Skip to main content

Spatial Ability: Measurement and Development

  • Chapter
  • First Online:

Abstract

Spatial visualization skills are essential for an expert to be successful in several disciplines. Spatial thinking has an important role in the teaching and learning of mathematics process and engineering studies; previous studies proved that this ability has positive correlations with geometry and mathematics education. Spatial visualisation ability is a prerequisite for success in technical education. Studies deal with spatial ability are vital in the field of mathematics, geometry and engineering, but also in chemistry, physics, anatomy and psychology, so measurement and development of spatial ability are very useful. Many studies have shown that there are correlations between various measures of spatial skills and performance in particular Science, Technology, Engineering and Mathematics (STEM) (Uttal DH, Cohen CA, Psychol Learn Motiv 57:147–181, 2012).

The measurement of spatial abilities is standardized by international tests, among which the Mental Cutting Test, Mental Rotation Test, Heinrich Spatial Visualization Test, Purdue Spatial Visualization Test and Purdue Spatial Visualization Test – Visualization of Rotation are widely used for testing the spatial ability. Interactive animation and virtual solids are promising tools for the training of spatial thinking and we can achieve better results in the understanding of the spatial relationships with the use of Dynamic Geometry Systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arıcı, S., & Aslan-Tutak, F. (2013). The effect of Origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179–200.

    Google Scholar 

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34(3), 66–72.

    Google Scholar 

  • Ault, H. K., & John, S. (2010). Assessing and enhancing visualization skills of engineering students in Africa: A comprehensive study. Engineering Design Graphics Journal, 74(2), 12–20.

    Google Scholar 

  • Boon, P. Building houses. Freudenthal Institute, Utrecht University. http://www.fisme.uu.nl/toepassingen/00249/toepassing_wisweb.en.html

  • Bosnyák, Á., & Nagy-Kondor, R. (2008). The spatial ability and spatial geometrical knowledge of university students majored in mathematics. Acta Didactica Universitatis Comenianae, 8, 1–25.

    Google Scholar 

  • Branoff, T. (1998). The effects of adding coordinate axes to a mental rotations task in measuring spatial visualization ability: An information-processing approach relating to teaching methods of undergraduate technical graphics education. Doctoral Dissertation, Norht Carolina State University.

    Google Scholar 

  • Branoff, T., & Connolly, P. (1999). The addition of coordinate axes to the purdue spatial visualization test – Visualization of rotations: A study at two universities. In: Proceedings of the American Society for engineering education annual conference. https://peer.asee.org%2Fthe-addition-of-coordinate-axes-to-the-purdue-spatialvisualization-test-visualization-of-rotations-a-study-at-two-universities.pdf&usg=AFQjCNFWaGCQOOCg6gslSXPZ5FbKHfVSA

    Google Scholar 

  • Budai, L. (2013). Improving problem-solving skills with the help of plane-space analogies. Center for Educational Policy Studies Journal, 3(4), 79–98.

    Google Scholar 

  • Carlbom, I., & Paciorek, J. (1978). Planar geometric projections and viewing transformations. ACM Computing Surveys (CSUR), 10(4), 465–502.

    Article  Google Scholar 

  • CEEB. (1939). Special aptitude test in spatial relations. New York: Developed by the College Entrance Examination Board.

    Google Scholar 

  • Chen, K. H. (1995). Validity studies of the Heinrich spatial visualization test. Doctoral Dissertation, Ohio State University, Ohio, USA.

    Google Scholar 

  • Clark, A. C., & Scales, A. Y. (2000). A study of current trends and issues related to technical/engineering design graphics. Engineering Design Graphics Journal, 64(1), 24–34.

    Google Scholar 

  • Czeglédy, I. (1988). The teaching of mathematical concept systems. Acta Academiae Pedagogicae Nyíregyháziensis/Matematika, 1, 105–113. (in Hungarian).

    Google Scholar 

  • Fenyvesi, K., Budinski, N., Lavicza, ZS. (2014). Problem solving with hands-on and digital tools: Connecting origami and GeoGebra in mathematics education. Conference proceedings, the closing conference of the project visuality & mathematics, Eger, Hungary, pp. 25–38. ISBN 978-615-5297-26-7.

