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Abstract. This paper presents a novel methodology for selecting
the most representative features for identifying the presence of the
Parkinson’s Disease (PD). The proposed methodology is based on inter-
active visual analytic based on multi-objective optimisation. The imple-
mented tool processes and visualises the information extracted via per-
forming a typical line-tracking test using a tablet device. Such out-
put information includes several modalities, such as position, velocity,
dynamics, etc. Preliminary results depict that the implemented visual
analytics technique has a very high potential in discriminating the PD
patients from healthy individuals and thus, it can be used for the iden-
tification of the best feature type which is representative of the disease
presence.

Keywords: Parkinson’s disease · Visual analytics · Multi-objective
optimisation · Feature discrimination power

1 Introduction

Parkinson’s disease (PD) is a degenerative disorder of the central nervous sys-
tem that is mainly affecting the motor system. Its most obvious symptoms are
movement-related, including shaking, rigidity, slowness of movement and diffi-
culty with walking and gait [8]. Tracking in a correct way the progress of the
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disease is crucial for the quality of patient’s life, thus the need of an objective
and consistent way of measuring the patient motor dexterity is essential.

There are several established scales for measuring the progress of the disease.
The Unified Parkinson’s Disease Rating Scale [16] is the most commonly used
metric for clinical study and is used as a severity rating method. An older scaling
method known as the Hoehn and Yahr scale [8], and a similar scale known as
the Modified Hoehn and Yahr scale, have also been commonly used. The later
defines five basic stages of progression. These scale measurement are derived
from qualitative questionnaires asked by doctors, thus they enclose the danger of
subjectivity in their results: different clinical examinations may produce different
answers. Additionally, the repetition period of such solutions are in the class of
several months.

Electronic devices from various domains have been also used for measuring
the PD progress. The current market offers a variety of wristbands capable of
measuring the tremor [6]. However, these are used for complimentary assessment
to the typical clinical examination. Moreover, their effectiveness is high when the
tremor is present to the patient arm, but their efficiency is not guaranteed in early
stages of the disease. An increasing set of smartphone and tablet PD applications
has arisen in the market. Despite most of them are used for scheduling, there is
a small subset which makes use of tests for tracking the progress of the disease.
In most of these tests, the user has to use his/her hand to track a line or a shape
and the software extract metrics representative of the current state. Factors
such as velocity, target deviation, reaction time, minimum jerk, are recorded and
compared to the ones measured from previous states. The results are displayed
in curves, allowing the user to track the PD progress.

However, even providing the tests, there is still the matter of how the program
is going to correlate the captured information with the disease presence on the
individual. Comparing the velocity or deviation profiles per day measurements
is not enough as it could not be representative of the specific patient symp-
toms [18]. For such reasons, proper visualisation capable of identifying which of
the extracted features encapsulate and discriminate better the examined person
status is needed. In this paper we apply a novel multi-objective visualisation
for identifying which of the measured quantities are best for discriminating the
presence of the Parkinson’s Disease.

1.1 Relevant Work

Information visualization concerns the use of interactive computer graphics to
get insight into large amounts of abstract data, such as multivariate, hierarchical
and network data [23]. Conventional visualization techniques, such as bar-charts,
pie-charts, and line-charts, are useful for the depiction of information of a higher
level, but fail to depict large and complex data sets in detail. Therefore, and
in order to enable the easy extraction of patterns, trends and outliers, a vari-
ety of novel visualization methods are continuously being developed for specific
applications, e.g. [1,4,22].
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Their ability to provide insight into large amounts of complex data make
visual analytics techniques especially useful for healthcare and biomedical appli-
cations. This has resulted in numerous existing methods and tools which utilize
various visualization types and user interaction levels [10,21]. Recent works have
employed visual properties such as color and position [15,24] or animation [17], in
order to visually encode patient information, group patients with similar charac-
teristics together and discriminate between different events. Visual queries have
also been utilized in combination with pattern mining and interactive visualiza-
tion, in order to explore large datasets more efficiently.

The continuous development in the field of information visualization has led
to a variety of new methods and techniques that enable people to understand
the phenomena behind large amounts of data, and which increasingly find their
way to Health and real-life applications. However, and due to their specialized
nature, many of these methods have limited use outside their initially targeted
application. For the majority of methods, data are considered to be homogenous
and in most cases just one or two types of data are supported. In addition, data
are assumed to come from a single source and to be clean and exact, whereas
noisy, polluted, uncertain, and missing data are rarely dealt with. Scalability
is another common issue, since it is typically limited to thousands of elements.
Therefore, if one of the above assumptions is violated, standard methods from
information visualization fall short, and a need for new representations arises.

Since several attributes are usually available for each patient, such as age,
speed of task completion, acceleration, etc., they can be combined to provide
better insights in the data. The combination of multiple sources of information
for classification, clustering, visualization, etc. has generally been handled by
multimodal fusion methods [2]. A first category of fusion methods simultaneously
combine characteristics of all modalities, e.g. through weighted sums. In [20], a
graph is constructed for each of multiple attributes and the graph Laplacians
are then fused. Graph-based techniques are also used in [13], which employs
Multiple Kernel Learning [9] for fusion. A second category are methods that
utilize information of one modality to assist learning in another modality in an
iterative manner, such as [3,14].

A different principle is followed by works such as [11,12], where visualiza-
tion of each modality is formulated as an optimisation problem and then multi-
objective optimisation techniques [5,7] are utilized to simultaneously optimize
all objectives and resulting in a set of Pareto-optimal solutions, instead of one.
Although such methods demonstrate the effectiveness of multimodal fusion, for
a wide range of applications, they have not been adopted for visualization of
healthcare data, where the combination of multiple modalities may reveal impor-
tant patient behavioural characteristics that can assist decision making. In this
respect, this paper presents an application of the techniques presented in [11,12],
in the task of clustering patients according to multiple attributes.
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2 Applied Methodology

A set of features is first extracted by performing a simple test on a tablet device.
During the test a vertical line appears at random position, while the subject has
to track it as fast as possible with a stylus pen. After the test, a set of features
is extracted and passed into the visual analytics engine.

The extracted features are the following: (a) deviation in x axis from tar-
get, i.e. position in pixels, (b) velocity, (c) acceleration, and (d) simulated mus-
cle activation, extracted using methodology described in [19]. These features
are normalised in the time component. This is achieved by splitting the whole
recording into events which start when the target line changes its position. Then
a representative signal of each feature type is extracted by averaging the event
signals. The resulted signals are fed to the Multi-objective visual analytics engine
in order to analyse the discriminating power of each of the feature types.

2.1 Multi-objective Visualisation

The feature extraction procedure results in feature vectors describing various
characteristics of a patient, such as age, speed of task completion, acceleration.
Each of these types of types of features determines a specific type of similarities
and dissimilarities among the users. An adequate visualisation of the patient
data should be able to visualize these similarities. A common and straightfor-
ward visualisation scheme is to consider each patient as a point on the screen
and using the relative position of the patients to denote similarity, by placing
similar patients close to each other and dissimilar ones away from each other.
However, the presence of multiple notions of similarity, due to the multiple types
of features extracted from a single patient, renders the problem of visualizing
similarities non-trivial, since many types of similarity must be visualized simul-
taneously, or some kind of compromise among the various feature types should
be considered. In this respect, the multi-objective visualisation method of [11] is
used hereby, which exactly considers multiple notions of similarity. The method
is briefly presented in this section. The method proceeds by first considering
each feature type separately, formulating visualisation as a single-objective opti-
misation problem, and then combining multiple objectives in a multi-objective
optimisation setting.

Visualisation of a Single Feature Type: Let O = {O1, O2, . . . , ON} denote
a set of N patients. Each patient Oi is itself a set of M feature vectors:

Oi = {oi,1,oi,2, . . . ,oi,M}, oi,m ∈ R
Dm .

Each feature vector oi,m is a vector of dimension Dm, which is specific for the
m-th feature type.

Considering just a single feature type m, a distance function

dm : RDm × R
Dm → R
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is used to calculate the distance between the feature vectors of two patients.
Hereby, the L1 distance measure is used:

dm(oi,m,oj,m) =
Dm∑

k=1

|oi,m,k − oj,m,k| ,

where oi,m,k is the k-th component of vector oi,m. The distance measure is
used to construct a complete graph Gm(O, Em), Em ⊆ O × O, of the patients,
where each patient Oi ∈ O is represented by a vertex and there is an edge
{Oi, Oj} ∈ Em between every pair of patients, weighted by the corresponding
distance between them. As a further step, the minimum spanning tree (MST),
Tm(O, E′

m), E′
m ⊂ Em, of the graph is computed, in order to reduce the number

of edges, while keeping the similarity information.
The MST is then used to guide the positioning of the patient vertices on the

2-dimensional screen. Let pi = (xi, yi)T , xi, yi ∈ R, be the coordinates of patient
i on the screen. Let also P = (p1,p2, . . . ,pN )T be the matrix collecting all the
2D points as its rows. Then, the placement P of the N points is calculated by
minimizing the following objective function:

Jm(P) =
N∑

i=1

N∑

j=1,j �=i

q2

||pi − pj || +
∑

i,j: (Oi,Oj)∈E′
m

k||pi − pj ||2.

Intuitively, this function evaluates the potential energy of the tree, if each
vertex is considered as a charged particle and the edges as springs attached to
pairs of them. The first term of the sum is the energy of the charges repelling one
another, following Coulomb’s law. The second term is the energy of the attracting
springs, according to Hooke’s law. If such a system of charges and springs is let
to act freely, the particles will tend to repel one another, while the springs will
keep together particles connected by edges, thus unfolding the tree structure.
The lowest energy position is one where the tree has been completely unfolded

Fig. 1. Example of the potential objective minimization. (a) The points and their
similarities form a complete graph. The graph’s vertices are placed at random positions.
(b) The minimum spanning tree of the graph is calculated. (c) By minimizing the
potential objective, the vertices are moved so that the tree’s structure is apparent.
(Color figure online)
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and its structure is easily visible. In this position, the patients with similar
characteristics will be put close to each other, while dissimilar patients will be
put away from each other. An example of the overall procedure is illustrated
in Fig. 1, where the color of each point is used to visually denote the example
characteristics of each point. After the minimization of the potential objective,
in Fig. 1(c), the structure of the tree is apparent and similar colors are placed
close to each other.

Handling Multiple Feature Types: The above procedure holds for a specific
feature type m. If a different feature type is used, different distances will be
calculated among the points, resulting in a different tree, a different objective
function and a different ultimate positioning. The multiple feature types result
in a set of objective functions J (P), instead of a single one:

J (P) = {J1(P), J2(P)), . . . , JM (P)} ,

so that the goal is to minimize them all simultaneously:

Popt = arg min
P

J (P).

The multiple objective Jm are conflicting, since the optimal solution for one
of them is not optimal for another, thus a single solution cannot in general be
reached. Such problems of conflicting objectives are handled by multi-objective
optimisation techniques, which result in a set of optimal trade-offs among the
objectives, namely the Pareto set. Multi-objective optimisation is based on the
notion of Pareto dominance among the feasible solutions. A solution dominates
another one if it has a smaller value for at least one objective and there is no
objective for which it has a larger value. Between two solution, the dominant
one is preferred, since it is impartially better than the other one, with respect
to all objective functions, without sacrificing any of them. Formally, a solution
P1 dominates another solution P2, if

Jm(P1) ≤ Jm(P2), ∀m ∈ {1, . . . ,M}, and

∃k ∈ {1, . . . ,M} : Jk(P1) < Jk(P2).

If two solutions mutually do not dominate each other, they are said to be
incomparable, since there can be no impartial judgment as to which is better
than the other. The goal of multi-objective optimisation is to compute the set
of solutions that dominate all other feasible solutions but are mutually incom-
parable. This set is called the Pareto set and consists a set of optimal trade-offs
among the multiple objectives. In Fig. 2, the feasible and optimal solutions for
an example problem of two objectives are depicted.

The gray-shaded area represents the set of all feasible solutions, while the
bold border in the lower left of the feasible area represents the solutions of the
Pareto set. In such diagrams in the space of the objective function values, the
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Fig. 2. Example Pareto diagram illustrating the Pareto front for a problem of two
objectives, J1 and J2. The gray area represents the set of all feasible solutions, while
the bold border is the Pareto front. Solution P2 dominates P1, as well as all solutions
within the hatched area. Solutions P2 and P3 are incomparable.

solutions corresponding to the Pareto set are called the Pareto front. Three exam-
ple solutions are shown. Solution P2 dominates P1 since both objectives have
smaller values at P2. Similarly, P2 dominates all solutions within the hatched
area. On the other hand, solutions P2 and P3 are incomparable, since none dom-
inates the other. All the solutions of the Pareto front are mutually incomparable,
since decreasing one objective leads to increasing the other.

Computing the Pareto front, which is the goal of multi-objective optimisa-
tion, means presenting the decision maker with a minimal set of optimal trade-
offs, from which to select. In this paper, this set of solutions corresponds to
different trade offs among the various medical and simulated features describing
the patients. By selecting among the trade-offs, through an application interface,
the doctor or any decision maker can put more focus on various characteristics
and thus view different kinds of relationships and groupings among the data.

3 Preliminary Results

A total of 42 PD patients of various ages (mean: 63, stdev: 8.1) and 10
healthy/control subjects of matching ages (mean: 64.9, stdev: 7.75) were mea-
sured. All PD subjects were tested with an on-medication treatment state. The
subjects performed the test with both hands and the extracted features were
averaged, thus resulting into one feature-set per subject. The proposed algo-
rithm computes the visualisation output of the 52 instances almost instantly
(t < 0.05 s). The interactive environment allows its user to re-adjust the objec-
tive weights and updates the dots position without any lag. In terms of scala-
bility the algorithm performs at O(N logN), where N is the number of nodes.
Experiments in the application domain of mobile network security have shown
that a dataset of 4800 points needs less than 3 s for the output solution [12].
The aforementioned experiments were performed using a 8-threaded Intel Core
i7 processor running at 4 GHz.
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Fig. 3. Multi-objective result of all the feature type combined. The gathering of the
green dots representing the control subjects in the lower part is not concentrated.
(Color figure online)

Fig. 4. Testing the impact of each feature: increasing the weight of the “Muscle Acti-
vation” feature results into a robust patient-healthy separation. (Color figure online)
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The patient space of the combining all the features, using equal weighting
among them, is depicted in Fig. 3. Green coloured dots represent a control sub-
ject, while yellow (mild condition), orange (medium condition) or red (severe
condition) dots represent the PD patients. As it is shown, a combination of
all the features results into a sparse cluster of the green dots. However, it fails
to cluster three of the control subjects. This fact can be translated as that the
selected combination of the feature types does not provide enough discriminating
power.

By adjusting the weights among the feature types, the most crucial one for
separating the healthy from the patient cohort may be found. In Fig. 4, the
feature representing the extracted Muscle Activations separates the two groups
in much more robust way, thus, defining it as the most significant for this type of
application. Other features have been tested, but none has provided such good
discrepancy.

4 Conclusion

A visual analytics methodology based on multi-objective optimisation was
applied to a typical PD line tracking test output and managed to identify suc-
cessfully the most crucial feature able to separate the healthy from the patient
groups. In the future work, there are plans of investigating the potential of the
methodology with other neurodegenerative genetic disorders, such as the Hunt-
ington’s Disease.
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