Skip to main content

The Improvement of Spatial Ability and its Relation to Spatial Training

  • Chapter
  • First Online:

Abstract

This chapter discusses the psychometric properties of how spatial ability is assessed and the ways in which it is critically related to spatial training. Although assessment and training of spatial ability are often discussed separately, the improved score of spatial measures is often used as an indication for spatial training effects and the validity of spatial ability measures therefore is critical for interpreting results of spatial training. In this chapter, an overview of the current techniques for measuring spatial ability will be presented first; the reliability and validity of these tests will be discussed from a psychometric perspective, along with the findings from experimental designs and neural studies. Next, the transferability between spatial ability measures will be discussed. Finally, the relations between the cognitive structure of spatial ability and the development of spatial training strategies will be examined and proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerman, T. A., Gierl, M. J., & Walker, C. M. (2003). Using multidimensional item response theory to evaluate educational and psychological tests. Educational Measurement: Issues and Practice, 22(3), 37–51.

    Article  Google Scholar 

  • Ando, T., Momose, K., Tanaka, K., & Saito, K. (2009, January). Effects of task difficulty and training of visuospatial working memory task on brain activity. In 13th international conference on Biomedical Engineering (pp. 657–660). Berlin: Springer.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.

    Article  Google Scholar 

  • Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5–6), 327–344.

    Article  Google Scholar 

  • Beilin, H., Kagan, J., & Rabinowitz, R. (1966). Effects of verbal and perceptual training on water level representation. Child Development, 37, 317–329.

    Google Scholar 

  • Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327–336.

    Google Scholar 

  • Birenbaum, M., & Tatsuoka, K. K. (1993). Applying an IRT-based cognitive diagnostic model to diagnose students’ knowledge states in multiplication and division with exponents. Applied Measurement in Education, 6(4), 255–268.

    Article  Google Scholar 

  • Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331–343.

    Article  Google Scholar 

  • Bryden, M. P., George, J., & Inch, R. (1990). Sex differences and the role of figural complexity in determining the rate of mental rotation. Perceptual and Motor Skills, 70(2), 467–477.

    Article  Google Scholar 

  • Byrne, B. M., Shavelson, R. J., & MutheÅLn, B. O. (1989). Testing for equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.

    Article  Google Scholar 

  • Campbell, J. I. D., Fuchs-Lacelle, S., & Phenix, T. L. (2006). Identical elements model of arithmetic memory: Extension to addition and subtraction. Memory & Cognition, 34, 633–647.

    Article  Google Scholar 

  • Chase, W. G., & Ericsson, K. A. (1981). Skilled memory. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 141–189). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.

    Article  Google Scholar 

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain (Doctoral dissertation, McGill University, Montreal, Canada). Dissertation Abstracts International, 34 (02), 819B. (University Microfilms No. AA105–77717).

    Google Scholar 

  • Darling, S., Della Sala, S., Logie, R. H., & Cantagallo, A. (2006). Neuropsychological evidence for separating components of visuo–spatial working memory. Journal of Neurology, 253(2), 176–180.

    Article  Google Scholar 

  • De Lisi, R., & Wolford, J. L. (2002). Improving children’s mental rotation accuracy with computer game playing. The Journal of Genetic Psychology, 163(3), 272–282.

    Article  Google Scholar 

  • Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21.

    Article  Google Scholar 

  • Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: A tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10), 1189–1199.

    Article  Google Scholar 

  • Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in children’s spatial reasoning. Developmental Psychology, 42(6), 1259.

    Article  Google Scholar 

  • Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56(3), 495–515.

    Article  Google Scholar 

  • Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah: Erlbaum.

    Google Scholar 

  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272.

    Article  Google Scholar 

  • Farmer, G., Verdine, B. N., Lucca, K., Davies, T., Dempsey, R., Newcombe, N., Hirsh-Pasek, K., & Golinkoff, R. M. (2013, April). Putting the pieces together: Spatial skills at age 3 predict to spatial and math performance at age 5. Poster to be presented at the 2013 meeting of The Society for Research in Child Development Conference, Seattle.

    Google Scholar 

  • Ferguson, G. A. (1971). Statistical analysis in psychology and education. New York: McGraw-Hill.

    Google Scholar 

  • Fisk, A. D., & Eboch, M. (1989). An automatic/controlled processing theory application to training component map reading skills. Applied Ergonomics, 20(1), 2–8.

    Google Scholar 

  • Formann, A. K. (2003). Modeling data from water-level tasks: A test theoretical analysis. Perceptual and Motor Skills, 96(3c), 1153–1172.

    Article  Google Scholar 

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172–179.

    Article  Google Scholar 

  • Frye, D., Zelazo, P., & Palfai, T. (1995). Theory of mind and rule-based reasoning. Cognitive Development, 10, 483–527.

    Google Scholar 

  • Geiser, C., Lehmann, W., & Eid, M. (2006). Separating “ rotators” from “ nonrotators” in the mental rotations test: A multigroup latent class analysis. Multivariate Behavioral Research, 41(3), 261–293.

    Article  Google Scholar 

  • Greer, B. (1994). Extending the meaning of multiplication and division. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 61–85). Albany: SUNY Press.

    Google Scholar 

  • Griffin, M. M. (1995). You can’ t get there from here: Situated learning transfer, and map skills. Contemporary Educational Psychology, 20(1), 65–87.

    Article  Google Scholar 

  • Gustafsson, J. E., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28(4), 407–434.

    Article  Google Scholar 

  • Haladyna, T. M., Downing, S. M., & Rodriguez, M. C. (2002). A review of multiple-choice item-writing guidelines for classroom assessment. Applied Measurement in Education, 15(3), 309–333.

    Article  Google Scholar 

  • Harris, J., Hirsh-Pasek, K., & Newcombe, N. S. (2013). Understanding spatial transformations: Similarities and differences between mental rotation and mental folding. Cognitive Processing, 14(2), 105–115.

    Article  Google Scholar 

  • Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68.

    Article  Google Scholar 

  • Hegarty, M., Keehner, M., Khooshabeh, P., & Montello, D. R. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19(1), 61–70.

    Article  Google Scholar 

  • Herman, J., & Siegel, A. (1978). The development of spatial representations of large-scale environments. Journal of Experimental Child Psychology, 26, 389–406.

    Article  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.

    Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108, 10081–10086. doi:10.1073/pnas.1103228108.

    Article  Google Scholar 

  • Jansen, P., Titze, C., & Heil, M. (2009). The influence of juggling on mental rotation performance. International Journal of Sport Psychology, 40(2), 351–359.

    Google Scholar 

  • Kalichman, S. C. (1988). Individual differences in water-level task performance: A component-skills analysis. Developmental Review, 8(3), 273–295.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.

    Article  Google Scholar 

  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990.

    Article  Google Scholar 

  • Kastens, K. A., & Liben, L. S. (2007). Eliciting self-explanations improves children’s performance on a field-based map skills task. Cognition and Instruction, 25(1), 45–74.

    Article  Google Scholar 

  • Kawamichi, H., Kikuchi, Y., Noriuchi, M., Senoo, A., & Ueno, S. (2007). Distinct neural correlates underlying two- and three-dimensional mental rations using three-dimensional objects. Brain Research, 1144, 117–126.

    Article  Google Scholar 

  • Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation spatial ability’s unique role. Psychological Science, 24(9), 1831–1836.

    Article  Google Scholar 

  • Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362–404.

    Article  Google Scholar 

  • Kloo, D., & Perner, J. (2003). Training transfer between card sorting and false belief understanding: Helping children apply conflicting descriptions. Child Development, 74, 1823–1839.

    Article  Google Scholar 

  • Kosslyn, S. M. (1983). Ghosts in the mind’s machine: Creating and using images in the brain. New York: Norton.

    Google Scholar 

  • Kosslyn, S. M., Digirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35(02), 151–161.

    Article  Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., Wraga, M., & Alpert, N. M. (2001). Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms. NeuroReport, 12(11), 2519–2525.

    Article  Google Scholar 

  • Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756.

    Article  Google Scholar 

  • Krekling, S., & Noedvik, H. (1992). Observational training improves adult women’ performance on Piaget’s water‐level task. Scandinavian Journal of Psychology, 33(2), 117–124.

    Article  Google Scholar 

  • Kyttälä, M., & Kanerva, K. (2014). Training mathematical skills in pre-school children: Specific training of phonological and visuo-spatial working memory.

    Google Scholar 

  • Lamb, R. L., Annetta, L., Vallett, D. B., & Sadler, T. D. (2014). Cognitive diagnostic like approaches using neural-network analysis of serious educational videogames. Computers & Education, 70, 92–104.

    Article  Google Scholar 

  • Lee, Y., Lu, M., & Ko, H. (2007). Effects of skill training on working memory capacity. Learning and Instruction, 17, 336–344. doi:10.1016/j.learninstruc.2007.02.010.