    Google Scholar 

  • Ferguson, C., Ball, A., McDaniel, W., Anderson, R. (2008). A comparison of instructional methods for improving the spatial visualization ability of freshman technology seminar students. In: Proceedings, IAJC-IJME international conference, Nashville, TN. Retrieved from http://ijme.us/cd_08/PDF/37_IT305.pdf

  • Field, B. (1999). A course in spatial visualization. Journal for Geometry and Graphics, 3(2), 201–209.

    Google Scholar 

  • Fuys, D., Geddes, D., Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education, Monograph No. 3.

    Google Scholar 

  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Gerson, H. B. P., Sorby, S. A., Wysocki, A., & Baartmans, B. J. (2001). The development and assessment of multimedia software for improving 3-D spartial visualization skills. Computer Applications in Engineering Education, 9(2), 105–113.

    Article  Google Scholar 

  • Gorska, R., & Sorby, S. (2008). Testing instruments for the assessment of 3-d spatial skills. In: Proceedings of the 2008 American Society for Engineering Education annual conference & exposition. Retrieved from http://soa.asee.org/paper/conference/paper-view.cfm?id=9408

  • Guay, R. B. (1977). Purdue spatial visualisation test: Rotations. West Lafayette: Purdue Research Foundation.

    Google Scholar 

  • Haanstra, F. H. (1994). Effects of art education on visual-spatial and aesthetic perception: Two meta-analysis. Groningen: Rijksuniversiteit Groningen.

    Google Scholar 

  • Heinrich, V. L. S. (1989). The development and validation of a spatial perception test for selection purposes. Master Science Dissertation, Ohio State University, Columbus, Ohio, USA.

    Google Scholar 

  • Hohenwarter, M., & Preiner, J. (2007). Dynamic mathematics with GeoGebra. The Journal of Online Mathematics and its Applications, 7.

    Google Scholar 

  • Hölzl, R. (1994). Im Zugmodus der Cabri-Geomètrie. Weinheim: Deutscher Studien-Verlag.

    Google Scholar 

  • Hölzl, R. (2001). Using dynamic geometry software to add constrast to geometric situations – A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.

    Article  Google Scholar 

  • Kortenkamp, U. H. (1999). Foundations of dynamic geometry. Ph.D. thesis, Swiss Federal Institute of Technology Zürich.

    Google Scholar 

  • Kubus. http://armarium.hu/kubus.php (20. 10. 2015).

  • Kurtulus, A. (2013). The effects of web–based interactive virtual tours on the development of prospective mathematics teachers’ spatial skills. Computers & Education, 63, 141–150.

    Article  Google Scholar 

  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6, 283–317.

    Article  Google Scholar 

  • Langley, D., Zadok, Y., & Arieli, R. (2014). Exploring spatial relationships: A strategy for guiding technological problem solving. Journal of Automation Mobile Robotics and Intelligent Systems, 8, 30–36.

    Article  Google Scholar 

  • Leopold, C., Gorska, R. A., & Sorby, S. A. (2001). International experiences in developing the spatial visualization abilities of engineering students. Journal for Geometry and Graphics, 5(1), 81–91.

    Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A-meta analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395–405.

    Article  Google Scholar 

  • Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351.

    Article  Google Scholar 

  • Maier, P. H. (1998). Spatial geometry and spatial ability – How to make solid geometry solid? In: Elmar Cohors-Fresenborg, K. Reiss, G. Toener, and H.-G. Weigand (Eds.), Selected papers from the annual conference of didactics of mathematics 1996, Osnabrueck, 63–75.

    Google Scholar 

  • Martín‐Gutiérrez, J., Gil, F. A., Contero, M., & Saorín, J. L. (2013). Dynamic three‐dimensional illustrator for teaching descriptive geometry and training visualisation skills. Computer Applications in Engineering Education, 21(1), 8–25.

    Article  Google Scholar 

  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86, 899–918.

    Article  Google Scholar 

  • Nagy-Kondor, R. (2006). The background of students’ performance. Teaching Mathematics and Computer Science, 4(2), 295–305.

    Article  Google Scholar 

  • Nagy-Kondor, R. (2008a). The results of a delayed test in descriptive geometry. International Journal for Technology in Mathematics Education, 15(3), 119–128.

    Google Scholar 

  • Nagy-Kondor, R. (2008b). Using dynamic geometry software at technical college. Mathematics and Computer Education, Fall, 3(42), 249–257.

    Google Scholar 

  • Nagy-Kondor, R. (2010). Spatial ability, descriptive geometry and dynamic geometry systems. Annales Mathematicae et Informaticae, 37, 199–210.

    Google Scholar 

  • Nagy-Kondor, R. (2014). Importance of spatial visualization skills in Hungary and Turkey: Comparative studies. Annales Mathematicae et Informaticae, 43, 171–181.

    Google Scholar 

  • Nagy-Kondor, R., & Sörös, C. (2012). Engineering students’ spatial abilities in Budapest and Debrecen. Annales Mathematicae et Informaticae, 40, 187–201.

    Google Scholar 

  • Nagy-Kondor, R., & Szíki, G. Á. (2012). “Basic Knowledge of Natural Sciences”: A new foundation subject at the Faculty of Engineering, University of Debrecen. Horizons of Mathematics, Physics and Computer Sciences, 41(2), 9–17. ISSN 1335–4981.

    Google Scholar 

  • Nagyné Kondor, R. (2008). Introducing dynamic geometry system into teaching of deschriptive geometry of mechanical engineers (in Hungarian). PhD Dissertation, University of Debrecen, Debrecen, Hungary.

    Google Scholar 

  • Németh, B., & Hoffmann, M. (2006). Gender differences in spatial visualization among engineering students. Annales Mathematicae et Informaticae, 33, 169–174.

    Google Scholar 

  • Németh, L. http://www.nyme.hu/uploads/media/kup_arnyek_axo.html (02. 10. 2015).

  • Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning. http://www.ex.uk/cimt/ijmt1/ijabout.htm

  • Papp, I. https://drive.google.com/file/d/0B4b8DTKHyn6PUFUxZ3BQSEJGc0E/view?usp=sharing (20. 10. 2015).

  • Papp, I. https://drive.google.com/file/d/0B4b8DTKHyn6PZHhBTFdUU0pzTkU/view?usp=sharing (20. 10. 2015).

  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: The North Library.

    Google Scholar 

  • Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22, 159–163.

    Article  Google Scholar 

  • Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a web-based virtual environment (WbVE). Automation in Construction, 14, 707–715.

    Article  Google Scholar 

  • Rafi, A., Samsudin, K. A., & Ismail, A. (2006). On improving spatial ability through computer-mediated engineering drawing instruction. Educational Technology & Society, 9(3), 149–159.

    Google Scholar 

  • Rotation tests, Freudenthal Institute, Utrecht University, http://www.fisme.science.uu.nl/toepassingen/03378/ (20. 10. 2015).

  • Saito, T., Shiina, K., Makino, K., Suzuki, K., Jingu, T. (1995) Analysis of problem solving process and causes of error in a mental cutting test. Proceedings of the 2nd China-Japan joint conference on Graphics Education, Chengdu, China, pp. 259–264.

    Google Scholar 

  • Scribner, S. A. (2004). Novice drafters’ spatial visualization development: Influence of instructional methods and individual learning styles. Dissertation, Southern Illinois University, Carbondale.

    Google Scholar 

  • Seabla, R., & Santos, E. (2008). Evaluation of the spatial visualization ability of engineering students in a Brazilian engineering course. Journal for Geometry and Graphics, 12(1), 99–108.

    Google Scholar 

  • Séra, L., Kárpáti, A., & Gulyás, J. (2002). Spatial ability (in Hungarian). Pécs: Comenius Kiadó.

    Google Scholar 

  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 604–614.

    Article  Google Scholar 

  • Shiina, K., Short, D. R., Miller, C. L., & Suzuki, K. (2001). Development of software to record solving process of a mental rotations test. Journal for Geometry and Graphics, 5(2), 193–202.

    Google Scholar 

  • Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth: Penguin Books Ltd.

    Google Scholar 

  • Sorby, S. (2001). A new and improved course for developing spatial visualization skills. Proceedings, ASEE annual conference.

    Google Scholar 

  • Sorby, S. A., Cubero, S., Pasha-Zaidi, N., & Karki H. (2014). Spatial skills of engineering students in the United Arab Emirates, QScience Proceedings (Engineering Leaders Conference 2014) 2015:32. http://dx.doi.org/10.5339/qproc.2015.elc2014.32

  • Stachel, H. (2004). What is descriptive geometry for? http://citeseer.ist.psu.edu/642381.html.

  • Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in dynamic geometry environments. International Journal of Computers for Mathematical Learning, 10, 31–47.

    Article  Google Scholar 

  • Szíki, G. Á., Juhász, Gy., Nagyné Kondor, R., Juhász, B. (2014). Computer program for the calculation of the performance parameters of pneumobiles. Proceedings of the International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2014), pp. 159–166. ISBN 978-963-473-751-3.

    Google Scholar 

  • Takaci, D., Zdravkovic, S., Rapajic, S. (2014). Problem solving with hands-on and digital tools: Connecting origami and GeoGebra in mathematics education. Conference proceedings, the closing conference of the project visuality & mathematics, Eger, Hungary, pp. 163–167. ISBN 978-615-5297-26-7.

    Google Scholar 

  • Tsutsumi, E., Shiina, K., Suzaki, A., Yamanouchi, K., Takaaki, S., & Suzuki, K. (1999). A mental cutting test on female students using a stereographic system. Journal for Geometry and Graphics, 3, 111–119.

    Google Scholar 

  • Turgut, M. (2015). Individual differences in the mental rotation skills of Turkish prospective teachers. IUMPST: The Journal, 5, 1–12. ISSN 2165-7874.

    Google Scholar 

  • Turgut, M., & Nagy-Kondor, R. (2013a). Comparison of Hungarian and Turkish prospective mathematics teachers’ mental cutting performances. Acta Didactica Universitatis Comenianae, 13, 47–58. ISBN 978-80-223-3507-2.

    Google Scholar 

  • Turgut, M., & Nagy-Kondor, R. (2013b). Spatial visualisation skills of Hungarian and Turkish prospective mathematics teachers. International Journal for Studies in Mathematics Education, 6(1), 168–183.

    Google Scholar 

  • Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why and how. Psychology of Learning and Motivation, 57, 147–181.

    Article  Google Scholar 

  • van Hiele, P. M. (1986). Structure and insight (A theory of mathematics education). Orlando: Academic.

    Google Scholar 

  • Vanderberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.

    Article  Google Scholar 

  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293–305.

    Article  Google Scholar 

  • Vorstenbosch, M. A., Klaassen, T. P., Donders, A. R. T., Kooloos, J. G., Bolhuis, S. M., & Laan, R. F. (2013). Learning anatomy enhances spatial ability. Anatomical Sciences Education, 6(4), 257–262.

    Article  Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  Google Scholar 

  • Vygotsky, L. S. (1987). Thinking and speech. In R. W. Rieber & A. S. Carton (Eds.), The collected works of L. S. Vygotsky, Vol. 1. Problems of general psychology (pp. 39–285). New York: Plenum Press.

    Google Scholar 

  • Williams, C. B., Gero, J., Lee, Y., & Paretti, M. (2010). Exploring spatial reasoning ability and design cognition in undergraduate engineering students. Proceedings of the ASME 2010 international design engineering technical conference and computers and information in engineering conference, pp. 1–8.

    Google Scholar 

  • Yılmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83–96.

    Google Scholar 

  • Yue, J. (2009). Spatial visualization by realistic 3D views. Engineering Design Graphics Journal, 72(1), 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Nagy-Kondor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagy-Kondor, R. (2017). Spatial Ability: Measurement and Development. In: Khine, M. (eds) Visual-spatial Ability in STEM Education. Springer, Cham. https://doi.org/10.1007/978-3-319-44385-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44385-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44384-3

  • Online ISBN: 978-3-319-44385-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics