate rewards [12,15,16]. Other
research has demonstrated that double spending attacks are practical against
Bitcoin fast payment scenarios [24,25], with some further focus on causing a
network split [18] or isolating victims from other peers in the P2P nework [21].

[5] focuses on the economics of Bitcoin, including the effect of a history revi-
sion, which is discussed in the contingency plans [46]. [13] investigated transac-
tion malleability attacks which were prevalent in 2014.

Cryptographic Primitives. For combining hashes, [23] shows simultaneous
collisions for multiple hash functions are not much harder to find than individ-
ual ones. [22] shows that even when the underlying compression functions behave
randomly but collisions are easy to generate, finding collisions in the concate-
nated hash h1(x)||h2(x) and the XOR hash h1(x) ⊕ h2(x) requires 2n/2 queries.
However, when the hash functions use the Merkle-Damg̊ard (MD) construc-
tion, there is a generic pre-image attack against the XOR hash with complexity
Õ

(
25n/6

)
[30].

Neither MD hashes [11] nor h (h (x)) [14] behave as random oracles. MD
hash functions also behave poorly against pre-image attacks, allowing one to
find second pre-images of length 260 for RIPEMD160 in 2106 � 2160 time [27]. If
an adversary can further find many collisions on an MD construction, he can also
find pre-images that start with a given prefix (Chosen Target Forced Prefix) [26].
This notion can be extended to Chosen Target Forced Midfix attacks and it was
proven that at least 22n/3/L1/3 queries to the compression function are needed
where L is the maximum length of the pre-image [2].

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 217

Attacks against RIPEMD160 pre-images [38] and collisions [32] as well as
SHA256 collisions [31] and pre-images [28] only work for a reduced number of
rounds, and typically only incrementally improve upon brute-force solutions.
Certain ECDSA parameters can lead to Duplicate Signature Key Selection,
where an adversary can create a different key P ′ that validates against a correct
signature under a key P [9]. Implementations of ECDSA can also be vulnerable
to side-channel attacks [47], an attack which has also been practically demon-
strated against Bitcoin [6]. Finally, [7] showed how hash collisions break the
security of protocols like TLS, IPSec, and SSH.

9 Conclusions

We presented the first systematic analysis of the effect of broken primitives
on Bitcoin. Our analysis reveals that some breakages cause serious problems,
whereas others are inconsequential. The main vectors of attack involve collisions
on the double SHA256 hash or attacking the signature scheme, which directly
enable coin stealing. In contrast, a break of the hash used in addresses has
minimal impact, since they do not meaningfully protect the privacy of a user.
Our analysis has also uncovered more subtle attacks. For example, the existence
of another public key with the same hash as an address in the blockchain enables
parties to claim that they did not make a payment. Such attacks show that
an attack on a cryptographic primitive can have social rather than technical
implications. We leave the economic impact of such attacks and the extension
of our results to other altcoins or blockchain-based schemes as future work.
Because our analysis abstracts away from the concrete primitives, our general
results extend to future versions that use a similar structure.

We uncovered a worrying lack of defense-in-depth in Bitcoin. In most cases, the
failure of a single property in one cryptographic primitive is as bad as multiple fail-
ures in several primitives at once. For future versions of Bitcoin, we recommend
including various redundancies such as properly combined hash functions, and
requiring a minimum number of transactions per block. Bitcoin’s migration plans
are currently under-specified, and offer at best an incomplete solution if primi-
tives get broken. We offer some initial guidelines for making the cryptocurrency
more robust, both for a sudden break, but also in response to weakened primi-
tives. However, future discussions should directly involve the Bitcoin developers
and community to propose plans that would be in line with their expectations.

Appendix

A Breaking Nested Functions

In this section, we investigate the three main hashing properties, for a function
h = h1 ◦ h2 which is a composition of two hash functions. We show that for
collisions and second pre-images, only one of the two nested hashes needs to be
broken, while for pre-images both need to be broken.

218 I. Giechaskiel et al.

Pre-image resistance. h is broken only when both h1 and h2 are broken. In
one direction, assume that we have a pre-image algorithm for h, that returns x
on input y. Then, to find a pre-image for y under h2, run the algorithm on h1(y)
for output x. If h2(x) = y, then x is a pre-image for y under h2. Else h2(x) �= y
and (h2(x), y) forms a collision (or second pre-image) for h1. Conversely, if there
is an algorithm for both h1 and h2 pre-images, then to get a pre-image of y
under h, one finds a pre-image x1 of y under h1, and then a pre-image x2 of x1

under h2. x2 is then a pre-image of y under h.

Second pre-image resistance. h is only as strong as the inner function h2.
In one direction, assume that given x1 one can find x2 �= x1 such that h2(x1) =
h2(x2). Then clearly h(x1) = h(x2).1 In the other direction, assuming that given
x1, one can find x2 �= x1 such that h(x1) = h(x2), then either h2(x1) = h2(x2)
for a second pre-image attack on h2 or h2(x1) �= h2(x2) for a collision (and
second pre-image of h2(x1)) on h1.

Collision resistance. h is again only as strong as h2. A collision (x1, x2) for
h2 is clearly a collision for h, and a collision (x1, x2) for h is either a collision for
h2 or (h2(x1), h2(x2)) is a collision for h1.

B Generalizing Hash Oracles

In this section, we first motivate the parameters in our oracle model and then
show that our oracle generalizes traditional primitive breakage. We remind the
reader that our oracle P on input (a, b, yl, yh, i[, s]) returns an xi [of size s] such
that yl ≤ h(a||xi||b) ≤ yh or ⊥ if none exists, with xi �= xj when i �= j.

First of all, specifying a, b, and the length of the input forces pre-images and
collisions to follow the format of transactions and block headers. Using bounds on
the target range is necessary to describe some attacks against the proof-of-work
(PoW) scheme. In addition, the oracle needs an index parameter to ensure that
the adversary is polynomially bounded: when there is no length restriction on the
pre-image, there are potentially infinitely many pre-images, and exponentially
many for a fixed-length input. Finally, xi �= xj for i �= j so that the adversary
can access as many distinct pre-images as desired. These returned values are
distinct, without gaps, i.e., if the oracle returns ⊥ on i it should also return ⊥
on i + 1, so that the adversary can stop querying the oracle after receiving a
⊥. We now show how an adversary with access to P can break the three hash
properties.

Pre-image. Getting a pre-image of y amounts to calling P on (⊥,⊥, y, y, 0), so
the adversary can break pre-image resistance with a single call to the oracle.

Second pre-image. Getting a second pre-image given x is almost identical, but
potentially requires two oracle calls: call P on (⊥,⊥, h(x), h(x), 0), and if that
returns x, call P on (⊥,⊥, h(x), h(x), 1).
1 The same can be said if h1 is vulnerable to second pre-image attacks and h2 is

vulnerable to first pre-image attacks.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 219

Collision. Getting a collision is not as straightforward. Let h : {0, 1}∗ → {0, 1}n
be the hash function in question. First of all, it is not always the case that every
y ∈ {0, 1}n has a pre-image (let alone two), even though probabilistically this
holds true for a well-designed hash function. For instance, consider h′, where
h′(x) = 1 when h(x) = 0, and h′(x) = h(x) otherwise. Then, h′ is strong if h is
strong, but does not hit 0. However, by exploiting the pigeonhole principle and
binary search, one can make lg(n) calls to the oracle to generate a collision.

The idea is to call P on (⊥,⊥, yl, yh, yh − yl + 2). If the oracle returns any-
thing but ⊥, there are more pre-images than possible hashes within the range
[yl, yh]. Then, one can perform a binary search with initial yl = 0n, yh = 1n to
determine a value y that has at least 2 pre-images.

Chosen-prefix collision. To get a chosen-prefix collision, i.e. given p find two
values x �= x′ such that h(p||x) = h(p||x′), one performs the same procedure as
for getting a normal collision, but with a = p.

References

1. Alert, B.: Some miners generating invalid blocks, 4 July 2015. https://bitcoin.org/
en/alert/2015-07-04-spv-mining. Accessed: 11 Feb 2016

2. Andreeva, E., Mennink, B.: Provable chosen-target-forced-midfix preimage resis-
tance. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 37–54.
Springer, Heidelberg (2012)

3. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013)

4. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies, 1st
edn. O’Reilly Media Inc. (2014)

5. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make Bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

6. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

7. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication
in TLS, IKE, and SSH. In: Annual Network and Distributed System Security Sym-
posium (NDSS) (2016)

8. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. In: ACM Conference on Computer and Communications Secu-
rity (CCS) (2014)

9. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

10. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J., Felten, E.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (SP) (2015)

11. Nguyên, P.Q., Stern, J., Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-
Damg̊ard revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining

220 I. Giechaskiel et al.

12. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in Bitcoin digital currency. ArXiv e-prints 1402.1718 (2014). http://arxiv.
org/abs/1402.1718

13. Decker, C., Wattenhofer, R.: Bitcoin transaction Malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 313–
326. Springer, Heidelberg (2014)

14. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(in)differentiability results for H 2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012)

15. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy (SP)
(2015)

16. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 431–449.
Springer, Heidelberg (2014)

17. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015)

18. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the deliv-
ery of blocks and transactions in Bitcoin. In: ACM Conference on Computer and
Communications Security (CCS) (2015)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. (SICOMP) 17(2), 281–308
(1988)

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Annual
ACM Symposium on Theory of Computing (STOC) (1996)

21. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: USENIX Security Symposium (USENIX Security) (2015)

22. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when
all the hash functions are weak. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008)

23. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

24. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in Bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. (TISSEC) 18(1), 2 (2015)

25. Karame, G.O., Androulaki, E., Čapkun, S.: Double-spending fast payments in
Bitcoin. In: ACM Conference on Computer and Communications Security (CCS)
(2012)

26. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

27. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

28. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

http://arxiv.org/abs/1402.1718
http://arxiv.org/abs/1402.1718

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 221

29. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Workshop on the Economics of Information
Security (WEIS) (2013)

30. Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 345–367. Springer,
Heidelberg (2015)

31. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

32. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 484–503. Springer, Heidelberg (2013)

33. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

35. Nakamoto, S.: Bitcoin source code v0.1.0: Util.h. (2009). https://github.com/
trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/
util.h. Accessed: 11 Feb 2016

36. Nakamoto, S.: Dealing with SHA-256 collisions (msg #6), 14 June 2010. https://
bitcointalk.org/index.php?topic=191.msg1585#msg1585. Accessed: 11 Feb 2016

37. Nakamoto, S.: Hash() function not secure (msg #28), 16 July 2010. https://
bitcointalk.org/index.php?topic=360.msg3520#msg3520. Accessed: 11 Feb 2016

38. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage attacks on step-reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 169–186. Springer, Heidelberg (2011)

39. Okupski, K.: Bitcoin developer reference working paper (2015). http://enetium.
com/resources/Bitcoin.pdf. Accessed: 11 Feb 2016

40. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003)

41. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In:
Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

42. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

43. Standards for Efficient Cryptography: Sec 2: Recommended elliptic curve domain
parameters version 2.0 (2010). http://www.secg.org/sec2-v2.pdf

44. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015).
https://eprint.iacr.org/2015/464

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
http://enetium.com/resources/Bitcoin.pdf
http://enetium.com/resources/Bitcoin.pdf
http://www.secg.org/sec2-v2.pdf
https://eprint.iacr.org/2015/464

222 I. Giechaskiel et al.

45. Wiki, B.: Protocol rules, 11 March 2014. https://en.bitcoin.it/wiki/Protocol rules.
Accessed: 11 Feb 2016

46. Wiki, B.: Contingency plans, 15 May 2015. https://en.bitcoin.it/wiki/Contin
gency plans. Accessed: 11 Feb 2016

47. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. Cryptology ePrint Archive, Report
2014/140 (2014). https://eprint.iacr.org/2014/140

https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans
https://eprint.iacr.org/2014/140

	On Bitcoin Security in the Presence of Broken Cryptographic Primitives
	1 Introduction
	2 Background
	2.1 Transactions and Scripts
	2.2 Mining and Consensus
	2.3 Network

	3 System and Adversary Model
	4 Broken Hashing Primitives
	4.1 Hashing in Bitcoin
	4.2 Modeling Hash Breakage
	4.3 Main Hash
	4.4 Address Hash

	5 Broken Signature Primitives
	5.1 Digital Signatures in Bitcoin
	5.2 Modeling Signature Breakage Variants
	5.3 Broken Signature Scheme Effects

	6 Multi-Breakage
	6.1 Address Hash and Signature Scheme
	6.2 Main Hash and Signature Scheme

	7 Current Bitcoin Implementation
	7.1 Current Cryptographic Primitives
	7.2 Existing Contingency Plans
	7.3 Potential Migration Pitfalls
	7.4 Recommendations

	8 Related Work
	9 Conclusions
	A Breaking Nested Functions
	B Generalizing Hash Oracles
	References