    Article  Google Scholar 

  • Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. Wiley Interdisciplinary Reviews: Cognitive Science, 7, 127–155.

    Google Scholar 

  • Li, C. (2000). Instruction effect and developmental levels: A study on water-level task with Chinese children ages 9–17. Contemporary Educational Psychology, 25(4), 488–498.

    Article  Google Scholar 

  • Li, C., Nuttall, R. L., & Zhao, S. (1999). The effect of writing Chinese characters on success on the water-level task. Journal of Cross-Cultural Psychology, 30(1), 91–105.

    Article  Google Scholar 

  • Liben, L. S. (1978). Performance on Piagetian spatial tasks as a function of sex, field dependence, and training. Merrill-Palmer Quarterly of Behavior and Development, 24(2), 97–110.

    Google Scholar 

  • Liben, L. S., & Downs, R. M. (1989). Understanding maps as symbols: The development of map concepts in children. Advances in Child Development and Behavior, 22, 145–201.

    Article  Google Scholar 

  • Liben, L. S., & Golbeck, S. L. (1980). Sex differences in performance on Piagetian spatial tasks: Differences in competence or performance? Child Development, 51, 594–597.

    Article  Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Logie, R. H., & Van Der Meulen, M. (2009). Fragmenting and integrating visuospatial working memory. In The visual world in memory (pp. 1–32). Hove: Psychology Press.

    Google Scholar 

  • Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Stanford University, School of Education, No. TR-8). Stansford: Stanford University.

    Google Scholar 

  • Lynn, R., & Meisenberg, G. (2010). National IQs calculated and validated for 108 nations. Intelligence, 38(4), 353–360.

    Article  Google Scholar 

  • Mammarella, I. C., Pazzaglia, F., & Cornoldi, C. (2008). Evidence for different components in children’s visuospatial working memory. British Journal of Developmental Psychology, 26(3), 337–355.

    Article  Google Scholar 

  • Martin, R., Houssemand, C., Schiltz, C., Burnod, Y., & Alexandre, F. (2008). Is there continuity between categorical and coordinate spatial relations coding? Evidence from a grid/no-grid working memory paradigm. Neuropsychologia, 46(2), 576–594.

    Article  Google Scholar 

  • McArdle, J. J., Grimm, K. J., Hamagami, F., Bowles, R. P., & Meredith, W. (2009). Modeling life-span growth curves of cognition using longitudinal data with multiple samples and changing scales of measurement. Psychological Methods, 14(2), 126.

    Article  Google Scholar 

  • McGee, M. G. (1978). Effects of training and practice on sex differences in mental rotation test scores. The Journal of Psychology, 100(1), 87–90.

    Google Scholar 

  • McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visual–spatial interference on children’s arithmetical performance. Educational and Child Psychology, 20, 93–108.

    Google Scholar 

  • McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800–802.

    Article  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270.

    Article  Google Scholar 

  • Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152.

    Article  Google Scholar 

  • Mix, K. S., & Cheng, Y.-L. (2012). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621.

    Article  Google Scholar 

  • Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539.

    Article  Google Scholar 

  • Newcombe, N. S., & Frick, A. (2010). Early education for spatial intelligence: Why, what, and how. Mind, Brain, and Education, 4(3), 102–111.

    Article  Google Scholar 

  • Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In Studying visual and spatial reasoning for design creativity (pp. 179–192). Dordrecht: Springer.

    Google Scholar 

  • Noack, H., Lövdén, M., & Schmiedek, F. (2014). On the validity and generality of transfer effects in cognitive training research. Psychological Research, 78(6), 773–789.

    Article  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.

    Article  Google Scholar 

  • Orsini, A. (1994). Corsi’s block-tapping test: Standardization and concurrent validity with WISC-R for children aged 11 to 16. Perceptual and Motor Skills, 79(3f), 1547–1554.

    Article  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., Howard, R. J., & Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775–778. doi:10.1038/nature09042.

    Article  Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220.

    Article  Google Scholar 

  • Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82(1), 42–63.

    Article  Google Scholar 

  • Perels, F., Gürtler, T., & Schmitz, B. (2005). Training of self-regulatory and problem-solving competence. Learning and Instruction, 15(2), 123–139.

    Article  Google Scholar 

  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58.

    Article  Google Scholar 

  • Piaget, J., & Inhelder, B. (1956). The child’s conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton.

    Google Scholar 

  • Presson, C. C. (1982). The development of map-reading skills. Child Development, 53, 196–199.

    Article  Google Scholar 

  • Quinn, J. G. (2008). Movement and visual coding: The structure of visuo-spatial working memory. Cognitive Process, 9(1), 35–43.

    Article  Google Scholar 

  • Raz, N., Schmiedek, F., Rodrigue, K. M., Kennedy, K. M., Lindenberger, U., & Lövdén, M. (2013). Differential brain shrinkage over 6 months shows limited association with cognitive practice. Brain and Cognition, 82(2), 171–180.

    Article  Google Scholar 

  • Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21, 25–36.

    Article  Google Scholar 

  • Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.

    Book  Google Scholar 

  • Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1988). Building a unidimensional test using multidimensional items. Journal of Educational Measurement, 25(3), 193–203.

    Article  Google Scholar 

  • Reckase, M. D., & Xu, J. R. (2015). The evidence for a subscore structure in a test of English language competency for English language learners. Educational and Psychological Measurement, 75, 805–825.

    Article  Google Scholar 

  • Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21, 387–399.

    Google Scholar 

  • Rickard, T. C., Healy, A. F., & Bourne, L. E., Jr. (1994). On the cognitive structure of basic arithmetic skills. Operation, order, and symbol transfer effects. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20, 1139–1153.

    Article  Google Scholar 

  • Rilea, S. L. (2008). A lateralization of function approach to sex differences in spatial ability: A reexamination. Brain and Cognition, 67(2), 168–182.

    Google Scholar 

  • Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56(3), 332–343.

    Article  Google Scholar 

  • Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35, 83–92.

    Article  Google Scholar 

  • Sanz de Acedo Lizarraga, M. L., & Garcia Ganuza, J. M. (2003). Improvement of mental rotation in girls and boys. Sex Roles, 49, 277–286.

    Article  Google Scholar 

  • Schatschneider, C., Francis, D. J., Foorman, B. R., Fletcher, J. M., & Mehta, P. (1999). The dimensionality of phonological awareness: An application of item response theory. Journal of Educational Psychology, 91(3), 439.

    Article  Google Scholar 

  • Schubert, T., Strobach, T., & Karbach, J. (2014). New directions in cognitive training: On methods, transfer, and application. Psychological Research, 78(6), 749.

    Google Scholar 

  • Shelton, A. L., & Gabrieli, J. D. (2002). Neural correlates of encoding space from route and survey perspectives. The Journal of Neuroscience, 22(7), 2711–2717.

    Google Scholar 

  • Shelton, A. L., & Pippitt, H. A. (2007). Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives. Psychological Research, 71(3), 333–346.

    Article  Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects.

    Google Scholar 

  • Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3.

    Google Scholar 

  • Signorella, M. L., & Jamison, W. (1978). Sex differences in the correlations among field dependence, spatial ability, sex role orientation, and performance on Piaget’s water-level task. Developmental Psychology, 14(6), 689.

    Article  Google Scholar 

  • Smedslund, J. (1963). The effect of observation on children’s representation of the spatial orientation of a water surface. The Journal of Genetic Psychology, 102(2), 195–201.

    Article  Google Scholar 

  • Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363–374.

    Google Scholar 

  • St Clair‐Thompson, H. L., Stevens, R., Hunt, A., & Bolder, E. (2010). Improving children’s working memory and classroom performance. Educational Psychology, 30(2), 203–219.

    Article  Google Scholar 

  • Stransky, D., Wilcox, L. M., & Dubrowski, A. (2010). Mental rotation: Cross-task training and generalization. Journal of Experimental Psychology: Applied, 16(4), 349.

    Google Scholar 

  • Tagaris, G. A., Kim, S., Strupp, J. P., Andersen, P., Uğurbil, K., & Georgopoulos, A. P. (1997). Mental rotation studied by functional magnetic resonance imaging at high field (4 Tesla): Performance and cortical activation. Journal of Cognitive Neuroscience, 9(4), 419–432.

    Article  Google Scholar 

  • Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22(7), 996–1013.

    Article  Google Scholar 

  • Thomas, H., & Turner, G. F. (1991). Individual differences and development in water-level task performance. Journal of Experimental Child Psychology, 51(2), 171–194.

    Article  Google Scholar 

  • Thorndike, R. M. (1997). Measurement and evaluation in psychology and education (7th ed.). Columbus: Merrill Prentice-Hall.

    Google Scholar 

  • Tran, U. S., & Formann, A. K. (2008). Piaget’s water-level tasks: Performance across the lifespan with emphasis on the elderly. Personality and Individual Differences, 45(3), 232–237.

    Article  Google Scholar 

  • Trojano, L., Grossi, D., Linden, D. E., Formisano, E., Goebel, R., Cirillo, S., … & Di Salle, F. (2002). Coordinate and categorical judgements in spatial imagery. An fMRI study. Neuropsychologia, 40(10), 1666–1674.

    Google Scholar 

  • Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why and how. Psychology of Learning and Motivation, 57(2), 147–181.

    Article  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352.

    Article  Google Scholar 

  • van de Schoot, R., Lugtig, P., & Hox, J. (2012). A checklist for testing measurement invariance. European Journal of Developmental Psychology, 9(4), 486–492.

    Article  Google Scholar 

  • van der Ham, I. J., Raemaekers, M., van Wezel, R. J., Oleksiak, A., & Postma, A. (2009). Categorical and coordinate spatial relations in working memory: An fMRI study. Brain Research, 1297, 70–79.

    Article  Google Scholar 

  • Van der Molen, M. J., Van Luit, J. E. H., Van der Molen, M. W., Klugkist, I., & Jongmans, M. J. (2010). Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities. Journal of Intellectual Disability Research, 54, 433–447.

    Article  Google Scholar 

  • Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.

    Article  Google Scholar 

  • Vasta, R., & Liben, L. S. (1996). The water-level task: An intriguing puzzle. Current Directions in Psychological Science, 5(6), 171–177.

    Article  Google Scholar 

  • Vasta, R., Belongia, C., & Ribble, C. (1994). Investigating the orientation effect on the water-level task: Who? When? and why? Developmental Psychology, 30(6), 893.

    Article  Google Scholar 

  • Vasta, R., Knott, J. A., & Gaze, C. E. (1996). Can spatial training erase the gender differences on the water-level task? Psychology of Women Quarterly, 20(4), 549–567.

    Article  Google Scholar 

  • Vecchi, T., Monticellai, M. L., & Cornoldi, C. (1995). Visuo-spatial working memory: Structures and variables affecting a capacity measure. Neuropsychologia, 33, 1549–1564.

    Article  Google Scholar 

  • Voyer, D., & Hou, J. (2006). Type of items and the magnitude of gender differences on the Mental Rotations Test. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 60(2), 91.

    Article  Google Scholar 

  • Voyer, D., Rodgers, M. A., & McCormick, P. A. (2004). Timing conditions and the magnitude of gender differences on the Mental Rotations Test. Memory & Cognition, 32(1), 72–82.

    Article  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.

    Article  Google Scholar 

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.

    Article  Google Scholar 

  • Wallace, B., & Hofelich, B. (1992). Process generalisation and the prediction of performance on mental imagery tasks. Memory Cognition, 20, 695–704.

    Article  Google Scholar 

  • Wanzel, K. R., Hamstra, S. J., Anastakis, D. J., Matsumoto, E. D., & Cusimano, M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. The Lancet, 359(9302), 230–231.

    Article  Google Scholar 

  • Wenger, E., Schaefer, S., Noack, H., Kühn, S., Mårtensson, J., Heinze, H. J., … & Lövdén, M. (2012). Cortical thickness changes following spatial navigation training in adulthood and aging. Neuroimage, 59(4), 3389–3397.

    Google Scholar 

  • Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68(1), 77–94.

    Article  Google Scholar 

  • Wiedenbauer, G., & Jansen-Osmann, P. (2008). Manual training of mental rotation in children. Learning and Instruction, 18(1), 30–41.

    Article  Google Scholar 

  • Wittig, M. A., & Allen, M. J. (1984). Measurement of adult performance on Piaget’s water horizontality task. Intelligence, 8(4), 305–313.

    Article  Google Scholar 

  • Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763–771.

    Article  Google Scholar 

  • Yamamoto, N., & DeGirolamo, G. J. (2012). Differential effects of aging on spatial learning through exploratory navigation and map reading. Frontiers in Aging Neuroscience, 4, 14.

    Article  Google Scholar 

  • Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ling Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, YL. (2017). The Improvement of Spatial Ability and its Relation to Spatial Training. In: Khine, M. (eds) Visual-spatial Ability in STEM Education. Springer, Cham. https://doi.org/10.1007/978-3-319-44385-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44385-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44384-3

  • Online ISBN: 978-3-319-44385-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics