
4An Introduction to Optimization
Models and Methods

Water resource systems are characterized by
multiple interdependent components that toge-
ther produce multiple economic, environmental,
ecological, and social impacts. As discussed in
the previous chapter, planners and managers
working toward improving the design and per-
formance of these complex systems must identify
and evaluate alternative designs and operating
policies, comparing their predicted performance
with desired goals or objectives. Typically, this
identification and evaluation process is accom-
plished with the aid of optimization and simula-
tion models. While optimization methods are
designed to provide preferred values of system
design and operating policy variables—values
that will lead to the highest levels of system
performance—they are often used to eliminate
the clearly inferior options. Using optimization
for a preliminary screening followed by more
detailed and accurate simulation is the primary
way we have, short of actually building physical
models, of estimating effective system designs
and operating policies. This chapter introduces
and illustrates the art of optimization model de-
velopment and use in analyzing water resources
systems. The models and methods introduced in
this chapter are extended in subsequent chapters.

4.1 Introduction

This chapter introduces some optimization
modeling approaches for identifying ways of
satisfying specified goals or objectives. The

modeling approaches are illustrated by their
application to some relatively simple water
resources planning and management problems.
The purpose here is to introduce and compare
some commonly used optimization methods and
approaches. This is not a text on the state of the
art of optimization modeling. More realistic and
more complex problems usually require much
bigger and more complex models than those
developed and discussed in this chapter, but
these bigger and more complex models are often
based on the principles and techniques intro-
duced here.

The emphasis here is on the art of model
development—just how one goes about con-
structing and solving optimization models that
will provide information useful for addressing
and perhaps even solving particular problems. It
is unlikely anyone will ever use any of the
specific models developed in this or other chap-
ters simply because the specific examples used to
illustrate the approach to model development and
solution will not be the ones they face. However,
it is quite likely water resource managers and
planners will use these modeling approaches and
solution methods to analyze a variety of water
resource systems. The particular systems mod-
eled and analyzed here, or any others that could
have been used, can be the core of more complex
models needed to analyze more complex prob-
lems in practice.

Water resources planning and management
today is dominated by the use of optimization
and simulation models. Computer software is
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becoming increasingly available for solving
various types of optimization and simulation
models. However, no software currently exists
that will build models of particular water
resource systems. What and what not to include
and assume in models requires judgment, expe-
rience, and knowledge of the particular problems
being addressed, the system being modeled and
the decision-making environment—including
what aspects can be changed and what cannot.
Understanding the contents of this and following
chapters and performing the suggested exercises
at the end of each chapter can only be a first step
toward gaining some judgment and experience in
model development.

Before proceeding to a more detailed discus-
sion of optimization, a review of some methods
of dealing with time streams of economic
incomes or costs (engineering economics) may
be useful. Those familiar with this subject that is
typically covered in applied engineering eco-
nomics courses can skip this next section.

4.2 Comparing Time Streams
of Economic Benefits and Costs

All of us make decisions that involve future
benefits and costs. The extent to which we value
future benefits or costs compared to present
benefits or costs is reflected by what is called a
discount rate. While economic criteria are only
one aspect of everything we consider when
making decisions, they are often among the
important ones. Economic evaluation methods
involving discount rates can be used to consider
and compare alternatives characterized by vari-
ous benefits and costs that are expected to occur
now and in the future. This section offers a quick
and basic review of the use of discount rates that
enable comparisons of alternative time series of
benefits and costs. Many economic optimization
models incorporate discount rates in their eco-
nomic objective functions.

Engineering economic methods typically
focus on the comparison of a discrete set of

mutually exclusive alternatives (only one of
which can be selected) each characterized by a
time series of benefits and costs. Using various
methods involving the discount rate, the time
series of benefits and costs are converted to a
single net benefit that can be compared with
other such net benefits in order to identify the one
that is best. The values of the decision variables
(e.g., the design and operating policy variable
values) are known for each discrete alternative
being considered. For example, consider again
the tank design problem presented in the previ-
ous chapter. Alternative tank designs could be
identified, and then each could be evaluated, on
the basis of cost and perhaps other criteria as
well. The best would be called the optimal one, at
least with respect to the objective criteria used
and the discrete alternatives being considered.

The optimization methods introduced in the
following sections of this chapter extend those
engineering economics methods. Some methods
are discrete, some are continuous. Continuous
optimization methods, such as the model defined
by Eqs. 3.1–3.3 in Sect. 3.2 of the previous
chapter can identify the “best” tank design
directly without having to identify and compare
numerous discrete, mutually exclusive alterna-
tives. Just how such models can be solved will be
discussed later in this chapter. For now, consider
the comparison of alternative discrete plans
p having different benefits and costs over time.

Let the net benefit generated at the end of time
period t by plan p be designated simply as Bp(t).
Each plan is characterized by the time stream
of net benefits it generates over its planning
period Tp.

fBpð1Þ;Bpð2Þ;Bpð3Þ; . . .;BpðTpÞ ð4:1Þ

Clearly, if in any time period t the benefits
exceed the costs, then BpðtÞ[ 0; and if the costs
exceed the benefits, BpðtÞ\0. This section
defines two ways of comparing different benefit,
cost or net-benefit time streams produced by
different plans perhaps having different planning
period durations Tp.
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4.2.1 Interest Rates

Fundamental to the conversion of a time series of
incomes and costs to an equivalent single value, so
that it can be compared to other equivalent single
values of other time series, is the concept of the
time value of money. From time to time, individ-
uals, private corporations, and governments need
to borrow money to do what they want to do. The
amount paid back to the lender has two compo-
nents: (1) the amount borrowed and (2) an addi-
tional amount called interest. The interest amount
is the cost of borrowing money, of having the
money when it is loaned compared to when it is
paid back. In the private sector the interest rate, the
added fraction of the amount owed that equals the
interest, is often identified as the marginal rate of
return on capital. Those who have money, called
capital, can either use it themselves or they can
lend it to others, including banks, and receive
interest. Assuming people with capital invest their
money where it yields the largest amount of
interest, consistent with the risk they are willing to
take, most investors should be receiving at least the
prevailing interest rate as the return on their capital.

Any interest earned by an investor or paid by
a debtor depends on the size of the loan, the
duration of the loan, and the interest rate. The
interest rate includes a number of considerations.
One is the time value of money (a willingness to
pay something to obtain money now rather than
to obtain the same amount later). Another is the
risk of losing capital (not getting the full amount
of a loan or investment returned at some future
time). A third is the risk of reduced purchasing
capability (the expected inflation over time). The
greater the risks of losing capital or purchasing
power, the higher the interest rate compared to
the rate reflecting only the time value of money
in a secure and inflation-free environment.

4.2.2 Equivalent Present Value

To compare projects or plans involving different
time series of benefits and costs, it is often con-
venient to express these time series as a single
equivalent value. One way to do this is to convert

each amount in the time series to what it is worth
today, its present worth, that is, a single value at
the present time. This present worth will depend
on the prevailing interest rate in each future time
period. Assuming a value V0 is invested at the
beginning of a time period, e.g., a year, in a
project or a savings account earning interest at a
rate r per period, then at the end of the period the
value of that investment is (1 + r)V0.

If one invests an amount V0 at the beginning
of period t = 1 and at the end of that period
immediately reinvests the total amount (the
original investment plus interest earned), and
continues to do this for n consecutive periods at
the same period interest rate r, the value, Vn, of
that investment at the end of n periods would be

Vn ¼ V0 1þ rð Þn ð4:2Þ

This results from V1 ¼ V0= 1þ rð Þ at the end of
period 1,V2 ¼ V1=ð1þ rÞ ¼ V0ð1þ rÞ2 at the end
of period 2, and so on until at the end of period n.

The initial amount V0 is said to be equivalent
to Vn at the end of n periods. Thus the present
worth or present value, V0, of an amount of
money Vn at the end of period n is

V0 ¼ Vn= 1þ rð Þn ð4:3Þ

Equation 4.3 is the basic compound interest
discounting relation needed to determine the
present value at the beginning of period 1 (or end
of period 0) of net benefits Vn that accrue at the
end of n time periods.

The total present value of the net benefits
generated by plan p, denoted Vp

0 , is the sum of
the values of the net benefits Vp(t) accrued at the
end of each time period t times the discount
factor for that period t. Assuming the interest or
discount rate r in the discount factor applies for
the duration of the planning period, i.e., from
t = 1 to t = Tp.

Vp
0 ¼

X
t¼1;Tp

VpðtÞ= 1þ rð Þt ð4:4Þ

The present value of the net benefits achieved
by two or more plans having the same economic
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planning horizons Tp can be used as an economic
basis for plan selection. If the economic lives or
planning horizons of projects differ, then the
present value of the plans may not be an appro-
priate measure for comparison and plan selection.
A valid comparison of alternative plans using
present values is possible if all plans have the
same planning horizon or if funds remaining at
the end of the shorter planning horizon are
invested for the remaining time up until the longer
planning horizon at the same interest rate r.

4.2.3 Equivalent Annual Value

If the lives of various plans differ, but the same
plans will be repeated on into the future, then one
need to only compare the equivalent constant
annual net benefits of each plan. Finding the
average or equivalent annual amount Vp is done
in two steps. First, one can compute the present
value, Vp

0 , of the time stream of net benefits,
using Eq. 4.4. The equivalent constant annual
benefits, Vp, all discounted to the present must
equal the present value, Vp

0 .

Vp
0 ¼

X
t¼1;Tp

Vp= 1þ rð Þt or

Vp ¼ Vp
0=

X
t¼1;Tp

1= 1þ rð Þt
ð4:5Þ

Using a little algebra the average annual
end-of-year benefits Vp of the project or plan p is

Vp ¼ Vp
0 rð1þ rÞTp� �

= ð1þ rÞTp � 1
� � ð4:6Þ

The capital recovery factor CRFn is the
expression rð1þ rÞTp� �

= ð1þ rÞTp � 1
� �

in Eq. 4.6
that converts a fixed payment or present value Vp

0

at the beginning of the first time period into an
equivalent fixed periodic payment Vp at the end
of each time period. If the interest rate per period
is r and there are n periods involved, then the
capital recovery factor is

CRFn ¼ rð1þ rÞn½ �= ð1þ rÞn � 1½ � ð4:7Þ

This factor is often used to compute the
equivalent annual end-of-year cost of engineer-
ing structures that have a fixed initial construc-
tion cost C0 and annual end-of-year operation,
maintenance, and repair (OMR) costs. The
equivalent uniform end-of-year total annual cost,
TAC, equals the initial cost times the capital
recovery factor plus the equivalent annual
end-of-year uniform OMR costs.

TAC ¼ CRFn C0 þOMR ð4:8Þ

For private investments requiring borrowed
capital, interest rates are usually established, and
hence fixed, at the time of borrowing. However,
benefits may be affected by changing interest
rates, which are not easily predicted. It is com-
mon practice in benefit–cost analyses to assume
constant interest rates over time, for lack of any
better assumption.

Interest rates available to private investors or
borrowers may not be the same rates that are used
for analyzing public investment decisions. In an
economic evaluation of public-sector invest-
ments, the same relationships are used even
though government agencies are not generally
free to loan or borrow funds on private money
markets. In the case of public-sector investments,
the interest rate to be used in an economic anal-
ysis is a matter of public policy; it is the rate at
which the government is willing to forego current
benefits to its citizens in order to provide benefits
to those living in future time periods. It can be
viewed as the government’s estimate of the time
value of public monies or the marginal rate of
return to be achieved by public investments.

These definitions and concepts of engineering
economics are applicable to many of the prob-
lems faced in water resources planning and
management. Each of the equations above is
applicable to discrete alternatives whose decision
variables (investments over time) are known. The
equations are used to identify the best alternative
from a set of mutually exclusive alternatives
whose decision variable values are known. More
detailed discussions of the application of
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engineering economics are contained in numer-
ous texts on the subject. In the next section, we
introduce methods that can identify the best
alternative among those whose decision variable
values are not known. For example, engineering
economic methods can identify, for example, the
most cost-effective tank from among those whose
dimension values have been previously selected.
The optimization methods that follow can iden-
tify directly the values of the dimensions of most
cost-effective tank.

4.3 Nonlinear Optimization Models
and Solution Procedures

Constrained optimization involves finding the
values of decision variables given specified
relationships that have to be satisfied. Con-
strained optimization is also called mathematical
programming. Mathematical programming tech-
niques include calculus-based Lagrange multi-
pliers and various methods for solving linear and
nonlinear models including dynamic program-
ming, quadratic programming, fractional pro-
gramming, and geometric programming, to
mention a few. The applicability of each of these

as well as other constrained optimization proce-
dures is highly dependent on the mathematical
structure of the model that in turn is dependent
on the system being analyzed. Individuals tend to
construct models in a way that will allow them to
use a particular optimization technique they think
is best. Thus, it pays to be familiar with various
types of optimization methods since no one
method is best for all optimization problems.
Each has its strengths and limitations. The
remainder of this chapter introduces and illus-
trates the application of some of the most com-
mon constrained optimization techniques used in
water resources planning and management.

Consider a river from which diversions are
made to three water-consuming firms that belong
to the same corporation, as illustrated in Fig. 4.1.
Each firm makes a product. Water is needed in
the process of making that product, and is the
critical resource. The three firms can be denoted
by the index j = 1, 2, and 3 and their water al-
locations by xj. Assume the problem is to deter-
mine the allocations xj of water to each of three
firms (j = 1, 2, 3) that maximize the total net
benefits,

P
j NBjðxjÞ, obtained from all three

firms. The total amount of water available is
constrained or limited to a quantity of Q.

Fig. 4.1 Three water-using firms obtain water from a river. The amounts xj allocated to each firm j will depend on the
river flow Q
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Assume the net benefits, NBj(xj), derived from
water xj allocated to each firm j, are defined by

NB1ðx1Þ ¼ 6x1 � x21 ð4:9Þ

NB2ðx2Þ ¼ 7x2 � 1:5x22 ð4:10Þ

NB3ðx3Þ ¼ 8x3 � 0:5x23 ð4:11Þ

These are concave functions exhibiting
decreasing marginal net benefits with increasing
allocations. These functions look like hills, as
illustrated in Fig. 4.2.

4.3.1 Solution Using Calculus

Calculus can be used to find the allocations that
maximize each user’s net benefits, simply by
finding where the slope or derivative of the net
benefit function for each firm equals zero. The
derivative, dNB(x1)/dx1, of the net benefit func-
tion for Firm 1 is (6 − 2x1) and hence the allo-
cation to Firm 1 that maximizes its net benefits
would be 6/2 or 3. The corresponding allocations
for Firms 2 and 3 are 2.33 and 8, respectively.
The total amount of water desired by all firms is
the sum of each firm’s desired allocation, or
13.33 flow units. However, suppose only 8 units
of flow are available for all three firms and 2

units must remain in the river. Introducing this
constraint renders the previous solution infeasi-
ble. In this case we want to find the allocations
that maximize the total net benefits obtained from
all firms subject to having only 6 flow units
available for allocations. Using simple calculus
will not suffice.

4.3.2 Solution Using Hill Climbing

One approach for finding, at least approximately,
the particular allocations that maximize the total
net benefit derived from all firms in this example
is an incremental steepest-hill-climbing method.
This method divides the total available flow
Q into increments and allocates each successive
increment so as to get the maximum additional
net benefit from that incremental amount of
water. This procedure works in this example
because each of the net benefit functions is con-
cave; in other words, the marginal benefits
decrease as the allocation increases. This proce-
dure is illustrated by the flow diagram in Fig. 4.3.

Table 4.1 lists the results of applying the
procedure shown in Fig. 4.3 to the problem when
(a) only 8 and (b) only 20 flow units are avail-
able. Here a minimum river flow of 2 is required
and is to be satisfied, when possible, before any
allocations are made to the firms.

The hill-climbing method illustrated in
Fig. 4.3 and Table 4.1 assigns each incremental

Fig. 4.2 Concave net benefit functions for three water users, j, and their slopes at allocations xj
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flow ΔQ to the use that yields the largest addi-
tional (marginal) net benefit. An allocation is
optimal for any total flow Q when the marginal
net benefits from each nonzero allocation are
equal, or as close to each other as possible given
the size of the increment ΔQ. In this example,
with a ΔQ of 1 and Qmax of 8, it just happens that
the marginal net benefits associated with each
allocation are all equal (to 4). The smaller the
ΔQ, the more precise will be the optimal allo-
cations in each iteration, as shown in the lower
portion of Table 4.1, where ΔQ approaches 0.

Based on the allocations derived for various
values of available water Q, as shown in
Table 4.1, an allocation policy can be defined.
For this problem, the allocation policy that
maximizes total net benefits for any particular
value of Q is shown in Fig. 4.4.

This hill-climbing approach leads to optimal
allocations only if all of the net benefit functions
whose sum is being maximized are concave: that
is, the marginal net benefits decrease as the
allocation increases. Otherwise, only a local
optimum solution can be guaranteed. This is true

using any calculus-based optimization procedure
or algorithm.

4.3.3 Solution Using Lagrange
Multipliers

4.3.3.1 Approach
As an alternative to hill-climbing methods, con-
sider a calculus-based method involving
Lagrange multipliers. To illustrate this approach,
a slightly more complex water-allocation exam-
ple will be used. Assume that the benefit, Bj(xj),
each water-using firm receives is determined, in
part, by the quantity of product it produces and
the price per unit of the product that is charged.
As before, these products require water and water
is the limiting resource. The amount of product
produced, pj, by each firm j is dependent on the
amount of water, xj, allocated to it.

Let the function Pj(xj) represent the maximum
amount of product, pj, that can be produced by
firm j from an allocation of water xj. These are
called production functions. They are typically

Fig. 4.3 Steepest hill-climbing approach for finding allocation of a flow Qmax to the three firms, while meeting
minimum river flow requirements R
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Fig. 4.4 Water-allocation
policy that maximizes total
net benefits derived from
all three water-using firms

Table 4.1 Hill-climbing iterations for finding allocations that maximize total net benefit given a flow of Qmax and a
required (minimum) streamflow of R = 2
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concave: as xj increases the slope, dPj(xj)/dxj, of
the production function, Pj(xj), decreases. For
this example, assume the production functions
for the three water-using firms are

P1ðx1Þ ¼ 0:4ðx1Þ0:9 ð4:12Þ

P2ðx2Þ ¼ 0:5ðx2Þ0:8 ð4:13Þ

P3ðx3Þ ¼ 0:6ðx3Þ0:7 ð4:14Þ

Next consider the cost of production. Assume
the associated cost of production can be expres-
sed by the following convex functions:

C1 ¼ 3ðP1ðx1ÞÞ1:3 ð4:15Þ

C2 ¼ 5ðP2ðx2ÞÞ1:2 ð4:16Þ

C3 ¼ 6ðP3ðx3ÞÞ1:15 ð4:17Þ

Each firm produces a unique patented product,
and hence it can set and control the unit price of
its product. The lower the unit price, the greater
the demand and thus the more each firm can sell.
Each firm has determined the relationship
between the unit price and the amount that will

be demanded and sold. These are the demand
functions for that product. These unit price or
demand functions are shown in Fig. 4.5, where
the pj s are the amounts of each product pro-
duced. The vertical axis of each graph is the unit
price. To simplify the problem we are assuming
linear demand functions, but this assumption is
not a necessary condition.

The optimization problem is to find the water
allocations, the production levels, and the unit
prices that together maximize the total net benefit
obtained from all three firms. The water alloca-
tions plus the amount that must remain in the
river, R, cannot exceed the total amount of water
Q available.

Constructing and solving a model of this
problem for various values of Q, the total amount
of water available, will define the three allocation
policies as functions of Q. These policies can be
displayed as a graph, as in Fig. 4.4, showing the
three best allocations given any value of Q. This
of course assumes the firms can adjust to varying
allocations. In reality this may not be the case
(Chapter 9 examines this problem using more
realistic benefit functions that reflect the degree
to which firms can adapt to changing inputs over
time.)

The model:

Maximize Net benefit ð4:18Þ

Fig. 4.5 Unit prices that will guarantee the sale of the specified amounts of products pj produced in each of the three
firms (linear functions are assumed in this example for simplicity)
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Subject to
Definitional constraints:

Net benefit ¼ Total return� Total cost

ð4:19Þ

Total return ¼ 12� p1ð Þp1 þ 20 � 1:5p2ð Þp2
þ 28� 2:5p3ð Þp3

ð4:20Þ

Total cost ¼ 3ðp1Þ1:30 þ 5ðp2Þ1:20 þ 6ðp3Þ1:15
ð4:21Þ

Production functions defining the relationship
between water allocations xj and production pj

p1 ¼ 0:4ðx1Þ0:9 ð4:22Þ

p2 ¼ 0:5ðx2Þ0:8 ð4:23Þ

p3 ¼ 0:6ðx3Þ0:7 ð4:24Þ

Water-allocation restriction

Rþ x1 þ x2 þ x3 ¼ Q ð4:25Þ

One can first solve this model for the values of
each pj that maximize the total net benefits,
assuming water is not a limiting constraint. This is
equivalent to finding each individual firm’s
maximum net benefits, assuming all the water that
is needed is available. Using calculus we can
equate the derivatives of the total net benefit
function with respect to each pj to 0 and solve
each of the resulting three independent equations:

Total Net benefit ¼ 12� p1ð Þp1 þ 20� 1:5p2ð Þp2½
þ 28� 2:5p3ð Þp3� � 3 p1ð Þ1:30

h

þ 5ðp2Þ1:20 þ 6ðp3Þ1:15
i

ð4:26Þ

Derivatives:

@ðNet benefit)=@p1 ¼ 0
¼ 12� 2p1 � 1:3ð3Þp0:31

ð4:27Þ

@ðNet benefit)=@p2 ¼ 0
¼ 20� 3p2 � 1:2ð5Þp0:22

ð4:28Þ

@ Net benefitð Þ=@p3 ¼ 0
¼ 28� 5p3 � 1:15ð6Þp0:153

ð4:29Þ

The result (rounded off) is p1 = 3.2, p2 = 4.0,
and p3 = 3.9 to be sold for unit prices of 8.77,
13.96, and 18.23, respectively, for a maximum
net revenue of 155.75. This would require water
allocations x1 = 10.2, x2 = 13.6, and x3 = 14.5,
totaling 38.3 flow units. Any amount of water
less than 38.3 will restrict the allocation to, and
hence the product production at, one or more of
the three firms.

If the total available amount of water is less
than that desired, constraint Eq. 4.25 can be
written as an equality, since all the water avail-
able, less any that must remain in the river, R,
will be allocated. If the available water supplies
are less than the desired 38.3 plus the required
streamflow R, then Eqs. 4.22–4.25 need to be
added. These can be rewritten as equalities since
they will be binding. Equation 4.25 in this case
can always be an equality since any excess water
will be allocated to the river, R.

To consider values of Q that are less than the
desired 38.3 units, constraints 4.22–4.25 can be
included in the objective function, Eq. 4.26, once
the right-hand side has been subtracted from the
left-hand side so that they equal 0. We set this
function equal to L.
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L ¼ 12� p1ð Þp1 þ 20� 1:5p2ð Þp2 þ 28� 2:5p3ð Þp3½ �
� 3ðp1Þ1:30 þ 5 p2ð Þ1:20 þ 6ðp3Þ1:15
h i

� k1 p1 � 0:4ðx1Þ0:9
h i

� k2 p2 � 0:5ðx2Þ0:8
h i

� k3 p3 � 0:6ðx3Þ0:7
h i

� k4 Rþ x1 þ x2 þ x3 � Q½ �
ð4:30Þ

Since each of the four constraint Eqs. 4.22–
4.25 included in Eq. 4.30 equals zero, each can
be multiplied by a variable λi without changing
the value of Eq. 4.30, or equivalently, Eq. 4.26.
These unknown variables λi are called the
Lagrange multipliers of constraints i. The value
of each multiplier, λi, is the marginal value of the
original objective function, Eq. 4.26, with
respect to a change in the value of the amount
produced, p, or in the case of constraint Eq. 4.25,
the amount of water available, Q. We will show
this shortly.

Differentiating Eq. 4.30 with respect to each
of the ten unknowns and setting the resulting
equations to 0 yields:

@L=@p1 ¼ 0 ¼ 12� 2p1 � 1:3ð3Þp0:31 � k1
ð4:31Þ

@L=@p2 ¼ 0 ¼ 20� 3p2 � 1:2ð5Þp0:22 � k2
ð4:32Þ

@L=@p3 ¼ 0 ¼ 28� 5p3 � 1:15ð6Þp0:153 � k3

ð4:33Þ
@L=@x1 ¼ 0 ¼ k10:9ð0:4Þx�0:1

1 � k4 ð4:34Þ

@L=@x2 ¼ 0 ¼ k20:8 0:5ð Þx�0:2
2 � k4 ð4:35Þ

@L=@x3 ¼ 0 ¼ k30:7ð0:6Þx�0:3
3 � k4 ð4:36Þ

@L=@k1 ¼ 0 ¼ p1 � 0:4ðx1Þ0:9 ð4:37Þ

@L=@k2 ¼ 0 ¼ p2 � 0:5ðx2Þ0:8 ð4:38Þ

@L=@k3 ¼ 0 ¼ p3 � 0:6ðx3Þ0:7 ð4:39Þ

@L=@k4 ¼ 0 ¼ Rþ x1 þ x2 þ x3 � Q ð4:40Þ

These ten equations are the conditions neces-
sary for a solution that maximizes Eq. 4.30, or
equivalently 4.26. They can be solved to obtain
the values of the ten unknown variables. The
solutions to these equations for various values of
Q, (found in this case using LINGO) are shown in
Table 4.2. (A free demo version of LINGO can be
obtained (downloaded) from www.LINDO.com.)

4.3.3.2 Meaning of Lagrange
Multiplier λ

In this example, Eq. 4.30 is the objective func-
tion that is to be maximized. It is maximized or

Table 4.2 Solutions to Eqs. 4.31–4.40
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minimized by equating to zero each of its partial
derivatives with respect to each unknown vari-
able. Equation 4.30 consists of the original net
benefit function plus each constraint i multiplied
by a weight or multiplier λi. This equation is
expressed in monetary units. The added con-
straints are expressed in other units: either the
quantity of product produced or the amount of
water available. Thus the units of the weights or
multipliers λi associated with these constraints
are expressed in monetary units per constraint
units. In this example, the multipliers λ1, λ2, and
λ3 represent the change in the total net benefit
value of the objective function (Eq. 4.26) per
unit change in the products p1, p2, and p3 pro-
duced. The multiplier λ4 represents the change in
the total net benefit per unit change in the water
available for allocation, Q − R.

Note in Table 4.2 that as the quantity of
available water increases, the marginal net ben-
efits decrease. This is reflected in the values of
each of the multipliers, λi. In other words, the net
revenue derived from a quantity of product pro-
duced at each of the three firms, and from the
quantity of water available, is a concave function
of those quantities, as illustrated in Fig. 4.2.

To review the general Lagrange multiplier
approach and derive the definition of the multi-
pliers, consider the general constrained opti-
mization problem containing n decision variables
xj and m constraint equations i.

Maximize ðor minimize)FðXÞ ð4:41Þ

subject to constraints

giðXÞ ¼ bi i ¼ 1; 2; 3; . . .;m; ð4:42Þ

where X is the vector of all xj. The Lagrange
function L(X, λ) is formed by combining
Eq. 4.42, each equaling zero, with the objective
function of Eq. 4.41.

LðX; kÞ ¼ F Xð Þ �
X
i

ki gi Xð Þ � bið Þ ð4:43Þ

Solutions of the equations ∂L/∂xj = 0 for all
decision variables xj and ∂L/∂λi = 0 for all con-
straints gi are possible local optima.

There is no guarantee that a global optimum
solution will be found using calculus-based
methods such as this one. Boundary conditions
need to be checked. Furthermore, since there is
no difference in the Lagrange multipliers proce-
dure for finding a minimum or a maximum
solution, one needs to check whether in fact a
maximum or minimum is being obtained. In this
example, since each net benefit function is con-
cave, a maximum will result.

The meaning of the values of the multipliers λi
at the optimum solution can be derived by
manipulation of ∂L/∂λi = 0. Taking the partial
derivative of the Lagrange function, Eq. 4.43,
with respect to an unknown variable xj and set-
ting it to zero results in

@L=@xj ¼ 0 ¼ @F=@xj �
X
i

ki@ gi Xð Þð Þ=@xj

ð4:44Þ

Multiplying each term by ∂xj yields

@F ¼
X
i

ki@ gi Xð Þð Þ ð4:45Þ

Dividing each term by ∂bk associated with a
particular constraint, say k, defines the meaning
of λk.

@F=@bk ¼
X
i

ki@ðgiðXÞÞ=@bk ¼ kk ð4:46Þ

Equation 4.46 follows from the fact that
@ðgiðXÞÞ=@bk equals 0 for constraints i ≠ k and
equals 1 for the constraint i = k. The latter is true
since bi = gi(X) and thus ∂(gi(X)) = ∂bi.

From Eq. 4.46, each multiplier λi is the mar-
ginal change in the original objective function F
(X) with respect to a change in the constant bi
associated with the constraint i. For nonlinear
problems, it is the slope of the objective function
plotted against the value of bi.

Readers can work out a similar proof if a slack
or surplus variable, Si, is included in inequality
constraints to make them equations. For a less-
than-or-equal constraint gi(X) ≤ bi a squared
slack variable S2i can be added to the left-hand
side to make it an equation giðXÞþ S2i ¼ bi. For a
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greater-than-or-equal constraint gi(X) ≥ bi a
squared surplus variable S2i can be subtracted
from the left-hand side to make it an equation
giðXÞ � S2i ¼ bi. These slack or surplus variables
are squared to ensure they are nonnegative, and
also to make them appear in the differential
equations.

@L=@Si ¼ 0 ¼ �2Siki ¼ Siki ð4:47Þ

Equation 4.47 shows that either the slack or
surplus variable, S, or the multiplier, λ, will
always be zero. If the value of the slack or sur-
plus variable S is nonzero, the constraint is
redundant. The optimal solution will not be
affected by the constraint. Small changes in the
values, b, of redundant constraints will not
change the optimal value of the objective func-
tion F(X). Conversely, if the constraint is bind-
ing, the value of the slack or surplus variable
S will be zero. The multiplier λ can be nonzero if
the value of the function F(X) is sensitive to the
constraint value b.

The solution of the set of partial differential
Equations Eqs. 4.47 often involves a trial-and-
error process, equating to zero a λ or a S for each
inequality constraint and solving the remaining
equations, if possible. This tedious procedure,
along with the need to check boundary solutions
when nonnegativity conditions are imposed,
detracts from the utility of classical Lagrange
multiplier methods for solving all but relatively
simple water resources planning problems.

4.4 Dynamic Programming

The water-allocation problems in the previous
section assumed a net-benefit function for each
water-using firm. In those examples, these func-
tions were continuous and differentiable, a con-
venient attribute if methods based on calculus
(such as hill-climbing or Lagrange multipliers) are
to be used to find the best solution. In many
practical situations, these functions may not be so
continuous, or so conveniently concave for max-
imization or convex for minimization, making
calculus-based methods for their solution difficult.

A possible solution method for constrained
optimization problems containing continuous
and/or discontinuous functions of any shape is
called discrete dynamic programming. Each
decision variable value can assume one of a set
of discrete values. For continuous valued objec-
tive functions, the solution derived from discrete
dynamic programming may therefore be only an
approximation of the best one. For all practical
purposes this is not a significant limitation,
especially if the intervals between the discrete
values of the decision variables are not too large
and if simulation modeling is used to refine the
solutions identified using dynamic programming.

Dynamic programming is an approach that
divides the original optimization problem, with all
of its variables, into a set of smaller optimization
problems, each of which needs to be solved before
the overall optimum solution to the original
problem can be identified. The water supply allo-
cation problem, for example, needs to be solved
for a range of water supplies available to each firm.
Once this is done the particular allocations that
maximize the total net benefit can be determined.

4.4.1 Dynamic Programming
Networks and Recursive
Equations

A network of nodes and links can represent each
discrete dynamic programming problem.
Dynamic programming methods find the best
way to get to, or go from, any node in that net-
work. The nodes represent possible discrete
states of the system that can exist and the links
represent the decisions one could make to get
from one state (node) to another. Figure 4.6
illustrates a portion of such a network for the
three-firm allocation problem shown in Fig. 4.1.
In this case the total amount of water available,
Q − R, to all three firms is 10.

Thus, dynamic programming models involve
states, stages, and decisions. The relationships
among states, stages, and decisions are repre-
sented by networks, such as that shown in
Fig. 4.6. The states of the system are the nodes
and the values of the states are the numbers in the
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nodes. Each node value in this example is the
quantity of water available to allocate to all
remaining firms, that is, to all connected links to
the right of the node. These state variable values
typically represent some existing condition either
before making, or after having made, a decision.
The stages of the system are the different com-
ponents (e.g., firms) or time periods. Links
between (or connecting) initial and final states
represent decisions. The links in this example
represent possible allocation decisions for each
of the three different firms. Each stage is a sep-
arate firm. Each state is an amount of water that
remains to be allocated in the remaining stages.

Each link connects two nodes, the left node
value indicating the state of a system before a
decision is made, and the right node value indi-
cating the state of a system after a decision is
made. In this case, the state of the system is the
amount of water available to allocate to the
remaining firms.

In the example shown in Fig. 4.6, the state
and decision variables are represented by integer
values—an admittedly fairly coarse discretiza-
tion. The total amount of water available, in
addition to the amount that must remain in the

river, is 10. Note from the first row of Table 4.2
the exact allocation solution is x1 = 1.2,
x2 = 3.7, and x3 = 5.1. Normally, we would not
know this solution before solving for it using
dynamic programming, but since we do we can
reduce the complexity (number of nodes and
links) of the dynamic programming network so
that the repetitive process of finding the best
solution is clearer. Thus assume the range of x1
is limited to integer values from 0 to 2, the range
of x2 is from 3 to 5, and the range of x3 is from 4
to 6. These range limits are imposed here just to
reduce the size of the network. In this case, these
assumptions will not affect or constrain the
optimal integer solution. If we did not make
these assumptions the network would have, after
the first column of one node, three columns of
11 nodes, one representing each integer value
from 0 to 10. Finer (noninteger) discretizations
would involve even more nodes and connecting
links.

The links of Fig. 4.6 represent the water allo-
cations. Note that the link allocations, the num-
bers on the links, cannot exceed the amount of
water available, that is, the number in the left
node of the link. The number in the right node is

Fig. 4.6 A network
representing some of the
possible integer allocations
of water to three
water-consuming firms
j assuming 10 units of
water are available. The
circles or nodes represent
the discrete quantities of
water available to users not
yet allocated any water, and
the links represent feasible
allocation decisions xj to
the next firm j
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the quantity of water remaining after an allocation
has been made. The value in the right node, state
Sj+1, at the beginning of stage j + 1, is equal to the
value in the left node, Sj, less the amount of water,
xj, allocated to firm j as indicated on the link.
Hence, beginning with a quantity of water S1 that
can be allocated to all three firms, after allocating
x1 to Firm 1 what remains is S2:

S1 � x1 ¼ S2 ð4:48Þ

Allocating x2 to Firm 2, leaves S3.

S2 � x2 ¼ S3 ð4:49Þ

Finally, allocating x3 to Firm 3 leaves S4.

S3 � x3 ¼ S4 ð4:50Þ

Figure 4.6 shows the different values of each
of these states, Sj, and decision variables xj
beginning with a quantity S1 = Q − R = 10. Our
task is to find the best path through the network,
beginning at the leftmost node having a state
value of 10. To do this we need to know the net
benefits we will get associated with all the links

(representing the allocation decisions we could
make) at each node (state) for each firm (stage).

Figure 4.7 shows the same network as in
Fig. 4.6; however the numbers on the links rep-
resent the net benefits obtained from the associ-
ated water allocations. For the three firms j = 1,
2, and 3, the net benefits, NBj(xj), associated with
allocations xj are

NB1 x1ð Þ ¼ maximum 12� p1ð Þp1 � 3 p1ð Þ1:30

where p1 � 0:4ðx1Þ0:9
ð4:51Þ

NB2 x2ð Þ ¼ maximum 20� 1:5p2ð Þp2 � 5 p2ð Þ1:20

where p2 � 0:5 x2ð Þ0:8
ð4:52Þ

NB3 x3ð Þ ¼ maximum 28� 2:5p3ð Þp3 � 6 p3ð Þ1:15

where p3 � 0:6 x3ð Þ0:7
ð4:53Þ

The discrete dynamic programming algorithm
or procedure is a systematic way to find the best
path through this network, or any other suitable

Fig. 4.7 Network as in
Fig. 4.6 representing
integer value allocations of
water to three
water-consuming firms.
The circles or nodes
represent the discrete
quantities of water
available, and the links
represent feasible allocation
decisions. The numbers on
the links indicate the net
benefits obtained from
these particular integer
allocation decisions
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network. What makes a network suitable for
dynamic programming is the fact that all the nodes
can be lined up in a sequence of vertical columns
and each link connects a node in one column to
another node in the next column of nodes. No link
passes over or through any other column(s) of
nodes. Links also do not connect nodes in the
same column. In addition, the contribution to the
overall objective value (in this case, the total net
benefits) associated with each discrete decision
(link) in any stage or for any firm is strictly a
function of the allocation of water to the firm. It is
not dependent on the allocation decisions associ-
ated with other stages (firms) in the network.

The main challenge in using discrete dynamic
programming to solve an optimization problem is
to structure the problem so that it fits this
dynamic programming network format. Perhaps
surprisingly, many water resources planning and
management problems do. But it takes practice to
become good at converting optimization prob-
lems to networks of states, stages, and decisions
suitable for solution by discrete dynamic pro-
gramming algorithms.

In this problem the overall objective is to

Maximize
X
j

NBjðxjÞ; ð4:54Þ

where NBj(xj) is the net benefit associated with an
allocation of xj to firm j. Equations 4.51–4.53
define these net benefit functions. As before, the
index j represents the particular firm, and each
firm is a stage for this problem. Note that the index
or subscript used in the objective function often
represents an object (like a water-using firm) at a
place in space or a time period. These places or
time periods are called the stages of a dynamic
programming problem. Our task is to find the best
path from one stage to the next: in other words, the
best allocation decisions for all three firms.

Dynamic programming can be viewed as a
multistage decision-making process. Instead of
deciding all three allocations in one single opti-
mization procedure, like Lagrange multipliers,
the dynamic programming procedure divides the

problem up into many optimization problems,
one for each possible discrete state (e.g., for each
node representing an amount of water available)
in each stage (e.g., for each firm). Given a par-
ticular state Sj and stage j—that is, a particular
node in the network—what decision (link) xj will
result in the maximum total net benefits, desig-
nated as Fj(Sj), given this state Sj for this and all
remaining stages or firms j, j + 1, j + 2 … ? This
question must be answered for each node in the
network before one can find the overall best set
of decisions for each stage: in other words, the
best allocations to each firm (represented by the
best path through the network) in this example.

Dynamic programming networks can be
solved in two ways—beginning at the most right
column of nodes or states and moving from right
to left, called the backward-moving (but forward-
looking) algorithm, or beginning at the leftmost
node and moving from left to right, called the
forward-moving (but backward-looking) algo-
rithm. Both methods will find the best path
through the network. In some problems, how-
ever, only the backward-moving algorithm pro-
duces a useful solution. We will revisit this issue
when we get to reservoir operation where the
stages are time periods.

4.4.2 Backward-Moving Solution
Procedure

Consider the network in Fig. 4.7. Again, the
nodes represent the discrete states—water avail-
able to allocate to all remaining users. The links
represent particular discrete allocation decisions.
The numbers on the links are the net benefits
obtained from those allocations. We want to
proceed through the node-link network from the
state of 10 at the beginning of the first stage to the
end of the network in such a way as to maximize
total net benefits. But without looking at all
combinations of successive allocations we cannot
do this beginning at a state of 10. However, we
can find the best solution if we assume we have
already made the first two allocations and are at
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any of the nodes or states at the beginning of the
final, third, stage with only one allocation deci-
sion remaining. Clearly at each node representing
the water available to allocate to the third firm, the
best decision is to pick the allocation (link) hav-
ing the largest net benefits.

Denoting F3(S3) as the maximum net benefits
we can achieve from the remaining amount of
water S3, then for each discrete value of S3 we
can find the x3 that maximizes F3(S3). Those
shown in Fig. 4.7 include:

F3 7ð Þ ¼ Maximum NB3 x3ð Þf g
x3 � 7; the total flow available:

4� x3� 6; the allowable range of allocations

= Maximum 27:9; 31:1; 33:7f g ¼ 33:7when x3 ¼ 6

ð4:55Þ

F3 6ð Þ ¼ Maximum NB3 x3ð Þf g
x3 � 6

4� x3 � 6

¼ Maximum 27:9; 31:1; 33:7f g ¼ 33:7when x3 ¼ 6

ð4:56Þ

F3 5ð Þ ¼ Maximum NB3 x3ð Þf g
x3 � 5

4� x3 � 6

¼ Maximum 27:9; 31:1f g ¼ 31:1when x3 ¼ 5

ð4:57Þ

F3 4ð Þ ¼ Maximum NB3 x3ð Þf g
x3 � 4

4� x3 � 6

¼ Maximum 27:9f g ¼ 27:9 when x3 ¼ 4

ð4:58Þ

These computations are shown on the network
in Fig. 4.8. Note that there are no benefits to be
obtained after the third allocation, so the decision
to be made for each node or state prior to allo-
cating water to Firm 3 is simply that which
maximizes the net benefits derived from that last
(third) allocation. In Fig. 4.8 the links repre-
senting the decisions or allocations that result in
the largest net benefits are shown with arrows.

Fig. 4.8 Using the backward-moving dynamic program-
ming method for finding the maximum remaining net
benefits, Fj(Sj), and optimal allocations (denoted by the
arrows on the links) for each state in Stage 3, then for
each state in Stage 2 and finally for the initial state in

Stage 1 to obtain the allocation policy that maximizes
total net benefits, F1(10). The minimum flow to remain in
the river, R, is in addition to the ten units available for
allocation and is not shown in this network
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Having computed the maximum net benefits,
F3(S3), associated with each initial state S3 for
Stage 3, we can nowmove backward (to the left) to
the discrete states S2 at the beginning of the second
stage. Again, these states represent the quantity of
water available to allocate to Firms 2 and 3. Denote
F2(S2) as the maximum total net benefits obtained
from the two remaining allocations x2 and x3 given
the quantity S2 water available. The best x2 depends
not only on the net benefits obtained from the
allocation x2 but also on the maximum net benefits
obtainable after that, namely the just-calculated
F3(S3) associated with the state S3 that results from
the initial state S2 and a decision x2. As defined in
Eq. 4.49, this final state S3 in Stage 2 obviously
equals S2 − x2. Hence for those nodes at the
beginning of Stage 2 shown in Fig. 4.8:

F2 10ð Þ ¼ Maximum NB2 x2ð ÞþF3 S3 ¼ 10� x2ð Þf g
x2 � 10

3� x2 � 5

¼ Maximumf15:7þ 33:7; 18:6

þ 33:7; 21:1þ 31:1g ¼ 52:3 when x2 ¼ 4

ð4:59Þ

F2 9ð Þ ¼ Maximum NB2 x2ð ÞþF3 S3 ¼ 9� x2ð Þf g
x2 � 9

3� x2 � 5

¼ Maximumf15:7þ 33:7; 18:6

þ 31:1; 21:1þ 27:9g ¼ 49:7

when x2 ¼ 4

ð4:60Þ

F2 8ð Þ ¼ Maximum NB2 x2ð ÞþF3 S3 ¼ 8� x2ð Þf g
x2 � 8

3� x2 � 5 ðassume 4 instead of 5 since both

will not affect optimal solutionÞ
¼ Maximumf15:7þ 31:1; 18:6

þ 27:9g ¼ 46:8 when x2 ¼ 3

ð4:61Þ

These maximum net benefit functions, F2(S2),
could be calculated for the remaining discrete
states from 7 to 0.

Having computed the maximum net benefits
obtainable for each discrete state at the beginning
of Stage 2, that is, all the F2(S2) values, we can
move backward or left to the beginning of Stage
1. For this beginning stage there is only one state,
the state of 10 we are actually in before making
any allocations to any of the firms. In this case,
the maximum net benefits, F1(10), we can obtain
from given 10 units of water available, is

F1 10ð Þ ¼ Maximum NB1 x1ð ÞþF2 S2 ¼ 10� x1ð Þf g
x1 � 10

0� x1 � 2

¼ Maximumf0þ 52:3; 3:7

þ 49:7; 6:3þ 46:8g ¼ 53:4 when x1 ¼ 1

ð4:62Þ

The value of F1(10) in Eq. 4.62 is the same as
the value of Eq. 4.54. This value is the maximum
net benefits obtainable from allocating the
available 10 units of water. From Eq. 4.62 we
know that we will get a maximum of 53.4 net
benefits if we allocate 1 unit of water to Firm 1.
This leaves 9 units of water to allocate to the two
remaining firms. This is our optimal state at the
beginning of Stage 2. Given a state of 9 at the
beginning of Stage 2, we see from Eq. 4.60 that
we should allocate 4 units of water to Firm 2.
This leaves 5 units of water for Firm 3. Given a
state of 5 at the beginning of Stage 3, Eq. 4.57
tells us we should allocate all 5 units to Firm 3.
All this is illustrated in Fig. 4.8.

Compare this discrete solution with the con-
tinuous one defined by Lagrange multipliers as
shown in Table 4.2. The exact solution, to the
nearest tenth, is 1.2, 3.7, and 5.1 for x1, x2, and
x3, respectively. The solution just derived from
discrete dynamic programming that assumed
only integer allocation values is 1, 4, and 5,
respectively.

To summarize, a dynamic programming
model was developed for the following problem:

Maximize Net benefit ð4:63Þ
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Subject to

Net benefit ¼ Total return� Total cost

ð4:64Þ

Total return ¼ 12� p1ð Þp1 þ 20� 1:5p2ð Þp2
þ 28� 2:5p3ð Þp3

ð4:65Þ

Total cost ¼ 3 p1ð Þ1:30 þ 5 p2ð Þ1:20 þ 6 p3ð Þ1:15
ð4:66Þ

p1 � 0:4 x1ð Þ0:9 ð4:67Þ

p2 � 0:5 x2ð Þ0:8 ð4:68Þ

p3 � 0:6 x3ð Þ0:7 ð4:69Þ

x1 þ x2 þ x3 � 10 ð4:70Þ

The discrete dynamic programming version of
this problem required discrete states Sj repre-
senting the amount of water available to allocate
to firms j, j + 1, …. It required discrete alloca-
tions xj. Next it required the calculation of the
maximum net benefits, Fj(Sj), that could be
obtained from all firms j, beginning with Firm 3,
and proceeding backward as indicated in
Eqs. 4.71–4.73.

F3 S3ð Þ ¼ maximum NB3 x3ð Þf g over all x3 � S3;

for all discrete S3 values between 0 and 10

ð4:71Þ

F2 S2ð Þ ¼ maximum NB2 x2ð ÞþF3 S3ð Þf g
over all x2� S2 and S3 ¼ S2 � x2; 0� S2� 10

ð4:72Þ

F1 S1ð Þ ¼ maximum NB1 x1ð ÞþF2 S2ð Þf g
over all x1 � S1 and S2 ¼ S1 � x1 and S1 ¼ 10

ð4:73Þ

The values of each NBj(xj) are obtained from
Eqs. 4.51 to 4.53.

To solve for F1(S1) and each optimal alloca-
tion xj we must first solve for all values of F3(S3).
Once these are known we can solve for all values
of F2(S2). Given these F2(S2) values, we can
solve for F1(S1). Equations 4.71 need to be
solved before Eqs. 4.72 can be solved, and
Eqs. 4.72 need to be solved before Eqs. 4.73 can
be solved. They need not be solved simultane-
ously, and they cannot be solved in reverse order.
These three equations are called recursive equa-
tions. They are defined for the backward-moving
dynamic programming solution procedure.

There is a correspondence between the non-
linear optimization model defined by Eqs. 4.63–
4.70 and the dynamic programming model
defined by the recursive Eqs. 4.71–4.73. Note
that F3(S3) in Eq. 4.71 is the same as

F3 S3ð Þ ¼ Maximum NB3 x3ð Þ ð4:74Þ

Subject to

x3 � S3; ð4:75Þ

where NB3(x3) is defined in Eq. 4.53.
Similarly, F2(S2) in Eq. 4.72 is the same as

F2 S2ð Þ ¼ MaximumNB2 x2ð ÞþNB3 x3ð Þ
ð4:76Þ

Subject to

x2 þ x3 � S2; ð4:77Þ

where NB2(x2) and NB3(x3) are defined in
Eqs. 4.52 and 4.53.

Finally, F1(S1) in Eq. 4.73 is the same as

F1 S1ð Þ ¼ MaximumNB1 x1ð ÞþNB2 x2ð ÞþNB3 x3ð Þ
ð4:78Þ

Subject to

x1 þ x2 þ x3 � S1 ¼ 10; ð4:79Þ

where NB1(x1), NB2(x2), and NB3(x3) are defined
in Eqs. 4.51–4.53.
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Alternatively, F3(S3) in Eq. 4.71 is the same as

F3 S3ð Þ ¼ Maximum 28� 2:5p3ð Þp3 � 6 p3ð Þ1:15
ð4:80Þ

Subject to

p3 � 0:6 x3ð Þ0:7 ð4:81Þ

x3 � S3 ð4:82Þ

Similarly, F2(S2) in Eq. 4.72 is the same as

F2 S2ð Þ ¼ Maximum 20� 1:5p2ð Þp2
þ 28� 2:5p3ð Þp3� 5 p2ð Þ1:20�6 p3ð Þ1:15

ð4:83Þ

Subject to

p2 � 0:5 x2ð Þ0:8 ð4:84Þ

p3 � 0:6 x3ð Þ0:7 ð4:85Þ

x2 þ x3 � S2 ð4:86Þ

Finally, F1(S1) in Eq. 4.73 is the same as

F1 S1ð Þ ¼ Maximum 12� p1ð Þp1
þ 20� 1:5p2ð Þp2 þ 28� 2:5p3ð Þp3
� 3 p1ð Þ1:30 þ 5 p2ð Þ1:20 þ 6 p3ð Þ1:15
h i

ð4:87Þ

Subject to

p1 � 0:4 x1ð Þ0:9 ð4:88Þ

p2 � 0:5 x2ð Þ0:8 ð4:89Þ

p3 � 0:6 x3ð Þ0:7 ð4:90Þ

x1 þ x2 þ x3 � S1 ¼ 10 ð4:91Þ

The transition function of dynamic program-
ming defines the relationship between two

successive states Sj and Sj+1 and the decision xj.
In the above example, these transition functions
are defined by Eqs. 4.48–4.50, or, in general
terms for all firms j, by

Sjþ 1 ¼ Sj � xj ð4:92Þ

4.4.3 Forward-Moving Solution
Procedure

We have just described the backward-moving
dynamic programming algorithm. In that
approach at each node (state) in each stage we
calculated the best value of the objective function
that can be obtained from all further or remaining
decisions. Alternatively one can proceed for-
ward, that is, from left to right, through a
dynamic programming network. For the
forward-moving algorithm at each node we need
to calculate the best value of the objective
function that could be obtained from all past
decisions leading to that node or state. In other
words, we need to find how best to get to each
state Sj+1 at the end of each stage j.

Returning to the allocation example, define
fj(Sj+1) as the maximum net benefits from the
allocation of water to firms 1, 2, …, j, given the
remaining water, state Sj+1. For this example, we
begin the forward-moving, but backward-looking,
process by selecting each of the ending states in the
first stage j = 1 and finding the best way to have
arrived at (or to have achieved) those ending states.
Since in this example there is only one way to get
to each of those states, as shown in Fig. 4.7 or
Fig. 4.8 the allocation decisions, x1, given a value
for S2 are obvious.

f1 S2ð Þ ¼ maximum NB1 x1ð Þf g
x1 ¼ 10� S2

ð4:93Þ

Hence, f1(S2) is simply NB1(10 − S2). Once
the values for all f1(S2) are known for all discrete
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S2 between 0 and 10, move forward (to the right)
to the end of Stage 2 and find the best allocations
x2 to have made given each final state S3.

f2 S3ð Þ ¼ maximum NB2 x2ð Þþ f1 S2ð Þf g
0� x2 � 10� S3
S2 ¼ S3 þ x2

ð4:94Þ

Once the values of all f2(S3) are known for all
discrete states S3 between 0 and 10, move for-
ward to Stage 3 and find the best allocations x3 to
have made given each final state S4.

f3 S4ð Þ ¼ maximum NB3 x3ð Þþ f2 S3ð Þf g
for all discrete S4 between 0 and 10:

0� x3 � 10� S4

S3 ¼ S4 þ x3

ð4:95Þ

Figure 4.9 illustrates a portion of the network
represented by Eqs. 4.93–4.95, and the fj(Sj+1)
values.

From Fig. 4.9, note the highest total net ben-
efits are obtained by ending with 0 remaining

water at the end of Stage 3. The arrow tells us
that if we are to get to that state optimally, we
should allocate 5 units of water to Firm 3. Thus
we must begin Stage 3, or end Stage 2, with
10 − 5 = 5 units of water. To get to this state at
the end of Stage 2 we should allocate 4 units of
water to Firm 2. The arrow also tells us we
should have had 9 units of water available at the
end of Stage 1. Given this state of 9 at the end of
Stage 1, the arrow tells us we should allocate 1
unit of water to Firm 1. This is the same allo-
cation policy as obtained using the backward-
moving algorithm.

4.4.4 Numerical Solutions

The application of discrete dynamic program-
ming to most practical problems will usually
require writing some software. There are no
general dynamic programming computer pro-
grams available that will solve all dynamic pro-
gramming problems. Thus any user of dynamic
programming will need to write a computer
program to solve a particular problem unless they

Fig. 4.9 Using the
forward-moving dynamic
programming method for
finding the maximum
accumulated net benefits,
fj(Sj + 1), and optimal
allocations (denoted by the
arrows on the links) that
should have been made to
reach each ending state,
beginning with the ending
states in Stage 1, then for
each ending state in Stage 2
and finally for the ending
states in Stage 3
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do it by hand. Most computer programs written
for solving specific dynamic programming
problems create and store the solutions of the
recursive equations (e.g., Eqs. 4.93–4.95) in
tables. Each stage is a separate table, as shown in
Tables 4.3, 4.4, and 4.5 for this example
water-allocation problem. These tables apply to
only a part of the entire problem, namely that part
of the network shown in Figs. 4.8 and 4.9. The
backward solution procedure is used.

Table 4.3 contains the solutions of Eqs. 4.55–
4.58 for the third stage. Table 4.4 contains the
solutions of Eqs. 4.59–4.61 for the second stage.
Table 4.5 contains the solution of Eq. 4.62 for
the first stage.

From Table 4.5 we see that, given 10 units of
water available, we will obtain 53.4 net benefits

and to get this we should allocate 1 unit to Firm
1. This leaves 9 units of water for the remaining
two allocations. From Table 4.4 we see that for a
state of 9 units of water available we should
allocate 4 units to Firm 2. This leaves 5 units.
From Table 4.3 for a state of 5 units of water
available we see we should allocate all 5 of them
to Firm 3.

Performing these calculations for various
discrete total amounts of water available, say
from 0 to 38 in this example, will define an
allocation policy (such as the one shown in
Fig. 4.5 for a different allocation problem) for
situations when the total amount of water is less
than that desired by all the firms. This policy can
then be simulated using alternative time series of
available amounts of water, such as streamflows,

Table 4.3 Computing the values of F3(S3) and optimal allocations x3 for all states S3 in Stage 3

Table 4.4 Computing the values of F2(S2) and optimal allocations x2 for all states S2 in Stage 2
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to obtain estimates of the time series (or statis-
tical measures of those time series) of net benefits
obtained by each firm, assuming the allocation
policy is followed over time.

4.4.5 Dimensionality

One of the limitations of dynamic programming
is handling multiple state variables. In our
water-allocation example, we had only one state
variable: the total amount of water available. We
could have enlarged this problem to include other
types of resources the firms require to make their
products. Each of these state variables would
need to be discretized. If, for example, only
m discrete values of each state variable are con-
sidered, for n different state variables (e.g., types
of resources) there are mn different combinations
of state variable values to consider at each stage.
As the number of state variables increases, the
number of discrete combinations of state variable
values increases exponentially. This is called
dynamic programming’s “curse of dimensional-
ity”. It has motivated many researchers to search
for ways of reducing the number of possible
discrete states required to find an optimal solu-
tion to large multistate-variable problems.

4.4.6 Principle of Optimality

The solution of dynamic programming models or
networks is based on a principal of optimality

(Bellman 1957). The backward-moving solution
algorithm is based on the principal that no matter
what the state and stage (i.e., the particular node
you are at), an optimal policy is one that pro-
ceeds forward from that node or state and stage
optimally. The forward-moving solution algo-
rithm is based on the principal that no matter
what the state and stage (i.e., the particular node
you are at), an optimal policy is one that has
arrived at that node or state and stage in an
optimal manner.

This “principle of optimality” is a very simple
concept but requires the formulation of a set of
recursive equations at each stage. It also requires
that either in the last stage (j = J) for a
backward-moving algorithm, or in the first stage
(j = 1) for a forward-moving algorithm, the
future value functions, Fj+1(Sj+1), associated with
the ending state variable values, or past value
functions, f0(S1), associated with the beginning
state variable values, respectively, all equal some
known value. Usually that value is 0 but not
always. This condition is needed in order to
begin the process of solving each successive
recursive equation.

4.4.7 Additional Applications

Among the common dynamic programming
applications in water resources planning are
water allocations to multiple uses, infrastructure
capacity expansion, and reservoir operation.
The previous three-user water-allocation problem

Table 4.5 Computing the values of F1(S1) and optimal allocations x1, for all states S1, in Stage 1
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(Fig. 4.1) illustrates the first type of application.
The other two applications are presented below.

4.4.7.1 Capacity Expansion
How much infrastructure should be built, when
and why? Consider a municipality that must plan
for the future expansion of its water supply sys-
tem or some component of that system, such as a
reservoir, aqueduct, or treatment plant. The
capacity needed at the end of each future period
t has been estimated to be Dt. The cost, Ct(st, xt)
of adding capacity xt in each period t is a function
of that added capacity as well as of the existing
capacity st at the beginning of the period. The
planning problem is to find that time sequence of
capacity expansions that minimizes the present
value of total future costs while meeting the
predicted capacity demand requirements. This is
the usual capacity expansion problem.

This problem can be written as an optimiza-
tion model: The objective is to minimize the
present value of the total cost of capacity
expansion.

Minimize
X
t

Ct st; xtð Þ; ð4:96Þ

where Ct(st, xt) is the present value of the cost of
capacity expansion xt in period t given an initial
capacity of st.

The constraints of this model define the mini-
mum required final capacity in each period t, or
equivalently the next period’s initial capacity, st+1,
as a function of the known existing capacity s1
and each expansion xt up through period t.

stþ 1 ¼ s1 þ
X
s¼1;t

xs for t ¼ 1; 2; . . .; T

ð4:97Þ

Alternatively these equations may be expres-
sed by a series of continuity relationships:

stþ 1 ¼ st þ xt for t ¼ 1; 2; . . .; T ð4:98Þ

In this problem, the constraints must also
ensure that the actual capacity st+1 at the end of

each future period t is no less than the capacity
required Dt at the end of that period.

stþ 1 �Dt for t ¼ 1; 2; . . .; T ð4:99Þ

There may also be constraints on the possible
expansions in each period defined by a set Ωt of
feasible capacity additions in each period t:

xt 2 Xt ð4:100Þ

Figure 4.10 illustrates this type of capacity
expansion problem. The question is how much
capacity to add and when. It is a significant
problem for several reasons. One is that the cost
functions Ct(st, xt) typically exhibit fixed costs
and economies of scale, as illustrated in Fig. 4.11.
Each time any capacity is added there are fixed as
well as variable costs incurred. Fixed and variable
costs that show economies of scale (decreasing
average costs associated with increasing capacity
additions) motivate the addition of excess
capacity, capacity not needed immediately but
expected to be needed in the future to meet an
increased demand for additional capacity.

The problem is also important because any
estimates made today of future demands, costs
and interest rates are likely to be wrong. The
future is uncertain. Its uncertainties increase the
further the future. Capacity expansion planners
need to consider the future if their plans are to be
cost-effective and not myopic from assuming

Fig. 4.10 A demand projection (solid blue line) and a
possible capacity expansion schedule (red line) for
meeting that projected demand over time
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there is no future. Just how far into the future do
they need to look? And what about the uncer-
tainty in all future costs, demands, and interest
rate estimates? These questions will be addressed
after showing how the problem can be solved for
any fixed-planning horizon and estimates of
future demands, interest rates, and costs.

The constrained optimization model defined
by Eqs. 4.96–4.100 can be restructured as a
multistage decision-making process and solved
using either a forward or backward-moving dis-
crete dynamic programming solution procedure.
The stages of the model will be the time periods
t. The states will be either the capacity st+1 at the
end of a stage or period t if a forward-moving
solution procedure is adopted, or the capacity st,
at the beginning of a stage or period t if a
backward-moving solution procedure is used.

A network of possible discrete capacity states
and decisions can be superimposed onto the
demand projection of Fig. 4.9, as shown in
Fig. 4.12. The solid blue circles in Fig. 4.12
represent possible discrete states, St, of the sys-
tem, the amounts of additional capacity existing
at the end of each period t − 1 or equivalently at
the beginning of period t.

Consider first a forward-moving dynamic
programming algorithm. To implement this,
define ft(st+1) as the minimum cost of achieving a
capacity st+1, at the end of period t. Since at the
beginning of the first period t = 1, the accumu-
lated least cost is 0, f0(s1) = 0.

Hence, for each final discrete state s2 in stage
t = 1 ranging from D1 to the maximum demand
DT, define

f1 s2ð Þ ¼ min C1 s1; x1ð Þf g in which the discrete x1
¼ s2 and s1 ¼ 0

ð4:101Þ
Moving to stage t = 2, for the final discrete

states s3 ranging from D2 to DT,

f2 s3ð Þ ¼ min C2 s2; x2ð Þ þ f1 s2ð Þf g
over all discrete x2 between 0

and s3 � D1 and s2 ¼ s3 � x2

ð4:102Þ

Moving to stage t = 3, for the final discrete
states s4 ranging from D3 to DT,

f3 s4ð Þ ¼min C3 s3; x3ð Þþ f2 s3ð Þf g
over all discrete x3between 0

and s4 � D2 and s3 ¼ s4 � x3

ð4:103Þ
In general for all stages t between the first and

last:

ft stþ 1ð Þ ¼ minfCtðst; xtÞþ ft�1 stð Þg
over all discrete xt between 0

and stþ 1 � Dt�1 and st ¼ stþ 1 � xt

ð4:104Þ
For the last stage t = T and for the final dis-

crete state sT+1 = DT,

Fig. 4.11 Typical cost function for additional capacity
given an existing capacity. The cost function shows the
fixed costs, C0, required if additional capacity is to be
added, and the economies of scale associated with the
concave portion of the cost function Fig. 4.12 Network of discrete capacity expansion deci-

sions (links) that meet the projected demand
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fT sT þ 1ð Þ ¼ minfCTðsT ; xTÞþ fT�1 sTð Þg
over all discrete xT
between 0 andDT � DT�1

where sT ¼ sT þ 1 � xT

ð4:105Þ

The value of fT(sT+1) is the minimum present
value of the total cost of meeting the demand for
T time periods. To identify the sequence of
capacity expansion decisions that results in this
minimum present value of the total cost requires
backtracking to collect the set of best decisions xt
for all stages t. A numerical example will illus-
trate this.

A numerical example
Consider the five-period capacity expansion
problem shown in Fig. 4.12. Figure 4.13 is the

same network with the present value of the ex-
pansion costs on each link. The values of the
states, the existing capacities, represented by the
nodes, are shown on the left vertical axis. The
capacity expansion problem is solved on
Fig. 4.14 using the forward-moving algorithm.

From the forward-moving solution to the
dynamic programming problem shown in
Fig. 4.14, the present value of the cost of the
optimal capacity expansion schedule is 23 units
of money. Backtracking (moving left against the
arrows) from the farthest right node, this sched-
ule adds 10 units of capacity in period t = 1, and
15 units of capacity in period t = 3.

Next consider the backward-moving algo-
rithm applied to this capacity expansion problem.
The general recursive equation for a
backward-moving solution is

Fig. 4.13 A discrete capacity expansion network show-
ing the present value of the expansion costs associated
with each feasible expansion decision. Finding the best

path through the network can be done using forward or
backward-moving discrete dynamic programming
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Ft stð Þ ¼ minimumfCtðst; xtÞþFtþ 1 stþ 1ð Þg
over all discrete xt from Dt � st to DT � st
for all discrete states st from Dt�1 to DT

;

ð4:106Þ

where FT+1(DT) = 0 and as before each cost
function is the discounted cost.

Once again, as shown in Fig. 4.14, the mini-
mum total present value cost is 23 if 10 units of
additional capacity are added in period t = 1 and
15 in period t = 3.

Now consider the question of the uncertainty
of future demands, Dt, discounted costs, Ct(st, xt),
as well as to the fact that the planning horizon
T is only 5 time periods. Of importance is just
how these uncertainties and finite planning
horizon affect our decisions. While the model

gives us a time series of future capacity expan-
sion decisions for the next 5 time periods, what is
important to decision-makers is what additional
capacity to add in the current period, i.e., now,
not what capacity to add in future periods. Does
the uncertainty of future demands and costs and
the 5-period planning horizon affect this first
decision, x1? This is the question to ask. If the
answer is no, then one can place some confidence
in the value of x1. If the answer is yes, then more
study may be warranted to determine which
demand and cost scenario to assume, or, if
applicable, how far into the future to extend the
planning horizon.

Future capacity expansion decisions in time
periods 2, 3, and so on can be based on updated
information and analyses carried out closer to the

Fig. 4.14 A capacity-expansion example, showing the
results of a forward-moving dynamic programming
algorithm. The numbers next to the nodes are the

minimum cost to have reached that particular state at
the end of the particular time period t
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time those decisions are to be made. At those
times, the forecast demands and economic cost
estimates can be updated and the planning hori-
zon extended, as necessary, to a period that again
does not affect the immediate decision. Note that
in the example problem shown in Figs. 4.14 and
4.15, the use of 4 periods instead of 5 would have
resulted in the same first-period decision. There
is no need to extend the analysis to 6 or more
periods.

To summarize: What is important to
decision-makers is what additional capacity to
add now. While the current period’s capacity
addition should be based on the best estimates of
future costs, interest rates and demands, once a
solution is obtained for the capacity expansion
required for this and all future periods up to some

distant time horizon, one can then ignore all but
that first decision, x1: that is, what to add now.
Then just before the beginning of the second
period, the forecasting and analysis can be
redone with updated data to obtain an updated
solution for what if any capacity to add in period
2, and so on into the future. Thus, these
sequential decision making dynamic program-
ming models can be designed to be used in a
sequential decision-making process.

4.4.7.2 Reservoir Operation
Reservoir operators need to know how much
water to release and when. Reservoirs designed to
meet demands for water supplies, recreation,
hydropower, the environment and/or flood con-
trol need to be operated in ways that meet those

Fig. 4.15 A capacity-expansion example, showing the
results of a backward-moving dynamic programming
algorithm. The numbers next to the nodes are the

minimum remaining cost to have the particular capacity
required at the end of the planning horizon given the
existing capacity of the state
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demands in a reliable and effective manner. Since
future inflows or storage volumes are uncertain,
the challenge, of course, is to determine the best
reservoir release or discharge for a variety of
possible inflows and storage conditions that could
exist or happen in each time period t in the future.

Reservoir release policies are often defined in
the form of what are called “rule curves.” Fig-
ure 4.17 illustrates a rule curve for a single
reservoir on the Columbia River in the north-
western United States. It combines components
of two basic types of release rules. In both of
these, the year is divided into various discrete
within-year time periods. There is a specified
release for each value of storage in each
within-year time period. Usually higher storage

zones are associated with higher reservoir relea-
ses. If the actual storage is relatively low, then
less water is usually released so as to hedge
against a continuing water shortage or drought.

Release rules may also specify the desired
storage level for the time of year. The operator is
to release water as necessary to achieve these
target storage levels. Maximum and minimum
release constraints might also be specified that
may affect how quickly the target storage levels
can be met. Some rule curves define multiple
target storage levels depending on hydrological
(e.g., snow pack) conditions in the upstream
watershed, or on the forecast climate conditions
as affected by ENSO cycles, solar geomagnetic
activity, ocean currents and the like.

Fig. 4.16 An example reservoir rule curve specifying
the storage targets and some of the release constraints,
given the particular current storage volume and time of
year. The release constraints also include the minimum

and maximum release rates and the maximum down-
stream channel rate of flow and depth changes that can
occur in each month
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Reservoir release rule curves for a year, such
as that shown in Fig. 4.16, define a policy that
does not vary from one year to the next. The
actual releases will vary, however, depending on
the inflows and storage volumes that actually
occur. The releases are often specified indepen-
dently of future inflow forecasts. They are typi-
cally based only on existing storage volumes and
within-year periods—the two axes of Fig. 4.16.

Release rules are typically derived from trial
and error simulations. To begin these simulations

it is useful to have at least an approximate idea of
the expected impact of different alternative poli-
cies on various system performance measures or
objectives. Policy objectives could be the maxi-
mization of expected annual net benefits from
downstream releases, reservoir storage volumes,
hydroelectric energy and flood control, or the
minimization of deviations from particular
release, storage volume, hydroelectric energy or
flood flow targets or target ranges. Discrete
dynamic programming can be used to obtain

Fig. 4.17 Network representation of the four-season
reservoir release problem. Given any initial storage
volume St at the beginning of a season t, and an expected

inflow of Qt during season t, the links indicate the
possible release decisions corresponding to those in
Table 4.7
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initial estimates of reservoir-operating policies
that meet these and other objectives. The results
of discrete dynamic programming can be
expressed in the form shown in Fig. 4.17.

A numerical example
As a simple example, consider a reservoir having
an active storage capacity of 20 million cubic
meters, or for that matter any specified volume
units. The active storage volume in the reservoir
can vary between 0 and 20. To use discrete
dynamic programming, this range of possible
storage volumes must be divided into a set of
discrete values. These will be the discrete state
variable values. In this example let the range of
storage volumes be divided into intervals of 5
storage volume units. Hence, the initial storage
volume, St, can assume values of 0, 5, 10, 15, and
20 for all periods t.

For each period t, let Qt be the mean inflow,
Lt(St, St+1) the evaporation and seepage losses
that depend on the initial and final storage vol-
umes in the reservoir, and Rt the release or dis-
charge from the reservoir. Each variable is
expressed as volume units for the period t.

Storage volume continuity requires that in
each period t the initial active storage volume, St,
plus the inflow, Qt, less the losses, Lt(St, St+1),
and release, Rt, equals the final storage, or
equivalently the initial storage, St+1, in the fol-
lowing period t + 1. Hence

St þQt � Rt � LtðSt; Stþ 1Þ ¼ Stþ 1 for each period t:

ð4:107Þ

To satisfy the requirement (imposed for con-
venience in this example) that each storage vol-
ume variable be a discrete value over the range
from 0 to 20 in units of 5, the releases, Rt, must
be such that when Qt − Rt − Lt(St, St+1) is added
to St the resulting value of St+1 is one of the five
discrete numbers between 0 and 20.

Assume four within-year periods t in each year
(kept small for this illustrative example). In these
four seasons assume the mean inflows, Qt, are 24,
12, 6, and 18, respectively. Table 4.6 defines the

evaporation and seepage losses based on different
discrete combinations of initial and final storage
volumes for each within-year period t.

Rounding these losses to the nearest integer
value, Table 4.7 shows the net releases associ-
ated with initial and final storage volumes. They
are computed using Eq. 4.107. The information
in Table 4.7 allows us to draw a network repre-
senting each of the discrete storage volume states
(the nodes), and each of the feasible releases (the
links). This network for the four seasons t in the
year is illustrated in Fig. 4.17.

This reservoir-operating problem is a multi-
stage decision-making problem. As Fig. 4.17
illustrates, at the beginning of any season t, the
storage volume can be in any of the five discrete
states. Given the state, a release decision is to be
made. This release will depend on the state: the
initial storage volume and the mean inflow, as
well as the losses that may be estimated based on
the initial and final storage volumes, as defined in
Table 4.6. The release will also depend on what
is to be accomplished—that is, the objectives to
be satisfied.

For this example, assume there are various
targets that water users would like to achieve.
Downstream water users want reservoir operators
to meet their flow targets. Individuals who use
the lake for recreation want the reservoir opera-
tors to meet storage volume or storage level
targets. Finally, individuals living on the down-
stream floodplain want the reservoir operators to
provide storage capacity for flood protection.
Table 4.8 identifies these different targets that are
to be met, if possible, for the duration of each
season t.

Clearly, it will not be possible to meet all
these storage volume and release targets in all
four seasons, given inflows of 24, 12, 6, and 18,
respectively. Hence, the objective in this example
will be to do the best one can: to minimize a
weighted sum of squared deviations from each of
these targets. The weights reflect the relative
importance of meeting each target in each season
t. Target deviations are squared to reflect the fact

4.4 Dynamic Programming 123



Table 4.6 Evaporation and seepage losses based on initial and final storage volumes for example reservoir-operating
problem
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Table 4.7 Discrete releases associated with initial and final storage volumes for example reservoir-operating problem
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that the marginal “losses” associated with devi-
ations increase with increasing deviations. Small
deviations are not as serious as larger deviations,
and it is better to have numerous small deviations
rather than a few larger ones.

During the recreation season (periods 2 and 3),
deviations below or above the recreation storage
lake volume targets are damaging. During the
flood season (period 1), any storage volume in
excess of the flood control storage targets of 15
reduces the flood storage capacity. Deviations
below that flood control target are not penalized.
Flood control and recreation storage targets dur-
ing each season t apply throughout the season,
thus they apply to the initial storage St as well as
to the final storage St+1 in appropriate periods t.

The objective is to minimize the sum of total
weighted squared deviations, TSDt, over all
seasons t from now on into the future:

Minimize
X
t

TSDt ; ð4:108Þ

where

TSDt ¼ wst TS� Stð Þ2 þðTS� Stþ 1Þ2
h i

þ wft EStð Þ2 þ ðEStþ 1Þ2
h i

þwrt DR
2
t

� �

ð4:109Þ

In the above equation, when t = 4, the last
period of the year, the following period t + 1 = 1,
the first period in the following year. Each ESt is
the storage volume in excess of the flood storage
target volume, TF. Each DRt is the difference
between the actual release, Rt, and the target
release, TRt, when the release is less than the target.

The excess storage, ESt, above the flood target
storage TF at the beginning of each season t can
be defined by the constraint:

St �TFþESt for periods t ¼ 1 and 2:

ð4:110Þ

The deficit release, DRt, during period t can
be defined by the constraint:

Rt �TRt � DRt for all periods t: ð4:111Þ

The first component of the right side of
Eq. 4.109 defines the weighted squared devia-
tions from a recreation storage target, TS, at the
beginning and end of season t. In this example
the recreation season is during periods 2 and 3.
The weights, wst, associated with the recreation
component of the objective are 1 in periods 2 and
3. In periods 1 and 4 the weights, wst, are 0.

The second component of Eq. 4.109 is for
flood control. It defines the weighted squared

Table 4.8 Storage volume and release targets for the example reservoir operation problem
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deviations associated with storage volumes in
excess of the flood control target volume, TF, at
the beginning and end of the flood season, period
t = 1. In this example, the weights, wft, are 1 for
period 1 and 0 for periods 2, 3, and 4. Note the
conflict between flood control and recreation at
the end of period 1 or equivalently at the
beginning of period 2.

Finally, the last component of Eq. 4.109
defines the weighted squared deficit deviations
from a release target, TRt, In this example all
release weights, wrt, equal 1.

Associated with each link in Fig. 4.17 is the
release, Rt, as defined in Table 4.7. Also associ-
ated with each link is the sum of weighted
squared deviations, TSDt, that result from the
particular initial and final storage volumes and the
storage volume and release targets identified in
Table 4.8. They are computed using Eq. 4.109,
with the releases defined in Table 4.7 and targets
defined in Table 4.8, for each feasible combina-
tion of initial and final storage volumes, St and
St+1, for each of the four seasons or periods in a
year. These computed weighted squared devia-
tions for each link are shown in Table 4.9.

The goal in this example problem is to find the
path through a multiyear network—each year of
which is as shown in Fig. 4.17—that minimizes
the sum of the squared deviations associated with
each of the path’s links. Again, each link’s
weighted squared deviations are given in
Table 4.9. Of interest is the best path into the
future from any of the nodes or states (discrete
storage volumes) that the system could be in at
the beginning of any season t.

These paths can be found using the
backward-moving solution procedure of discrete
dynamic programming. This procedure begins at
any arbitrarily selected time period or season
when the reservoir presumably produces no fur-
ther benefits to anyone (and it does not matter
when that time is—just pick any time) and pro-
ceeds backward, from right to left one stage (i.e.,
one time period) at a time, toward the present. At
each node (representing a discrete storage

volume St and inflow Qt), we can calculate the
release or final storage volume in that period that
minimizes the remaining sum of weighted
squared deviations for all remaining seasons.
Denote this minimum sum of weighted squared
deviations for all n remaining seasons t as
Fn
t St;Qtð Þ. This value is dependent on the state

(St, Qt), and stage, t, and the number n of
remaining seasons. It is not a function of the
decision Rt or St+1.

This minimum sum of weighted squared
deviations for all n remaining seasons t is equal
to

Fn
t St;Qtð Þ ¼ min

X
t¼1;n

TSDtðSt;Rt; Stþ 1Þ

over all feasible values of Rt;

ð4:112Þ

where

Stþ 1 ¼ St þQt � Rt � LtðSt; Stþ 1Þ ð4:113Þ

and

St �K; the capacity of the reservoir ð4:114Þ

The policy we want to derive is called a
steady-state policy. Such a policy assumes the
reservoir will be operating for a relatively long
time with the same objectives and a repeatable
hydrologic time series of seasonal inputs. We can
find this steady-state policy by first assuming that
at some time all future benefits, losses or penal-
ties, F

�
t ðSt;QtÞ, will be 0.

We can begin in that last season t of reservoir
operation and work backwards toward the pre-
sent, moving left through the network one season
t at a time. We can continue for multiple years
until the annual policy begins repeating itself
each year. In other words, when the optimal Rt

associated with a particular state (St, Qt) is the
same in two or more successive years, and this
applies for all states (St, Qt) in each season t, a
steady-state policy has probably been obtained.
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Table 4.9 Total sum of squared deviations, TSDt, associated with initial and final storage volumes

These are calculated using Eqs. 4.109–4.111

128 4 An Introduction to Optimization Models and Methods



(A more definitive test of whether or not a
steady-state policy has been reached will be
discussed later.) A steady-state policy will occur
if the inflows, Qt, and objectives, TSDt (St, Rt,
St+1), remain the same for specific within-year
periods from year to year. This steady-state pol-
icy is independent of the assumption that the
operation will end at some point.

To find the steady-state operating policy for
this example problem, assume the operation ends
in some distant year at the end of season 4 (the
right-hand side nodes in Fig. 4.17). At the end of
this season the number of remaining seasons, n,
equals 0. The values of the remaining minimum
sums of weighted squared deviations, F

�
t ðSt;QtÞ

associated with each state (St, Qt), i.e., each node,
equal 0. Since for this problem there is no future.
Now we can begin the process of finding the best
releases Rt in each successive season t, moving
backward to the beginning of stage t = 4, then
stage t = 3, then to t = 2, and then to t = 1, and
then to t = 4 of the preceding year, and so on,
each move to the left increasing the number of
remaining seasons n by one.

At each stage, or season t, for each discrete
state (St, Qt) we can compute the release Rt or
equivalently the final storage volume St+1, that
minimizes

Fnt ðSt;QtÞ ¼ MinimumfTSDtðSt;Rt; Stþ 1Þ
þFn�1

tþ 1ðStþ 1;Qtþ 1Þg for all 0� St � 20

ð4:115Þ
The decision variable can be either the release,

Rt, or the final storage volume, St+1. If the deci-
sion variable is the release, then the constraints
on that release Rt are

Rt � St þQt � LtðSt; Stþ 1Þ ð4:116Þ

Rt � St þQt � LtðSt; Stþ 1Þ � 20 the capacityð Þ
ð4:117Þ

and

Stþ 1 ¼ St þQt � Rt � LtðSt; Stþ 1Þ ð4:118Þ

If the decision variable is the final storage
volume, St+1, the constraints on that final storage
volume are

0� Stþ 1 � 20 ð4:119Þ

Stþ 1 � St þQt � LtðSt; Stþ 1Þ ð4:120Þ

and

Rt ¼ St þQt � Stþ 1 � LtðSt; Stþ 1Þ ð4:121Þ

Note that if the decision variable is St+1 in
season t, this decision becomes the state variable
in season t + 1. In both cases, the storage vol-
umes in each season are limited to discrete values
0, 5, 10, 15, and 20.

Tables 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16,
4.17, 4.18 and 4.19 show the values obtained
from solving the recursive equations for 10 suc-
cessive seasons or stages (2.5 years). Each table
represents a stage or season t, beginning with
Table 4.10 at t = 4 and the number of remaining
seasons n = 1. The data in each table are
obtained from Tables 4.7 and 4.9. The last two
columns of each table represent the best release
and final storage volume decision(s) associated
with the state (initial storage volume and inflow).

Note that the policy defining the release or
final storage for each discrete initial storage
volume in season t = 3 in Table 4.12 is the same
as in Table 4.16, and similarly for season t = 4 in
Tables 4.13 and 4.17, and for season t = 1 in
Tables 4.14 and 4.18, and finally for season t = 2
in Tables 4.15 and 4.19. The policy differs over
each state, and over each different season, but not
from year to year for any specified state and
season. This indicates we have reached a
steady-state policy. If we kept on computing the
release and final storage policies for preceding
seasons, we would get the same policy as that
found for the same season in the following year.
The policy is dependent on the state—the initial
storage volume in this case—and on the season t,
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Table 4.10 Calculation of minimum squared deviations associated with various discrete storage states in season t = 4
with only n = 1 season remaining for reservoir operation

Table 4.11 Calculation of minimum squared deviations associated with various discrete storage states in season t = 3
with n = 2 seasons remaining for reservoir operation
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Table 4.12 Calculation of minimum squared deviations associated with various discrete storage states in season t = 2
with n = 3 seasons remaining for reservoir operation

Table 4.13 Calculation of minimum squared deviations associated with various discrete storage states in season t = 1
with n = 4 seasons remaining for reservoir operation
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Table 4.14 Calculation of minimum squared deviations associated with various discrete storage states in season t = 4
with n = 5 seasons remaining for reservoir operation

Table 4.15 Calculation of minimum squared deviations associated with various discrete storage states in season t = 3
with n = 6 seasons remaining for reservoir operation
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Table 4.16 Calculation of minimum squared deviations associated with various discrete storage states in season t = 2
with n = 7 seasons remaining for reservoir operation

Table 4.17 Calculation of minimum squared deviations associated with various discrete storage states in season t = 1
with n = 8 seasons remaining for reservoir operation
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Table 4.18 Calculation of minimum squared deviations associated with various discrete storage states in season t = 4
with n = 9 seasons remaining for reservoir operation

Table 4.19 Calculation of minimum squared deviations associated with various discrete storage states in season t = 3
with n = 10 seasons remaining for reservoir operation
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but not on the year. This policy as defined in
Tables 4.16, 4.17, 4.18 and 4.19 is summarized
in Table 4.20.

This policy can be defined as a rule curve, as
shown in Fig. 4.18. It provides a first approxi-
mation of a reservoir release rule curve that one
can improve upon using simulation.

Table 4.20 and Fig. 4.18 define a policy that
can be implemented for any initial storage

volume condition at the beginning of any season
t. This can be simulated under different flow
patterns to determine just how well it satisfies the
overall objective of minimizing the weighted
sum of squared deviations from desired, but
conflicting, storage and release targets. There are
other performance criteria that may also be
evaluated using simulation, such as measures of
reliability, resilience, and vulnerability (Chap. 9).

Fig. 4.18 Reservoir rule
curve based on policy
defined in Table 4.20. Each
season is divided into
storage volume zones. The
releases associated with
each storage volume zone
are specified. Also shown
are the storage volumes that
would result if in each year
the actual inflows equaled
the inflows used to derive
this rule curve

Table 4.20 The discrete steady-state reservoir-operating policy as computed for this example problem in Tables 4.16,
4.17, 4.18 and 4.19
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Assuming the inflows that were used to derive
this policy actually occurred each year, we can
simulate the derived sequential steady-state pol-
icy to find the storage volumes and releases that
would occur in each period, year after year, once
a repetitive steady-state condition were reached.
This is done in Table 4.21 for an arbitrary initial
storage volume of 20 in season t = 1. You can
try other initial conditions to verify that it
requires only 2 years at most to reach a repetitive
steady-state policy.

As shown in Table 4.21, if the inflows were
repetitive and the optimal policy was followed,
the initial storage volumes and releases would

begin to repeat themselves once a steady-state
condition has been reached. Once reached, the
storage volumes and releases will be the same
each year (since the inflows are the same). These
storage volumes are denoted as a blue line on the
rule curve shown in Fig. 4.18. The annual total
squared deviations will also be the same each
year. As seen in Table 4.21, this annual mini-
mum weighted sum of squared deviations for this
example equals 186. This is what would be
observed if the inflows assumed for this analysis
repeated themselves.

Note from Tables 4.12, 4.13, 4.14, 4.15 and
4.16, 4.17, 4.18, 4.19 that once the steady-state

Table 4.21 A simulation of the derived operating policy in Table 4.20

The storage volumes and releases in each period twill repeat themselves each year, after thefirst year. The annual total squared
deviations, TSDt for the specific initial and final storage volumes and release conditions are obtained from Table 4.9
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sequential policy has been reached for any
specified storage volume, St, and season t, the
annual difference of the accumulated minimum
sum of squared deviations equals a constant,
namely the annual value of the objective func-
tion. In this case that constant is 186.

Fnþ 1
t ðSt;QtÞ � Fn

t ðSt;QtÞ ¼ 186
for all St;Qt and t:

ð4:122Þ

This condition indicates a steady-state policy
has been achieved.

This policy in Table 4.21 applies only for the
assumed inflows in each season. It does not
define what to do if the initial storage volumes or
inflows differ from those for which the policy is
defined. Initial storage volumes and inflows can
and will vary from those specified in the solution
of any deterministic model. One fact is certain:
no matter what inflows are assumed in any
model, the actual inflows will always differ.
Hence, a policy as defined in Table 4.20 and
Fig. 4.18 is much more useful than that in
Table 4.21. In Chap. 8 we will modify this
reservoir operation model to define releases or
final storage volumes as functions of not only
discrete storage volumes St but also of discrete
possible inflows Qt. However, the policy defined
by any relatively simple optimization model
policy should be simulated, evaluated, and fur-
ther refined in an effort to identify the policy that
best meets the operating policy objectives.

4.4.8 General Comments
on Dynamic
Programming

Before ending this discussion of using dynamic
programming methods for analyzing water
resources planning, management and operating
policy problems, we should examine a major
assumption that has been made in each of the

applications presented. The first is that the net
benefits or costs or other objective values
resulting at each stage of the problem are
dependent only on the state and decision variable
values in each stage. They are independent of
decisions made at other stages. If the returns at
any stage are dependent on the decisions made at
other stages, then dynamic programming, with
some exceptions, becomes more difficult to
apply. Dynamic programming models can be
applied to design problems, such as the capacity
expansion problem or to operating problems,
such as the water-allocation and reservoir oper-
ation problems, but rarely to problems having
both unknown design and operating policy
decision variables at the same time. While there
are some tricks that may allow dynamic pro-
gramming to be used to find the best solutions to
both design and operating problems encountered
in water resources planning, management and
operating policy studies, other optimization
methods, perhaps combined with dynamic pro-
gramming where appropriate, are often more
useful.

4.5 Linear Programming

If the objective function and constraints of an
optimization model are all linear, many readily
available computer programs exist for finding its
optimal solution. Surprisingly many water
resource systems problems meet these conditions
of linearity. These linear optimization programs
are very powerful, and unlike many other opti-
mization methods, they can be applied success-
fully to very large optimization problems
containing many variables and constraints. Many
water resources problems are too large to be
easily solved using nonlinear or dynamic pro-
gramming methods. The number of variables and
constraints simply defining mass balances and
capacity limitations in numerous time periods
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can become so big as to preclude the practical
use of most other optimization methods. Linear
programming procedures or algorithms for solv-
ing linear optimization models are often the most
efficient ways to find solutions to such problems.
Hence there is an incentive to convert large
optimization models to a linear form. Some ways
of doing this are discussed later in this chapter.

Because of the availability of computer pro-
grams that can solve linear programming prob-
lems, linear programming is arguably the most
popular and commonly applied optimization
algorithm in practical use today. It is used to
identify and evaluate alternative plans, designs
and management policies in agriculture, busi-
ness, commerce, education, engineering, finance,
the civil and military branches of government,
and many other fields.

In spite of its power and popularity, for most
real-world water resources planning and man-
agement problems, linear programming, like the
other optimization methods already discussed in
this chapter, is best viewed as a preliminary
screening tool. Its value is more for reducing the
number of alternatives for further more detailed
simulations than for finding the best decision.
This is not just because approximation methods
may have been used to convert nonlinear func-
tions to linear ones, but more likely because it is
difficult to incorporate all the complexity of the
system and all the objectives considered impor-
tant to all stakeholders into a linear model.
Nevertheless, linear programming, like other
optimization methods, can provide initial designs
and operating policy information that simulation
models require before they can simulate those
designs and operating policies.

Equations 4.41 and 4.42 define the general
structure of any constrained optimization prob-
lem. If the objective function F(X) of the vector
X of decision variables xj is linear and if all the
constraints gi(X) in Eq. 4.42 are linear, then the
model becomes a linear programming model.

The general structure of a linear programming
model is

Maximize or minimize
X
j

Pjxj ð4:123Þ

Subject to

X
j

aijxj � or� bi for i ¼ 1; 2; 3; . . .;m

ð4:124Þ

xj � 0 for j ¼ 1; 2; 3; . . .; n: ð4:125Þ

If any model fits this general form, where the
constraints can be any combination of equalities
(=) and inequalities (≥ or ≤), then a large variety
of linear programming computer programs can
be used to find the “optimal” values of all the
unknown decision variables xj. Variable non-
negativity is enforced within the solution algo-
rithms of most commercial linear programming
programs, eliminating the need to have to specify
these conditions in any particular application.

Potential users of linear programming algo-
rithms need to know how to construct linear
models and how to use the computer programs
that are available for solving them. They do not
have to understand all the mathematical details of
the solution procedure incorporated in the linear
programming codes. But users of linear pro-
gramming computer programs should understand
what the solution procedure does and what the
computer program output means. To begin this
discussion of these topics, consider some simple
examples of linear programming models.

4.5.1 Reservoir Storage
Capacity-Yield Models

Linear programming can be used to define stor-
age capacity-yield functions for a single or
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multiple reservoirs. A storage capacity-yield
function defines the maximum constant “de-
pendable” reservoir release or yield that will be
available, at a given level of reliability, during
each period of operation, as a function of the
active storage volume capacity. The yield from
any reservoir or group of reservoirs will depend
on the active storage capacity of each reservoir
and the water that flows into each reservoir, i.e.,
their inflows. Figure 4.19 illustrates two typical
storage-yield functions for a single reservoir.

To describe what a yield is and how it can be
increased, consider a sequence of 5 annual flows,
say 2, 4, 1, 5, and 3, at a site in an unregulated
stream. Based on this admittedly very limited
record of flows, the minimum (historically) “de-
pendable” annual flow yield of the stream at that
site is 1, the minimum observed flow. Assuming
the flow record is representative of what future
flows might be, a discharge of 1 can be “guar-
anteed” in each period of record. (In reality, that
or any nonzero yield will have a reliability less
than 1, as will be considered in Chaps. 6 and 10.)

If a reservoir having an active storage capacity
of 1 is built, it could store 1 volume unit of flow
when the flow is greater than 2. It could then
release it along with the natural flow when the

natural flow is 1, increasing the minimum
dependable flow to 2 units in each year. Storing 2
units when the flow is 5, releasing 1 and the
natural flow when that natural flow is 2, and
storing 1 when the flow is 4, and then releasing
the stored 2 units along with the natural flow
when the natural flow is 1, will permit a yield of
3 in each time period with 2 units of active
capacity. This is the maximum annual yield that
is possible at this site, again based on these five
annual inflows and their sequence. The maxi-
mum annual yield cannot exceed the mean
annual flow, which in this example is 3. Hence,
the storage capacity-yield function equals 1 when
the active capacity is 0, 2 when the active
capacity is 1, and 3 when the active capacity is 2.
The annual yield remains at 3 for any active
storage capacity in excess of 2.

This storage-yield function is dependent not
only on the natural unregulated annual flows but
also on their sequence. For example if the
sequence of the same 5 annual flows were 5, 2, 1,
3, 4, the needed active storage capacity is 3
instead of 2 volume units as before to obtain a
dependable flow or yield of 3 volume units. In
spite of these limitations of storage
capacity-yield functions, historical records are
still typically used to derive them. (Ways of
augmenting the historical flow record are dis-
cussed in Chap. 6.)

There are many methods available for deriv-
ing storage-yield functions. One very versatile
method, especially for multiple reservoir sys-
tems, uses linear programming. Others are dis-
cussed in Chap. 10.

To illustrate a storage capacity-yield model,
consider a single reservoir that must provide at
least a minimum release or yield Y in each period
t. Assume a record of known (historical or syn-
thetic) streamflows at the reservoir site is avail-
able. The problem is to find the maximum
constant yield Y obtainable from a given active
storage capacity. The objective is to

Fig. 4.19 Two storage-yield functions for a single
reservoir defining the maximum minimum dependable
release. These functions can be defined for varying levels
of yield reliability
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maximize Y ð4:126Þ

This maximum yield is constrained by the
water available in each period, and by the
reservoir capacity. Two sets of constraints are
needed to define the relationships among the
inflows, the reservoir storage volumes, the
yields, any excess release, and the reservoir
capacity. The first set of continuity equations
equate the unknown final reservoir storage vol-
ume St+1 in period t to the unknown initial
reservoir storage volume St plus the known
inflow Qt, minus the unknown yield Y and excess
release, Rt, if any, in period t. (Losses are being
ignored in this example.)

St þQt � Y � Rt ¼ Stþ 1 for each period t
¼ 1; 2; 3; . . .; T: T þ 1 ¼ 1

ð4:127Þ

If, as indicated in Eq. 4.127, one assumes that
period 1 follows the last period T, it is not nec-
essary to specify the value of the initial storage
volume S1 and/or final storage volume ST+1.
They are set equal to each other and that variable
value remains unknown. The resulting
“steady-state” solution is based on the inflow
sequence that is assumed to repeat itself as well
as the available storage capacity, K.

The second set of required constraints ensures
that the reservoir storage volumes St at the

beginning of each period t are no greater than the
active reservoir capacity K.

St �K t ¼ l; 2; 3; . . .;T ð4:128Þ

To derive a storage-yield function, the model
defined by Eqs. 4.126–4.128 must be solved for
various assumed values of capacity K. Only the
inflow values Qt and reservoir active storage
capacity K are assumed known. All other storage,
release and yield variables are unknown. Linear
programming will be able to find their optimal
values. Clearly, the upper bound on the yield
regardless of reservoir capacity will equal the mean
inflow (less any losses if they were included).

Alternatively, one can solve a number of lin-
ear programming models that minimize an
unknown storage capacity K needed to achieve
various specified yields Y. The resulting
storage-yield functions will be same. The mini-
mum capacity needed to achieve a specified yield
will be the same as the maximum yield obtain-
able from the corresponding specified capacity
K. However, the specified yield Y cannot exceed
the mean inflow. If an assumed value of the yield
exceeds the mean inflow, there will be no feasi-
ble solution to the linear programming model.

Box 4.1 illustrates an example storage-yield
model and its solutions to find the storage-yield
function. For this problem, and others in this
chapter, the program LINGO (freely obtained
from www.lindo.com) is used.
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Box 4.1. Example storage capacity-yield model and its solution from LINGO

E
02

09
03

a

0         5  0  0 0 0  0 5 0 25 15 10
5   10 5  5 0 5  5 0 0 15 10  5

10   12.5 10         7.5 0          2.5 10 0 0 15   0         2.5
15   15 10 10 0 15 15 0 0  0  5  0
18   16 17 11 0 14 18 0 0  0  0  0

:

!  Reservoir Storage-Yield Model:
Define  St as the initial active res. storage, period t,
Y as the reliable yield in each period t,
Rt as the excess release from the res., period t,
Qt as the known inflow volume to the res., period t
K as the reservoir active storage volume capacity.
;
Max = Y  ;  !Applies to Model 1. Must be omitted for Model 2;
Min = K  ;  !Applies to Model 2. Must be omitted for Model 1;
!

 Subject to:
Mass balance constraints for each of 5 periods t.
; 
S1 + Q1 - Y - R1 = S2;
S2 + Q2 - Y - R2 = S3;
S3 + Q3 - Y - R3 = S4;
S4 + Q4 - Y - R4 = S5;
S5 + Q5 - Y - R5 = S1;  ! assumes a steady-state condition;
! 
Capacity constraints on storage volumes.
;
S1 < K; S2 < K; S3 < K; S4 < K; S5 < K;
Data:
Q1 = 10; Q2 = 5; Q3 = 30; Q4 = 20; Q5 = 15;
!Note mean = 16;
K = ? ;   ! Use for Model 1 only. Allows user to enter
any value of K during model run.;
Y = ? ;   ! Use for Model 2 only. Allows user to enter
any value of Y during model run.
;
Enddata

Before moving to another application of linear
programming, consider how this storage-yield
problem, Eqs. 4.126–4.128, can be formulated as
a discrete dynamic programmingmodel.Theuse of
discrete dynamic programming is clearly not the
most efficient way to define a storage-yield func-
tion but the problem of finding a storage-yield

function provides a good exercise in dynamic
programming. The dynamic programming net-
work has the same form as shown in Fig. 4.19,
where each node is a discrete storage and inflow
state, and the links represent releases. LetFn

t Stð Þ be
the maximum yield obtained given a storage
volume of St at the beginning of period t of a year
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with n periods remaining of reservoir operation.
For initial conditions, assume all values of F0

t Stð Þ
for some final period t with no more periods n re-
maining equal a large number that exceeds the
mean annual inflow. Then for the set of feasible
discrete total releases Rt:

Fnt Stð Þ ¼ max min Rt;F
n�1
tþ 1ðStþ 1Þ

� �� � ð4:129Þ

This applies for all discrete storage volumes St
and for all within-year periods t and remaining
periods n. The constraints on the decision vari-
ables Rt are

Rt � St þQt

Rt � St þQt � K; and

Stþ 1 ¼ St þQt � Rt

ð4:130Þ

These recursive Eqs. 4.129 together with
constraint Eqs. 4.130 can be solved, beginning
with n = 1 and then for successive values of
seasons t and remaining periods n, until a
steady-state solution is obtained, that is, until

Fn
t Stð Þ ¼ Fn�1

t Stð Þ
for all values of St and periods t:

ð4:131Þ

The steady-state yields Ft(St) will depend on
the storage volumes St. High initial storage

volumes will result in higher yields than will
lower ones. The highest yield will be that asso-
ciated with the highest storage volumes and it
will equal the same value obtained from either of
the two linear programming models.

4.5.2 A Water Quality Management
Problem

Some linear programming modeling and solu-
tion techniques can be demonstrated using the
simple water quality management example
shown in Fig. 4.21. In addition, this example can
serve to illustrate how models can help identify
just what data are needed and how accurate they
must be for the decisions that are being
considered.

The stream shown in Fig. 4.20 receives
wastewater effluent from two point sources
located at sites 1 and 2. Without some wastew-
ater treatment at these sites, the concentration of
some pollutant, Pj mg/l, at sites j = 2 and 3, will
continue to exceed the maximum desired con-
centration Pmax

j . The problem is to find the level
of wastewater treatment (waste removed) at sites
i = 1 and 2 that will achieve the desired con-
centrations just upstream of site 2 and at site 3 at
a minimum total cost.

Fig. 4.20 A stream pollution problem that requires
finding the waste removal efficiencies (x1, x2) of wastew-
ater treatment at sites 1 and 2 that meet the stream quality

standards at sites 2 and 3 at minimum total cost. W1 and
W2 are the amounts of pollutant prior to treatment at sites
1 and 2
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This is the classic water quality management
problem that is frequently found in the literature,
although least-cost solutions have rarely if ever
been applied in practice. There are valid reasons
for this that we will review later. Nevertheless,
this particular problem can serve to illustrate the
development of some linear models for deter-
mining data needs as well as for finding, in this
case, cost-effective treatment efficiencies. This
problem can also serve to illustrate graphically
the general mathematical procedures used for
solving linear programming problems.

The first step is to develop a model that pre-
dicts the pollutant concentrations in the stream as
a function of the pollutants discharged into it. To
do this we need some notation. Define Wj as the
mass of pollutant generated at site j (j = 1, 2)
each day. Without any treatment and assuming
no upstream pollution concentration, the dis-
charge of W1 (in units of mass per unit time,
(M/T) at site j = 1 results in pollutant concen-
tration of P1 in the stream at that site. This
concentration, (M/L3) equals the discharge W1

(M/T) divided by the streamflow Q1 (L3/T) at
that site. For example, assuming the concentra-
tion is expressed in units of mg/l and the flow is
in terms of m3/s, and mass of pollutant dis-
charged is expressed as kg/day, and the flow
component of the wastewater discharge is neg-
ligible compared to the streamflow, the resulting
streamflow concentration P1 at site j = 1 is
W1/86.4 Q1:

P1 mg=lð Þ ¼ Mass W1 discharged at site 1 kg=dayð Þ=
streamflowQ1 at site 1 m3=s

� �
=

kg=106 mg
� �

86; 400 s=dayð Þ 103 L=m3
� �

¼ W1=86:4Q1

ð4:132Þ

Each unit of a degradable pollutant mass in
the stream at site 1 in this example will decrease
as it travels downstream to site 2. Similarly each
unit of the pollutant mass in the stream at site 2

will decrease as it travels downstream to site 3.
The fraction αij of the mass at site i that reaches
site j is often assumed to be

aij ¼ exp �ktij
� �

; ð4:133Þ

where k is a rate constant (1/time unit) that
depends on the pollutant and the temperature,
and tij is the time (number of time units) it takes a
particle of pollutant to flow from site i to site
j. The actual concentration at the downstream
end of a reach will depend on the streamflow at
that site as well as on the initial pollutant mass,
the time of travel and decay rate constant k.

In this example problem, the fraction of pol-
lutant mass at site 1 that reaches site 3 is the
product of the transfer coefficients α12 and α23:

a13 ¼ a12a23 ð4:134Þ

In general, for any site k between sites i and j:

aij ¼ aikakj ð4:135Þ

Knowing the αij values for any pollutant and
the time of flow tij permits the determination of
the rate constant k for that pollutant and reach, or
contiguous series of reaches, from sites i to j,
using Eq. 4.133. If the value of k is 0, the pol-
lutant is called a conservative pollutant; salt is an
example of this. Only increased dilution by less
saline water will reduce its concentration.

For the purposes of determining wastewater
treatment efficiencies or other capital investments
in infrastructure designed to control the pollutant
concentrations in the stream, some “design”
streamflow conditions have to be established.
Usually the design streamflow conditions are set
at low-flow values (e.g., the lowest monthly
average flow expected once in twenty years, or
the minimum 7-day average flow expected once
in ten years). Low design flows are based on the
assumption that pollutant concentrations will be
higher in low-flow conditions than in higher flow

4.5 Linear Programming 143



conditions because of less dilution. While
low-flow conditions may not provide as much
dilution, they result in longer travel times, and
hence greater reductions in pollutant masses
between water quality monitoring sites. Hence
the pollutant concentrations may well be greater
at some downstream site when the flow condi-
tions are higher than those of the design low-flow
value.

In any event, given particular design stream-
flow and temperature conditions, our first job is
to determine the values of these dimensionless
transfer coefficients αij. They will be independent
of the amount of waste discharged into the
stream as long as the stream stays aerobic. To
determine both α12 and α23 in this example
problem (Fig. 4.20) requires a number of pollu-
tant concentration measurements at sites 1, 2 and
3 during design streamflow conditions. These
measurements of pollutant concentrations must
be made just downstream of the wastewater
effluent discharge at site 1, just upstream and
downstream of the wastewater effluent discharge
at site 2, and at site 3.

Assuming no change in streamflow and no
extra pollutant entering the reach that begins at
site 1 and ends just upstream of site 2, the mass
(kg/day) of pollutants just upstream of site 2 will
equal the mass at site 1, W1, times the transfer
coefficient α12:

Mass just upstream of site 2 ¼ W1a12 ð4:136Þ

From this equation and 4.132 one can calcu-
late the concentration of pollutants just upstream
of site 2.

The mass of additional pollutant discharged
into site 2 is W2. Hence the total mass just
downstream of site 2 is W1α12 + W2. At site 3 the
pollutant mass will equal the mass just down-
stream of site 2, times the transfer coefficient a23.
Given a streamflow of Q3 m

3/s and pollutant
masses W1 and W2 kg/day, the pollutant con-
centration P3 expressed in mg/l will equal

P3 ¼ ½W1a12 þW2� a23=ð86:4Q3Þ ð4:137Þ

4.5.2.1 Model Calibration
Sample measurements are needed to estimate the
values of each reach’s pollutant transport coeffi-
cients aij. Assume five pairs of sample pollutant
concentration measurements have been taken in
the two stream reaches (extending from site 1 to
site 2, and from site 2 to site 3) during design
flow conditions. For this example, also assume
that the design streamflow just downstream of
site 1 and just upstream of site 2 are the same and
equal to 12 m3/s. The concentration samples
taken just downstream from site 1 and just
upstream of site 2 during this design flow con-
dition can be used to solve for the transfer
coefficients α12 and α23 after adding error terms.
More than one sample is needed to allow for
measurement errors and other random effects
such as those from varying temperature, wind,
incomplete mixing or varying wasteload dis-
charges within a day.

Denote the concentrations of each pair of
sample measurements s in the first reach (just
downstream of site 1 and just upstream of site 2)
as P1s and P2s and their combined error as Es.
Thus

P2s þEs ¼ P1sa12ðQ1=Q2Þ ð4:138Þ

The problem is to find the best estimates of
the unknown α12. One way to do this is to define
“best” as those values of α12 and all Es that
minimize the sum of the absolute values of all the
error terms Es. This objective could be written

Minimize
X
s

Esj j ð4:139Þ

The set of Eqs. 4.138 and 4.139 is an opti-
mization model. The absolute value signs in
Eq. 4.139 can be removed by writing each error
term as the difference between two nonnegative
variables, PEs − NEs. Thus for each sample pair s:
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Es ¼ PEs � NEs ð4:140Þ

If any Es is negative, PEs will be 0 and −NEs
will equal Es. The actual value of NEs is nonneg-
ative. If Es is positive, it will equal PEs, and NEs
will be 0. The objective function, Eq. 4.139, that
minimizes the sum of absolute value of error terms,
can now be written as one that minimizes the sum
of the positive and negative components of Es:

Minimize
X
s

ðPEs þNEsÞ ð4:141Þ

Equations 4.139 and 4.140, together with
objective function 4.141 and a set of measure-
ments, P1s and P2s, upstream and downstream of
the reach between sites 1 and 2 define a linear
programming model that can be solved to find
the transfer coefficient α12. An example illus-
trating the solution of this model for the stream
reach between site 1 and just upstream of site 2 is
presented in Box 4.2. (In this model the mea-
sured concentrations are denoted as SPjs rather
than Pjs. Again, the program LINGO (www.
lindo.com) is used to solve the model).

Box 4.3 contains the model and solution for
the reach beginning just downstream of site 2 to
site 3. In this reach the design streamflow is
12.5 m3/s due to the addition of wastewater flow
at site 2.

As shown in Boxes 4.2 and 4.3, the values of
the transfer coefficients are α12 = 0.25 and
α23 = 0.60. Thus from Eq. 4.134, α12
α23 = α13 = 0.15.

4.5.2.2 Management Model
Now that these parameter values αij are known, a
water quality management model can be devel-
oped. The water quality management problem,

illustrated in Fig. 4.20, involves finding the
fractions xi of waste removal at sites i = 1 and 2
that meet the stream quality standards at the end
of the two reaches at a minimum total cost.

The pollutant concentration, P2, just upstream
of site 2 that results from the pollutant concen-
tration at site 1 equals the total mass of pollutant
at site 1 times the fraction α12 that remains at site
2, divided by the streamflow Q2 at site 2. The
total mass of pollutant at site 1 at the wastewater
discharge point is the sum of the mass just
upstream of the discharge site, P1Q1, plus the
mass discharged into the stream, W1(1 − x1), at
site 1. The parameter W1 is the total mass of
pollutant entering the treatment plant at site 1.
Similarly for site 2. The fraction of waste
removal, x1, at site 1 is to be determined. Hence
the concentration of pollutant just upstream of
site 2 is

P2 ¼ ½P1Q1 þW1ð1� x1Þ�a12=Q2 ð4:142Þ

The terms P1 and Q1 are the pollutant con-
centration (M/L3) and streamflow (L3/T) just
upstream of the wastewater discharge outfall at
site 1. Their product is the mass of pollutant at
that site per unit time period (M/T).

The pollutant concentration, P3, at site 3 that
results from the pollutant concentration at site 2
equals the total mass of pollutant at site 2 times
the fraction a23. The total mass of pollutant at site
2 at the wastewater discharge point is the sum of
what is just upstream of the discharge site, P2Q2,
plus what is discharged into the stream,
W2(1 − x2). Hence the concentration of pollutant
at site 3 is

P3 ¼ ½P2Q2 þW2ð1� x2Þ�a23=Q3 ð4:143Þ
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Box 4.2. Calibration of water quality model transfer coefficient parameter a12

Equations 4.142 and 4.143 will become the
predictive portion of the water quality manage-
ment model. The remaining parts of the model
include the restrictions on the pollutant concen-
trations just upstream of site 2 and at site 3, and
limits on the range of values that each waste
removal efficiency, xi, can assume.

Pj �Pmax
j for j ¼ 2 and 3 ð4:144Þ

0� xi � 1:0 for i ¼ 1 and 2: ð4:145Þ

Finally, the objective is to minimize the total
cost of meeting the stream quality standards Pmax

2

and Pmax
3 specified in Eqs. 4.144. Letting Ci(xi)

represent the cost function of wastewater treat-
ment at sites i = 1 and 2, the objective can be
written:

Minimize C1 x1ð ÞþC2 x2ð Þ ð4:146Þ

The complete optimization model consists of
Eqs. 4.142–4.146. There are four unknown
decision variables, x1; x2, P2, and P3.

Some of the constraints of this optimization
model can be combined to remove the two
unknown concentration values, P2 and P3.
Combining Eqs. 4.142 and 4.144, the concen-
tration just upstream of site 2 must be no greater
than Pmax

2 :
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½P1Q1 þW1 1� x1ð Þ�a12=Q2 �Pmax
2 ð4:147Þ

Combining Eqs. 4.143 and 4.144, and using
the fraction α13 (see Eq. 4.134) to predict the
contribution of the pollutant concentration at site
1 on the pollutant concentration at Site 3:

P1Q1 þW1 1� x1ð Þ½ �a13 þ W2 1� x2ð Þ½ �a23f g=Q3�Pmax
3

ð4:148Þ

Box 4.3. Calibration of water quality model transfer coefficient parameter a23

Equation 4.148 assumes that each pollutant
discharged into the stream can be tracked
downstream, independent of the other pollutants
in the stream. Alternatively, Eq. 4.148 computes
the sum of all the pollutants found at site 2 and
then uses that total mass to compute the con-
centration at site 3. Both modeling approaches
give the same results if the parameter values and
cost functions are the same.
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To illustrate the solution of either of these
models, assume the values of the parameters are
as listed in Table 4.22. Rewriting the water
quality management model defined by
Eqs. 4.145–4.148 and substituting the parameter
values in place of the parameters, and recalling
that kg/day = 86.4 (mg/l)(m3/s):

The water quality constraint at site 2,
Eq. 4.147, becomes

32ð Þ 10ð Þþ 250; 000 1� x1ð Þ=86:4½ �0:25=12� 20

that when simplified is

x1 � 0:78: ð4:149Þ

The water quality constraint at site 3,
Eq. 4.148, becomes

32ð Þ 10ð Þþ 250; 000 1� x1ð Þ=86:4½ �0:15f
þ 80; 000 1� x2ð Þ=86:4½ �0:60g=13� 20

that when simplified is

x1 þ 1:28x2 � 1:79: ð4:150Þ
Restrictions on fractions of waste removal,

Eq. 4.145, must also be added to this model.
The feasible combinations of x1 and x2 can be

shown on a graph, as in Fig. 4.21. This graph is a
plot of each constraint, showing the boundaries
of the region of combinations of x1 and x2 that
satisfy all the constraints. This red shaded region
is called the feasible region.

To find the least-cost solution we need the cost
functionsC1(x1) and C2(x2) in Eqs. 4.146. Suppose
these functions are not known. Can we determine
the least-cost solutionwithout knowing these costs?
Models like the one just developed can be used to
determine just how accurate these cost functions (or
the values of any of the model parameters) need to
be for the decisions being considered.

While the actual cost functions are not known
in this example, their general form can be
assumed, as shown in Fig. 4.22. Since the
wasteloads produced at site 1 are substantially

Table 4.22 Parameter values selected for the water quality management problem illustrated in Fig. 4.20
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greater than those produced at site 2, and given
similar site, labor, and material cost conditions, it
seems reasonable to assume that the cost of
providing a specified level of treatment at site 1
would exceed (or certainly be no less than) the
cost of providing the same specified level of
treatment at Site 2. It would also seem the mar-
ginal costs at site 1 would be greater than, or at
least no less than, the marginal costs at site 2 for

any given treatment efficiency. The relative
positions of the cost functions shown in Fig. 4.23
are based on these assumptions.

Rewriting the cost function, Eq. 4.146, as a
linear function converts the model defined by
Eqs. 4.145–4.148 into a linear programming
model. For this example problem, the linear
programming model can be written as:

0.0

1.5

1.0

0.5

0.0

X 2

X1

0.5 1.0 1.5 2.0

feasible region

equation 157

equation 145

equation 149

equation 150

E
02

01
03

o

Fig. 4.21 Plot of the
constraints of water quality
management model
identifying those values of
the unknown (decision)
variables x1 and x2 that
satisfy all the constraints.
These feasible values are
contained in and on the
boundaries of the red
region

Fig. 4.22 General form of
total cost functions for
wastewater treatment
efficiencies at sites 1 and 2
in Fig. 4.20. The dashed
straight-line slopes c1 and
c2 are the average cost per
unit (%) removal for 80%
treatment. The actual
average costs clearly
depend on the values of the
waste removal efficiencies
x1 and x2, respectively
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Minimize c1x1 þ c2x2 ð4:151Þ

Equation 4.151 is minimized subject to con-
straints 4.145, 4.149 and 4.150. The values of c1
and c2 depend on the values of x1 and x2 and both
pairs are unknown. Even if we knew the values of
x1 and x2 before solving the problem, in this
example the cost functions themselves (Fig. 4.22)
are unknown. Hence, we cannot determine the
values of the marginal costs c1 and c2. However,
we might be able to judge which marginal cost
will likely be greater than the other for any par-
ticular values of the decision variables x1 and x2.
In this example that is all we need to know.

First, assume c1 equals c2. Let c1 x1 + c2 x2
equal c and assume c/c1 = 1. Thus the cost
function is x1 + x2 = 1.0. This line can be plotted
onto the graph in Fig. 4.21, as shown by line “a”
in Fig. 4.23.

Line “a” in Fig. 4.23 represents equal values
for c1 and c2, and the total cost, c1 x1 + c2 x2,
equal to 1. Keeping the slope of this line constant
and moving it upward, representing increasing
total costs, to line “b”, where it covers the nearest
point in the feasible region, will identify the
least-cost combination of x1 and x2, again
assuming the marginal costs are equal. In this
case the solution is approximately 80% treatment
at both sites.

Note this particular least-cost solution also
applies for any value of c1 greater than c2 (for
example line “c” in Fig. 4.23). If the marginal
cost of 80% treatment at site 1 is no less than the
marginal cost of 80% treatment at site 2, then
c1 ≥ c2 and indeed the 80% treatment efficiencies
will meet the stream standards for the design
streamflow and wasteload conditions at a total
minimum cost. In fact, from Fig. 4.23 and
Eq. 4.150, it is clear that c2 has to exceed c1 by a
multiple of 1.28 before the least-cost solution
changes to another solution. For any other
assumption regarding c1 and c2, 80% treatment at
both sites will result in a least-cost solution to
meeting the water quality standards for those
design wasteload and streamflow conditions.

If c2 exceeds 1.28c1, as illustrated by line “d”,
then the least-cost solution would be x1 = 100%
and x2 = 62%. Clearly, in this example the
marginal cost, c1, of providing 100% wasteload
removal at site 1 will exceed the marginal cost,
c2, of 60% removal at site 2, and hence, that
combination of efficiencies would not be a
least-cost one. Thus we can be confident that the
least-cost solution is to remove 80% of the waste
produced at both waste-generating sites.

Note the least-cost wasteload removal effi-
ciencies have been determined without knowing
the cost functions. Why spend money defining

Fig. 4.23 Plots of various
objective functions (dashed
lines) together with the
constraints of the water
quality management model
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these functions more precisely? The answer:
costs need to be known for financial planning, if
not for economic analyses. No doubt the actual
costs of installing the least-cost treatment effi-
ciencies of 80% will have to be determined for
issuing bonds or making other arrangements for
paying the costs. However, knowing the
least-cost removal efficiencies means we do not
have to spend money defining the entire cost
functions Ci(xi). Estimating the construction and
operating costs of achieving just one wastewater
removal efficiency at each site, namely 80%,
should be less expensive than defining the total
costs for a range of practical treatment plant
efficiencies that would be required to define the
total cost functions, such as shown in Fig. 4.22.

Admittedly this example is relatively simple.
It will not always be possible to determine the
“optimal” solutions to linear programming
problems, or other optimization problems, with-
out knowing more about the objective function
than was assumed for this example. However,
this exercise illustrates the use of modeling for
purposes other than finding good or “optimal”
solutions. Models can help define the necessary
precision of the data needed to find those
solutions.

Modeling and data collection and analysis
should take place simultaneously. All too often
planning exercises are divided into two stages:
data collection and then analysis. Until one
knows what data one will need, and how accurate
those data must be, one need not spend money
and time collecting them. Conversely, model
development in the absence of any knowledge of
the availability and cost of obtaining data can
lead to data requirements that are costly, or even
impossible, to obtain, at least in the time avail-
able for decision-making. Data collection and
model development are activities that should be
performed simultaneously.

Because software is widely available to solve
linear programming programs, because these
software programs can solve very large problems
containing thousands of variables and con-
straints, and finally because there is less chance
of obtaining a local “nonoptimal” solution when

the problem is linear (at least in theory), there is
an incentive to use linear programming to solve
large optimization problems. Especially for large
optimization problems, linear programming is
often the only practical alternative for finding at
least an approximate optimal solution. Yet
models representing particular water resources
systems may not be linear. This motivates the use
of methods that can approximate nonlinear
functions with linear ones, or the use of other
search algorithms such as those discussed in
Chap. 5).

The following simple groundwater supply
problem illustrates the application of some lin-
earization methods commonly applied to non-
linear separable functions—functions of only one
unknown variable.

These approximation methods typically
increase the number of variables and constraints
in a model. Some of these methods require integer
variables, or variables that can have values of
only 0 or 1. There is a practical limit on the
number of integer variables any linear program-
ming software program can handle. Hence, for
large models there may be a need to perform
some preliminary screening designed to reduce
the number of alternatives that should be con-
sidered in more detail. This example can be used
to illustrate an approach to preliminary screening.

4.5.3 A Groundwater Supply
Example

Consider a water-using industry that plans to
obtain water from a groundwater aquifer. Two
wellfield sites have been identified. The first
question is how much will the water cost, and the
second, given any specified amount of water
delivered to the user, is how much should come
from each wellfield. This situation is illustrated
in Fig. 4.24.

Wells and pumps must be installed and oper-
ated to obtain water from these two wellfields.
The annual cost of wellfield development will
depend on the pumping capacity of the wellfield.
Assume that the annual costs associated with
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various capacities QA and QB for Wellfields A and
B, respectively, are as shown in Fig. 4.25. These
are nonlinear functions that contain both fixed
and variable costs and hence are discontinuous.
The fixed costs result from the fact that some of
the components required for wellfield develop-
ment come in discrete sizes. As indicated in the

figure, the maximum flow capacity of Wellfields
A and B are 17 and 13, respectively.

In Fig. 4.25, the nonlinear functions on the
left have been approximated by piecewise linear
functions on the right. This is a first step in lin-
earizing nonlinear separable functions. Increas-
ing the number of linear segments can reduce the
difference between the piecewise linear approxi-
mation of the actual nonlinear function and the
function itself. At the same time it will increase
the number of variables and possibly constraints.

When approximating a nonlinear function by a
series of straight lines, model developers should
consider two factors. The first is just how accurate
need be the approximation of the actual function
for the decisions that will be made, and second is
just how accurate is the actual (in this case non-
linear) function in the first place. There is little
value in trying to eliminate relatively small errors
caused by the linearization of a function when the
function itself is highly uncertain. Most cost and
benefit functions, especially those associated with
future activities, are indeed uncertain.

Fig. 4.24 Schematic of a potential groundwater supply
system that can serve a water-using industry. The
unknown variables are the flows, QA and QB, from each
wellfield

Fig. 4.25 Annual cost functions associated with the Wellfields A and B as shown in Fig. 4.24. The actual functions are
shown on the left, and two sets of piecewise linear approximations are shown on the right

152 4 An Introduction to Optimization Models and Methods



4.5.3.1 A Simplified Model
Two sets of approximations are shown in
Fig. 4.26. Consider first the approximations
represented by the light blue dot-dash lines.
These single straight lines are very crude
approximations of each function. In this example
these straight-line cost functions are lower
bounds of the actual nonlinear costs. Hence, the
actual costs may be somewhat higher than those
identified in the solution of a model.

Using the blue dot-dash linear approximations
in Fig. 4.26, the linear programming model can
be written as follows:

Minimize CostAþCostB ð4:152Þ

Subject to

CostA ¼ 8IA þ 40� 8ð Þ=17½ �QA

linear approximation of C QAð Þ
ð4:153Þ

CostB ¼ 15IB þ 26� 15ð Þ=13½ �QB

linear approximation of C QBð Þ
ð4:154Þ

IA; IB are 0; 1 integer binaryð Þ variables
ð4:155Þ

QA � 17IA limitsQA to 17 and forces IA ¼ 1
if QA [ 0

ð4:156Þ

QB � 13IB limitsQB to 13 and forces IB ¼ 1
if QB [ 0

ð4:157Þ

QA þQB ¼ Qmass balance ð4:158Þ

Q;QA;QB � 0

non-negativity of all decision variables

ð4:159Þ

Q ¼ some specified amount from 0 to 30:

ð4:160Þ

The expressions within the square brackets,
[ ], in Eqs. 4.154 and 4.155 above represent the
slopes of the dot-dash linear approximations of
the cost functions. The integer 0, 1 variables are
required to include the fixed costs in the model.

Solving this linear model for various values of
the water demand Q provides some interesting
results. Again, they are based on the dot-dash
linear cost functions in Fig. 4.25. As Q increases
from 0 to just under 6.8, all the water will come
from the less expensive Wellfield A. For any
Q from 6.8 to 13, Wellfield B becomes less
expensive and all the water will come from it. For
anyQ greater than the capacity ofWellfieldB of 13
but no greater than the capacity ofWellfield A, 17,
all of it will come fromWellfield A. Because of the
fixed costs, it is cheaper to use one rather than both
wellfields. Beyond Q = 17, the maximum capac-
ity of A, water needs to come from both wellfields.
Wellfield B will pump at its capacity, 13, and the
additional water will come from Wellfield A.

Fig. 4.26 Least-cost
wellfield use given total
demand Q based on model
defined by Eqs. 4.152 to
4.160
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Figure 4.26 illustrates these solutions. One
can understand why in situations of increasing
demands for Q over time, capacity expansion
modeling might be useful. One would not close
down a wellfield once developed, just to achieve
what would have been a least-cost solution if the
existing wellfield had not been developed.

4.5.3.2 A More Detailed Model
A more accurate representation of these cost
functions may change these solutions for various
values of Q, although not significantly. However
consider the more accurate cost minimization
model that includes the red solid-line piecewise
linearizations shown in Fig. 4.26.

Minimize CostAþCostB ð4:161Þ

Subject to
linear approximation of cost functions:

CostA ¼ 8IA1 þ 20� 8ð Þ=5½ �QA1f g
þ 26IA2 þ ½ 30� 26ð Þ=ð10� 5Þ�QA2f g
þ 35IA3 þ ½ 40� 35ð Þ= 17� 10ð Þ�QA3f g

ð4:162Þ

CostB ¼ 15IB1 þ 18� 15ð Þ=3½ �QB1f g
þ 18IB2 þ 20� 18ð Þ= 10� 3ð Þ½ �QB2f
þ 26� 20ð Þ= 13� 10ð Þ½ �QB3g

ð4:163Þ
QA and QB defined.

QA ¼ QA1 þ 5IA2 þQA2ð Þþ 10IA3 þQA3ð Þ
ð4:164Þ

QB ¼ QB1 þ 3IB2 þQB2 þQB3ð Þ ð4:165Þ

IAi and IBi are 0; 1 integer variables

for all segments i
ð4:166Þ

QA1 � 5IA1
QA2 � 10� 5ð ÞIA2;
QA3 � 17� 10ð ÞIA3 limitsQAi to width of

segment i and forces IAi ¼ 1 if QAi [ 0

ð4:167Þ

IA1 þ IA2 þ IA3 � 1 limits solution to at most

only one cost function segment i:

ð4:168Þ
QB1 � 3IB1;

QB2 � 10� 3ð ÞIB2;
QB3 � 13� 10ð ÞIB2 limitsQBi to width of

segment i and forces IBi ¼ 1 if QBi [ 0:

ð4:169Þ
IB1 þ IB2 � 1 ð4:170Þ

Q ¼ QA þQB mass balance ð4:171Þ

Q;QA;QB � 0

non-negativityof all decision variables

ð4:172Þ

Q ¼ some specified amount from 0 to 30

ð4:173Þ

Constraint (4.170) limits the solution to at
most only the first segment or to the second and
third segments of the cost function for wellfield
B. Note that a 0, 1 integer variable for the fixed
cost of the third segment of this function is not
needed since its slope exceeds that of the second
segment. However the flow, QB3, in that segment
must be bounded using the integer 0, 1 variable,
IB2, associated with the second segment, as
shown in the third of Eqs. 4.169.

The solution to this model, shown in Fig. 4.27,
differs from the solution of the simpler model, but
only in the details. Wellfield A supplies all the
water forQ ≤ 4.3. For values ofQ in excess of 4.3
up to 13 all the water comes from Wellfield B. For
values ofQ in excess of 13 up to 14.8, the capacity
of Wellfield B remains at its maximum capacity of
13 and Wellfield A provides the additional amount
of needed capacity over 13. As Q increases from
14.9 to 17, the capacity of Wellfield B drops to 0
and the capacity of Wellfield A increases from 14.9
to 17. For values ofQ between 17 and 18Wellfield
B provides 13, its maximum capacity, and the
capacity of A increases from 4 to 5. For values of

154 4 An Introduction to Optimization Models and Methods



Q from 18.1 to 20, Wellfield B decreases to a
constant 10, and Wellfield A increases from 8.1 to
10. For values of Q from 20 to 23, Wellfield
A remains at 10 and Wellfield B increases from 10
to 13. For values of Q from 23 to 27, Wellfield
B again drops to a constant 10 and Wellfield A in-
creases from 13 to 17. For values of Q in excess of
27,Wellfield A remains at its maximum capacity of
17, and Wellfield B increases from 10 to 13.

As in the previous example, this shows the
effect on the least-cost solution when one cost
function has relatively lower fixed and higher
variable costs compared with another cost func-
tion having relatively higher fixed and lower
variable costs.

4.5.3.3 An Extended Model
In this example, the simpler model (Eqs. 4.152–
4.160) and the more accurate model (Eqs. 4.161–
4.173) provided essentially the same allocations
of wellfield capacities associated with a specified
total capacity Q. If the problem contained a lar-
ger number of wellfields, the simpler (and
smaller) model might have been able to eliminate
some of these wellfields from further considera-
tion. This would reduce the size of any new
model that approximates the cost functions of the
remaining wellfields more accurately.

The model just described, like the capacity
expansion model and water quality management
model, is another example of a cost-effective
model. The objective was to find the least-cost

way of providing a specified amount of water to
a water user. It does not address the problem of
planning for an increasing demand for Q over
time. Clearly it makes no sense to implement the
particular cost-effective solution for any value of
Q, as shown in Fig. 4.27, as the demand for
Q increases, as in this example, from 0 to 30.
This is the capacity expansion problem, the
solution of which will benefit from models that
take time into account and that are not static as
illustrated previously in this chapter.

Next, consider a cost–benefit analysis in
which the question is just how much water
should users use. To address this question we
assume the user has identified the annual benefits
associated with various amounts of water. The
annual benefit function, B(Q), and its piecewise
linear approximations, are shown in Fig. 4.28.

The straight, blue, dot-dash linear approxima-
tion of the benefit function shown in Fig. 4.28 is an
upper bound of the benefits. Incorporating it into a
model that uses the dot-dash linear lower bound
approximations of each cost function, as shown in
Fig. 4.25 will produce an optimistic solution. It is
unlikely that the value of Q that is based on more
accurate and thus less optimistic benefit and cost
functions will be any greater than the one identi-
fied by this simple optimistic model. Furthermore,
if any wellfield is not in the solution of this opti-
mistic model, with some care we might be able to
eliminate that wellfield from further consideration
when developing a more accurate model.

Fig. 4.27 Least-cost
wellfield use given total
demand Q based on
Eqs. 4.161 to 4.173
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Any component of a water resources system
that does not appear in the solution of a model
that includes optimistic approximations of per-
formance measures that are to be maximized,
such as benefits, or that are to be minimized, such
as costs, are candidates for omission in any more
detailed model. This is an example of the process
of preliminary screening.

The model defined by Eqs. 4.152–4.160 can
now be modified. Equation 4.160 is eliminated
and the cost minimization objective Eq. 4.152 is
replaced with:

Maximize Benefits� CostAþCostBð Þ
ð4:174Þ

where

Benefits ¼ 10þ 45� 25ð Þ= 21� 9ð Þ½ �Q
linear approximation of B Qð Þ

ð4:175Þ

The solution of this model, Eqs. 4.153–4.159,
4.174, and 4.175 (plus the condition that the
fixed benefit of 10 only applies if Q > 0, added
because it is clear the benefits would be 0 with a
Q of 0) indicates that only Wellfield B needs to
be developed, and at a capacity of 10. This would
suggest that Wellfield A can be omitted in any
more detailed modeling exercise. To see if this
assumption, in this example, is valid, consider

the more detailed model that incorporates the red,
solid-line linear approximations of the cost and
benefit functions shown in Figs. 4.25 and 4.28.

Note that the approximation of the generally
concave benefit function in Fig. 4.29 will result
in negative values of the benefits for small values
of Q. For example, when the flow Q, is 0 the
approximated benefits are −10. Yet the actual
benefits are 0 as shown in the left part of
Fig. 4.28. Modeling these initial fixed benefits
the same way as the fixed costs have been
modeled, using another 0, 1 integer variable,
would allow a more accurate representation of
the actual benefits for small values of Q.

Alternatively, to save having to add another
integer variable and constraint to the model, one
can allow the benefits to be negative. If the
model solution shows negative benefits for some
small value of Q, then obviously the more pre-
ferred value of Q, and benefits, would be 0. This
more approximate trial-and-error approach is
often preferred in practice, especially when a
model contains a large number of variables and
constraints. This is the approach taken here.

4.5.3.4 Piecewise Linear Model
There are a number of ways of modeling the
piecewise linear concave benefit function shown
on the right side of Fig. 4.28. Several are defined
in the next several sets of equations. Each
method will result in the same model solution.

Fig. 4.28 Benefit function of the amount of water provided to the water user. Piecewise linear approximations of that
function of flow are shown on the right
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One approach to modeling the concave benefit
function is to define a new unrestricted (possibly
negative valued) variable. Let this variable be
Benefits. When being maximized this variable
cannot exceed any of the linear functions that
bound the concave benefit function:

Benefits� � 10þ 25� �10ð Þð Þ=9½ �Q ð4:176Þ

Benefits� 10þ 45� 25ð Þ= 21� 9ð Þ½ �Q
ð4:177Þ

Benefits� 33þ 50� 45ð Þ= 30� 21ð Þ½ �Q
ð4:178Þ

Since most linear programming algorithms
assume the unknown variables are nonnegative
(unless otherwise specified), unrestricted vari-
ables, such as Benefits, can be replaced by the
difference between two nonnegative variables,
such as Pben − Nben. Pben will equal Benefits if
its value is greater than 0. Otherwise −Nben will
equal Benefits. Thus in place of Benefits in
Eqs. 4.176–4.178, and those below, one can
substitute Pben − Nben.

Another modeling approach is to divide the
variable Q into parts, qi, one for each segment
i of the function. These parts sum to Q. Each qi,
ranges from 0 to the width of the user-defined
segment i. Thus for the piecewise linear benefit
function shown on the right of Fig. 4.28:

q1 � 9 ð4:179Þ

q2 � 21� 9 ð4:180Þ

q3 � 30� 21 ð4:181Þ

and

Q ¼ q1 þ q2 þ q3 ð4:182Þ

The linearized benefit function can now be
written as the sum over all three segments of
each segment slope times the variable qi:

Benefits ¼ �10þ ½ð25þ 10Þ=9�q1
þ 45� 25ð Þ= 21� 9ð Þ½ �q2
þ 50� 45ð Þ= 30� 21ð Þ½ �q3

ð4:183Þ

Since the function being maximized is con-
cave (decreasing slopes as Q increases), we are
assured that each qi + 1 will be greater than 0
only if qi is at its upper limit, as defined by
constraint Eqs. 4.179–4.181.

A third method is to define unknown weights
wi associated with the breakpoints of the lin-
earized function. The value of Q can be expres-
sed as the sum of a weighted combination of
segment endpoint values. Similarly, the benefits
associated with Q can be expressed as a weighted
combination of the benefits evaluated at the
segment endpoint values. The unknown weights
must also sum to 1. Hence, for this example:

Benefits ¼ �10ð Þw1 þ 25w2 þ 45w3 þ 50w4

ð4:184Þ

Q ¼ 0w1 þ 9w2 þ 21w3 þ 30w4 ð4:185Þ

1 ¼ w1 þw2 þw3 þw4 ð4:186Þ

For this method to provide the closest
approximation of the original nonlinear function,
the solution must include no more than two
nonzero weights and those nonzero weights must
be adjacent to each other. For concave functions
that are to be maximized, this condition will be
met, since any other situation would yield less
benefits.

The solution to the more detailed model
defined by Eqs. 4.174, 4.162–4.172, and either
4.176–4.178, 4.179–4.183, or 4.184–4.186,
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indicates a value of 10 for Q will result in the
maximum net benefits. This flow is to come from
Wellfield B. This more precise solution is iden-
tical to the solution of the simpler model. Clearly
the simpler model could have successfully served
to eliminate Wellfield A from further
consideration.

4.5.4 A Review of Linearization
Methods

This section reviews the piecewise linearization
methods just described and some other approa-
ches for incorporating nonlinear conditions into
linear programming models. All of these meth-
ods maintain linearity.

If-then-else conditions
There exist a number of ways “if-then-else” and
“and” and “or” conditions (that is, decision trees)
can be included in linear programming models.
To illustrate some of them, assume X is an
unknown decision variable in a model whose
value may depend on the value of another
unknown decision variable Y. Assume the maxi-
mum value of Y would not exceed Ymax and the
maximum value of X would not exceed Xmax.
These upper bounds and all the linear constraints
representing “if-then-else” conditions must not
restrict the values of the original decision variable
Y. Four “if-then-else” (with “and/or”) conditions
are presented below using additional integer 0.1
variables, denoted by Z. All the X, Y, and Z vari-
ables in the constraints below are assumed to be
unknown. These constraints would be included in
the any linear programming model where the
particular “if-then-else” conditions apply.

These illustrations are not unique. At the
boundaries of the “if” constraints in the examples
below, either of the “then” or “else” conditions
can apply. All variables (X, Y) are assumed
nonnegative. All variables Z are assumed to be a

binary (0, 1) variables. Note the constraints are
all linear.

(a) If Y � 50 then X� 10; else X� 15:
Define constraints:

Y � 50 Z þ Ymax 1� Zð Þ
Y � 50 1� Zð Þ
X� 10ZþXmax 1� Zð Þ
X� 15 1� Zð Þ

(b) If Y � 50 then X� Y ; else X� Y:
Define constraints:

Y � 50Z

Y � 50 1� Zð Þþ YmaxZ

X� Y þXmaxZ

X� Y � Ymax 1� Zð Þ

(c) If Y � 20 or Y � 80 then X ¼ 5; else X� 10:
Define constraints:

Y � 20Z1 þ 80Z2 þ Ymax 1� Z1 � Z2ð Þ
Y � 20Z2 þ 80 1� Z1 � Z2ð Þ
Z1 þ Z2 � 1

X� 5 Z1 þ 1� Z1 � Z2ð Þð ÞþXmaxZ2
X� 5ðZ1 þð1� Z1 � Z2ÞÞ
X� 10Z2

(d) If 20 ≤ Y ≤ 50 or 60 ≤ Y ≤ 80, then X ≤ 5,
else X ≥ 10.
Define constraints:

Y � 20Z1 þ 50Z2 þ 60Z3 þ 80Z4
þ Ymax 1� Z1 � Z2 � Z3 � Z4ð Þ:

Y � 20Z2 þ 50Z3 þ 60Z4
þ 80 1� Z1 � Z2 � Z3 � Z4ð Þ

Z1 þZ2 þZ3 þZ4 � 1

X� 5 Z2 þ Z4ð ÞþXmax 1� Z2 � Z4ð Þ
X� 10 Z1 þ Z3ð Þþ 1� Z1 � Z2 � Z3 � Z4ð Þð Þ
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Minimizing the absolute value of the dif-
ference between two unknown nonnegative
variables:

Minimize |X − Y| is equivalent to

Minimize D

subject to
X � Y �D;

Y � X�D;

X; Y;D� 0:

or

Minimize PDþNDð Þ

subject to

X � Y ¼ PD� ND;

PD;ND;X; Y � 0:

Minimizing the maximum or maximizing
the minimum

Let the set of variables be {X1, X2, X3,…, Xn},
Minimizing the maximum of {X1, X2, X3,…, Xn}
is equivalent to

Minimize U

subject to

U�Xj; j ¼ 1; 2; 3; . . .; n:

Maximizing the minimum of {X1, X2, X3, …,
Xn} is equivalent to

Maximize L

subject to

L�Xj; j ¼ 1; 2; 3; . . .; n:

Linearization of convex functions for
maximization or concave function for mini-
mization involves 0, 1 binary variables.

Fixed costs in cost functions

Consider functions that have fixed compo-
nents if the argument of the function is greater
than 0.

Cost ¼ C0 þCX if X[ 0;
¼ 0 otherwise:

To include these fixed costs in a LP model,
define

Cost ¼ C0IþCX

Subject to

X�MI

where M is the maximum value of X, and I is an
unknown 0, 1 binary variable.
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Minimizing convex functions or maximiz-
ing concave functions.

Maximize G Xð Þ ¼ Maximize B

Subject to

I1 þ S1X�B

I2 þ S2X�B

I3 þ S3X�B

Minimize F Xð Þ ¼ S1x1 þ S2x2 þ S3x3
Maximize G Xð Þ ¼ S1x1 þ S2x2 þ S3x3

Subject to

X ¼ x1 þ x2 þ x3
x1 � a

x2 � b� a
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Minimize F Xð Þ ¼ Fð0Þw1 þF að Þw2 þF bð Þw3 þF cð Þw4

Maximize G Xð Þ ¼ Gð0Þw1 þG að Þw2þG bð Þw3 þG cð Þw4

Subject to

X ¼ 0w1 þ aw2 þ bw3 þ c w4

w1 þw2 þw3 þw4 ¼ 1

Minimizing concave functions or maximiz-
ing convex functions

Minimize G Xð Þ ffi 5x1 þð20z2 þ 3x2Þþ ð44z3 þ 2x3Þ

Subject to

x1 þð4z2 þ x2Þþ ð12z3 þ x3Þ ¼ X

zs ¼ 0 or 1 for all segments s

x1 � 4z1;

x2 � 8z2;

x3 � 99z3;

z1 þ z2 þ z3 ¼ 1:
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Minimizing or maximizing combined con-
cave–convex functions

Maximize
C Xð Þ ¼ 5z1 þ 6x1 þ 3x2ð Þþ 53z3 þ 5x3ð Þ

Subject to

x1 þ x2ð Þþ 12z3 þ x3ð Þ ¼ X

x1 � 4z1
x2 � 8z1
x3 � 99z3
z1 þ z3 ¼ 1

z1; z3 ¼ 0; 1

Minimize
CðXÞ ¼ 5z1 þ 6x1ð Þþ 29z2 þ 3x2 þ 5x3ð Þ

Subject to

z1; z2 ¼ 0; 1:

x1 þð4z2 þ x2 þ x3Þ ¼ X

x1 � 4z1
x2 � 8z2
x3 � 99z2
z1 þ z2 � 1

Maximize
C Xð Þ ¼ ð5z1 þ 6x1 þ 3x2Þþ �17z3 þ 5x3ð Þ

Subject to

x1 þ x2ð Þþ x3 ¼ X

z1; z3 ¼ 0; 1

x1 � 4z1
x2 � 8z1

x3 � 99z3
z1 þ z3 ¼ 1;

Minimize
C Xð Þ ¼ ð5z1 þ 6x1Þþ ð17z2 þ 3x2 þ 5x3Þ

Subject to

x1 þ 4z2 þ x2 þ x3ð Þ ¼ X

z1; z2 ¼ 0; 1:

x1 � 4z1
x2 � 12z2
x3 � 99z2
z1 þ z2 � 1
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Maximize or Minimize F(X)

F Xð Þ ¼ ð5z1 þ 6x1Þþ ð35z2 þ 3x2Þþ ð32z3�2x3Þþ 22z4

Subject to

x1 þð4z2 þ x2Þþ ð12z3 þ x3Þþ ð17z4 þ x4Þ ¼ X

x1 � 4z1
x2 � 8z2
x3 � 5z3
x4 � 99z4
z1 þ z2 þ z3 þ z4 ¼ 1;

zs ¼ 0; 1 for all segments s

:

4.6 A Brief Review

Before proceeding to other optimization and
simulation methods in the following chapters, it
may be useful to review the topics covered so far.
The focus has been on model development as
well as model solution. Several types of water
resources planning and management problems
have been used to illustrate model development
and solution processes. Like their real-world
counterparts, the example problems all had
multiple unknown decision variables and multi-
ple constraints. Also like their real-world

counterparts, there are multiple feasible solutions
to each of these problems. Hence, the task is to
find the best solution, or a number of near-best
solutions. Each solution must satisfy all the
constraints.

Constraints can reflect physical conditions,
environmental regulations and/or social or eco-
nomic targets. Especially with respect to envi-
ronmental or social conditions and goals, it is
often a matter of judgment to decide what is
considered an objective that is to be minimized
or maximized and what is considered a constraint
that has to be met. For example, do we mini-
mize the costs of meeting specified maximum
levels of pollutant concentrations or minimize
pollutant concentrations without exceeding
specified costs?

Except for relatively simple problems, the use
of these optimization models and methods is
primarily for reducing the number of alternatives
that need to be further analyzed and evaluated
using simulation methods. Optimization is gen-
erally used for preliminary screening—eliminat-
ing inferior alternatives before more detailed
analyses are carried out. Presented were some
approaches to preliminary screening involving
hill-climbing, calculus-based Lagrange multi-
plier, numerical nonlinear programming, discrete
dynamic programming, and linear programming
methods. Each method has its strengths and
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limitations. Both linear and nonlinear program-
ming models are typically solved using software
packages. Many of these software programs are
free and readily available. But before any model
can be solved, it has to be built. Building models
is an art and that is what this chapter has
attempted to introduce.

The example problems used to illustrate these
modeling and model solution methods have been
relatively simple. However, simple applications
such as these can form the foundation of models
of more complex problems, as will be shown in
following chapters.
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Exercises

Engineering economics:

4:1 Consider two alternative water resource
projects, A and B. Project A will cost
$2,533,000 and will return $1,000,000 at
the end of 5 years and $4,000,000 at the
end of 10 years. Project B will cost
$4,000,000 and will return $2,000,000 at
the end of 5 and 15 years, and another
$3,000,000 at the end of 10 years. Pro-
ject A has a life of 10 years, and B has a
life of 15 years. Assuming an interest rate
of 0.1 (10%) per year:

(a) What is the present value of each
project?

(b) What is each project’s annual net
benefit?

(c) Would the preferred project differ if
the interest rates were 0.05?

(d) Assuming that each of these projects
would be replaced with a similar
project having the same time stream of
costs and returns, show that by
extending each series of projects to a
common terminal year (e.g.,
30 years), the annual net benefits of
each series of projects will be same as
found in part (b).

4:2 Show that A
PT

t¼1 ð1þ rÞ�t ¼ ð1þ rÞT�1
rð1þ rÞT A,

the present value of a series of equal pay-
ments, A, at the end of each year for
T years. What is the impact of an increasing
interest rate over time on the present value?

4:3 (a) Show that if compounding occurs at
the end of m equal length periods
within a year in which the nominal
interest rate is r, then the effective
annual interest rate, r′, is equal to

r0 ¼ 1þ r

m

� 	m
�1

(b) Show that when compounding is con-
tinuous (i.e., when the number of
periods m → ∞), the compound
interest factor required to convert a
present value to a future value in year
T is erT. [Hint: Use the fact that

lim
k!1

ð1þ 1=kÞk ¼ e, the base of natural

logarithms.]

4:4 The term “capitalized cost” refers to the
present value PV of an infinite series of
end-of-year equal payments, A. Assuming
an interest rate of r, show that as the ter-
minal period T → ∞, PV = A/r.

4:5 The internal rate of return of any project or
plan is the interest rate that equals the pre-
sent value of all receipts or income with the
present value of all costs. Show that the
internal rate of return of projects A and B in
Exercise 4.1 are approximately 8 and 6%,
respectively. These are the interest rates r,
for each project, that essentially satisfy the
equation

XT
t¼0

Rt � Ctð Þð1þ rÞ�t ¼ 0

4:6 In Exercise 4.1, the maximum annual
benefits were used as an economic crite-
rion for plan selection. The maximum
benefit–cost ratio, or annual benefits divi-
ded by annual costs, is another criterion.
Benefit–cost ratios should be no less than
one if the annual benefits are to exceed the
annual costs. Consider two projects, I
and II:

Project

I II

Annual benefits 20 2

Annual costs 18 1.5

Annual net benefits 2 0.5

Benefit–cost ratio 1.11 1.3
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What additional information is needed
before one can determine which project is
the most economical project?

4:7 Bonds are often sold to raise money for
water resources project investments. Each
bond is a promise to pay a specified
amount of interest, usually semiannually,
and to pay the face value of the bond at
some specified future date. The selling
price of a bond may differ from its face
value. Since the interest payments are
specified in advance, the current market
interest rates dictate the purchase price of
the bond.
Consider a bond having a face value of
$10,000, paying $500 annually for
10 years. The bond or “coupon” interest
rate based on its face value is 500/10,000,
or 5%. If the bond is purchased for
$10,000, the actual interest rate paid to the
owner will equal the bond or “coupon”
rate. But suppose that one can invest
money in similar quality (equal risk)
bonds or notes and receive 10% interest.
As long as this is possible, the $10,000,
5% bond will not sell in a competitive
market. In order to sell it, its purchase
price has to be such that the actual interest
rate paid to the owner will be 10%. In this
case, show that the purchase price will be
$6927.
The interest paid by the some bonds,
especially municipal bonds, may be
exempt from state and federal income
taxes. If an investor is in the 30% income
tax bracket, for example, a 5% municipal
tax-exempt bond is equivalent to about a
7% taxable bond. This tax exemption
helps reduce local taxes needed to pay the
interest on municipal bonds, as well as
providing attractive investment opportu-
nities to individuals in high tax brackets.

Lagrange Multipliers
4:8 What is the meaning of the Lagrange

multiplier associated with the following
model?

Maximize Benefit Xð Þ � Cost Xð Þ
Subject to: X� 23

4:9 Assume water can be allocated to three
users. The allocation, xj, to each use j pro-
vides the following returns: R
(x1) = (12x1 − x1

2), R(x2) = (8x2 − x2
2) and

R(x3) = (18x3 − 3x3
2). Assume that the

objective is to maximize the total return, F
(X), from all three allocations and that the
sum of all allocations cannot exceed 10.
(a) Howmuch would each use like to have?
(b) Show that at the maximum total return
solution the marginal values, ∂(R(xj))/∂xj,
are each equal to the shadow price or
Lagrange multiplier (dual variable) λ asso-
ciated with the constraint on the amount of
water available. (c) Finally, without
resolving a Lagrange multiplier problem,
what would the solution be if 15 units of
water were available to allocate to the three
users and what would be the value of the
Lagrange multiplier?

4:10 In Exercise 4.9, how would the Lagrange
multiplier procedure differ if the objective
function, F(X), were to be minimized?

4:11 Assume that the objective was to minimize
the sum of squared deviations of the actual
allocations xj from some desired or known
target allocations Tj. Given a supply of
water Q less than the sum of all target al-
locations Tj, structure a planning model
and its corresponding Lagrangian. Will a
global minimum be obtained from solving
the partial differential equations derived
from the Lagrangian? Why?

4:12 Using Lagrange multipliers, prove that the
least-cost design of a cylindrical storage
tank of any volume V > 0 has one-third of
its cost in its base and top and two-thirds
of its cost in its side, regardless of the cost
per unit area of its base or side. (It is these
types of rules that end up in handbooks in
engineering design.)

4:13 An industrial firm makes two products,
A and B. These products require water and
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other resources. Water is the scarce
resource—they have plenty of other nee-
ded resources. The products they make are
unique, and hence they can set the unit
price of each product at any value they
want to. However experience tells them
that the higher the unit price for a product,
the less amount of that product they will
sell. The relationship between unit price
and quantity that can be sold is given by
the following two demand functions.
Assume for simplicity that the unit price
for product A is (8 − A) and for product B
is (6 − 1.5B).

(a) What are the amounts of A and B, and
their unit prices, that maximize the
total revenue obtained?

(b) Suppose the total amount of A and
B could not exceed some amount
Tmax. What are the amounts of A and
B, and their unit prices, that maximize
total revenue, if

(i) Tmax = 10
(ii) Tmax = 5
Water is needed to make each unit of
A and B. The production functions
relating the amount of water XA nee-
ded to make A, and the amount of
water XB needed to make B, are
A = 0.5XA, and B = 0.25XB,
respectively.

(c) Find the amounts of A and B and their
unit prices that maximize total revenue
assuming the total amount of water
available is 10 units.

(d) What is the value of the dual variable,
or shadow price, associated with the
10 units of available water?

Dynamic programming

4:14 Solve for the optimal integer allocations x1,
x2, and x3 for the problem defined by
Exercise 4.9 assuming the total available
water is 3 and 4. Also solve for the optimal
allocation policy if the total water available
is 7 and each xj must not exceed 4.

4:15 Consider a three-season reservoir opera-
tion problem. The inflows are 10, 50 and
20 in seasons 1, 2, and 3, respectively.

Find the operating policy that minimizes
the sum of total squared deviations from a
constant storage target of 20 and a con-
stant release target of 25 in each of the
three seasons. Develop a discrete dynamic
programming model that considers only 4
discrete storage values: 0, 10, 20 and 30.
Assume the releases cannot be less than 10
or greater than 40. Show how the model’s
recursive equations change depending on
whether the decisions are the releases or
the final storage volumes. Verify the
optimal operating policy is the same
regardless of whether the decision vari-
ables are the releases or the final storage
volumes in each period. Which model do
you think is easier to solve? How would
each model change if more importance
were given to the desired releases than to
the desired storage volumes?

4:16 Show that the constraint limiting a reser-
voir release, rt, to be no greater than the

Quantity of product A            Quantity of product B

Po

Unit
price

Po 

Unit                             
Price

8 – A 6–1.5B
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initial storage volume, st, plus inflow, it, is
redundant to the continuity equation
st + it − rt = st + 1.

4:17 Develop a general recursive equation for a
forward-moving dynamic programming
solution procedure for a single
reservoir-operating problem. Define all
variables and functions used. Why is this
not a very useful approach to finding a
reservoir-operating policy?

4:18 The following table provides estimates for
the recent values of the costs of additional
wastewater treatment plant capacity nee-
ded at the end of each 5-year period for the
next 20 years. Find the capacity expansion
schedule that minimizes the present values
of the total future costs. If there is more
than one least-cost solution, indicate
which one you think is better, and why?

Discounted cost of
additional capacity

Total required
capacity at end of
periodUnits of additional

capacity

Period
years

2 4 6 8 10

1 1–5 12 15 18 23 26 2

2 6–
10

8 11 13 15 6

3 11–
15

6 8 8

4 16–
20

4 10

The cost in each period t must be paid at
the beginning of the period. What was the
discount factor used to convert the costs at
the beginning of each period t to present
value costs shown above? In other words
how would a cost at the beginning of
period t be discounted to the beginning of
period 1, given an annual interest rate of r?
(Only the algebraic expression of the dis-
count factor is asked, not the numerical
value of r.)

4:19 Consider a wastewater treatment plant in
which it is possible to include five differ-
ent treatment processes in series. These
treatment processes must together remove
at least 90% of the 100 units of influent
waste. Assuming the Ri is the amount of
waste removed by process i, the following
conditions must hold:

20�R1 � 30

0�R2 � 30

0�R3 � 10

0�R4 � 20

0�R5 � 30

(a) Write the constrained optimization-
planning model for finding the
least-cost combination of the removals
Ri that together will remove 90% of
the influent waste. The cost of the
various discrete sizes of each unit
process i depend upon the waste
entering the process i as well as the
amount of waste removed, as indi-
cated in the table below.

Process i 1 2 3 4 5

Influent, Ii Removal, Ri Annual cost = Ci(Ii, Ri)

100 20 5

100 30 10

80 10 3 3 1

80 20 9 2

80 30 13

70 10 4 5 2

70 20 10 3

70 30 15

60 10 6 2 3

60 20 4 6

60 30 9

50 10 7 3 4

50 20 5 8

50 30 10

(continued)
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Process i 1 2 3 4 5

Influent, Ii Removal, Ri Annual cost = Ci(Ii, Ri)

40 10 8 5 5

40 20 7 12

40 30 18

30 10 8 8

30 20 10 12

20 10 8

(b) Draw the dynamic programming net-
work and solve this problem by
dynamic programming. Indicate on
the network the calculations required
to find the least-cost path from state
100 at stage 1 to state 10 at stage 6
using both forward- and backward-
moving dynamic programming solu-
tion procedures.

(c) Could the following conditions be
included in the original dynamic pro-
gramming model and still be solved
without requiring R4 to be 0 in the first
case and R3 to be 0 in the second case?

(i) R4 = 0 if R3 = 0, or
(ii) R3 = 0 if R2 ≤ 20.

4:20 The city of Eutro Falls is under a court order
to reduce the amount of phosphorus that
which it discharges in its sewage to Lake
Algae. The city presently has three
wastewater treatment plants. Each plant
i currently discharges Pi kg/day of phos-
phorus into the lake. Some or all plantsmust
reduce their discharges so that the total for
the three plants does not exceed P kg/day.
Let Xi be the fraction or percent of the
phosphorus removed by additional treat-
ment at plant i, and the Ci(Xi) the cost of
such treatment ($/year) at each plant i.

(a) Structure a planning model to deter-
mine the least-cost (i.e., a cost effec-
tive) treatment plant for the city.

(b) Restructure the model for the solution
by dynamic programming. Define the

stages, states, decision variables, and
the recursive equation for each stage.

(c) Now assume P1 = 20; P2 = 15;
P3 = 25; and P = 20. Make up some
cost data and check the model if it
works.

4:21 Find (draw) a rule curve for operating a
single reservoir that maximizes the sum of
the benefits for flood control, recreation,
water supply and hydropower. Assume
the average inflows in four seasons of a
year are 40, 80 60, 20, and the active
reservoir capacity is 100. For an average
storage S and for a release of R in a sea-
son, the hydropower benefits are 2 times
the square root of the product of S and R,
2(SR)0.5, and the water supply benefits are
3R0.7 in each season. The recreation ben-
efits are 40 − (70 − S)2 in the third sea-
son. The flood control benefits are
20 − (40 − S)2 in the second season.
Specify the dynamic programming recur-
sion equations you are using to solve the
problem.

4:22 How would the model defined in Exercise
4.21 change if there were a water user
upstream of this reservoir and you were to
find the best water-allocation policy for
that user, assuming known benefits asso-
ciated with these allocations that are to be
included in the overall maximum benefits
objective function?

4:23 Suppose there are four water users along a
river who benefit from receiving water
from the river. Each has a water target,
i.e., each expects and plans for a specified
amount. These known water targets are W
(1), W(2), W(3), and W(4) for the four
users, respectively. Show how dynamic
programming can be used to find two
allocation policies. One is to be based on
minimizing the maximum deficit deviation
from any target allocation. The other is to
be based on minimizing the maximum
percentage deficit from any
target allocation.
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Gradient “Hill-climbing” methods
4:24 Solve Exercise 4.13(b) using hill-climbing

techniques and assuming discrete integer
values and Tmax = 5. For example, which
product would you produce if you could
make only 1 unit of either A or B? If you
could make another unit of A or B, which
would you make? Continue this process
up to 5 units of products A and/or B.

4:25 Under what conditions will hill-climbing
methods for maximization or minimiza-
tion not work?

Linear and nonlinear programming
4:26 Consider the industrial firm that makes

two products A and B as described in
Exercise 4.13(b). Using Lingo (or any
other program you wish):

(a) Find the amounts of A and B and their
unit prices that maximize total revenue
assuming the total amount of water
available is 10 units.

(b) What is the value of the dual variable,
or shadow price, associated with the
10 units of available water?

(c) Suppose the demand functions are not
really certain. How sensitive are the
allocations of water to changes in the
parameter values of those functions?
How sensitive are the allocations to
the parameter values in the production
functions?

4:27 Assume that there are m industries or
municipalities that discharge their wastes

into a river. Denote the discharge sites by
the subscript i and let Wi be the kg of
waste discharged into the river each day at
those sites i. To improve the river water
quality downstream, wastewater treatment
plants may be required at each site i. Let xi
be the fraction of waste removed by
treatment at each site i. Develop a model
for estimating how much waste removal is
required at each site to maintain accept-
able water quality in the river at a mini-
mum total cost. Use the following
additional notation:

aij decrease in quality at site j per unit of waste
discharged at site i

qj quality at site j that would result if all
controlled upstream discharges were
eliminated (i.e., W1 = W2 = 0)

Qj minimum acceptable quality at site j
Ci cost per unit (fraction) of waste removed at

site i.

4:28 Assume that there are two sites along a
stream, i = 1, 2, at which waste (BOD) is
discharged. Currently, without any
wastewater treatment, the quality (DO), q2
and q3, at each of sites 2 and 3 is less than
the minimum desired, Q2 and Q3, respec-
tively. For each unit of waste removed at
site i upstream of site j, the quality
improves by Aij. How much treatment is
required at sites 1 and 2 that meets the
standards at a minimum total cost?

Site 1

Site 2
Site 3

Park

W1

W2

Stream
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Following are the necessary data:

Ci cost per unit fraction of waste treatment at
site i (both C1 and C2 are unknown but for
the same amount of treatment, whatever that
amount, C1 > C2)

Ri decision variables, unknown waste removal
fractions at sites i = 1, 2

A12 ¼ 1=20 W1 ¼ 100 Q2 ¼ 6
A13 ¼ 1=40 W2 ¼ 75 Q3 ¼ 4
A23 ¼ 1=30 q2 ¼ 3 q3 ¼ 1

4:29 Define a linear programming model for
finding the tradeoff between active storage
capacity and the maximum percentage
deviation from a known target storage
volume and a known target release in each
period. How could the solution of the
model be used to define a reservoir policy?

4:30 Consider the possibility of building a
reservoir upstream of three demand sites
along a river.

The net benefits derived from each use
depend on the reliable amounts of water
allocated to each use. Letting xit be the
allocation to use i in period t, the net
benefits for each period t equal

1. 6x1t − x1t
2

2. 7x2t − 1.5x2t
2

3. 8x3t − 0.5x3t
2

Assume the average inflows to the
reservoir in each of four seasons of the
year equal 10, 2, 8, 12.

(a) Find the tradeoff between the yield
(the expected release that can be

guaranteed in each season) and the
reservoir capacity.

(b) Find the tradeoff between the yield
and the maximum total net benefits
that can be obtained from allocating
that yield among the three users.

(c) Find the tradeoff between the reservoir
capacity and the total net benefits one
can obtain from allocating the total
releases, not just the reliable yield, to
the downstream users.

(d) Assuming a reservoir capacity of 7,
and dividing the release into integer
increments of 2 (i.e., 2, 4, 6 and 8),
using linear programming, find the
optimal operating policy. Assume the
maximum release cannot exceed 8,
and the minimum release cannot be
less than 2. How does this solution
differ from that obtained using
dynamic programming?

(e) If you were maximizing the total net
benefit obtained from the three users
and if the water available to allocate to

the three users were 15 in a particular
time period, what would be the value
of the Lagrange multiplier or dual
variable associated with the constraint
that you cannot allocate more than 15
to the three uses?

(f) There is the possibility of obtaining
recreational benefits in seasons 2 and
3 from reservoir storage. No recre-
ational benefits can occur in seasons 1
and 4. To obtain these benefits facili-
ties must be built, and the question is
at what elevation (storage volume)
should they be built. This is called the
recreational storage volume target.

1

2

3
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Recreational benefits in each recre-
ation season equal 8 per unit of stor-
age target if the actual storage equals
the storage target. If the actual storage
is less than the target the losses are 12
per unit deficit—the difference
between the target and actual storage
volumes. If the actual storage volume
is greater than the target volume the
losses are 4 per unit excess. What is
the reservoir capacity and recreation
storage target that maximizes the
annual total net benefits obtained from
downstream allocations and recreation
in the reservoir less the annual cost of
the reservoir, 3K1.5, where K is the
reservoir capacity?

(g) In (f) above, suppose the allocation
benefits and net recreation benefits
were given weights indicating their
relative importance. What happens to
the relationship between capacity
K and recreation target as the total
allocation benefits are given a greater
weight in comparison to recreation net
benefits?

4:31 Using the network representation of the
wastewater treatment plant design problem
defined in Exercise 4.19, write a linear
programming model for defining the
least-cost sequence of unit treatment pro-
cess (i.e., the least-cost path through the
network). [Hint: Let each decision variable
xij indicate whether or not the link between
nodes (or states) i and j connecting two
successive stages is on the least-cost or
optimal path. The constraints for each
node must ensure that what enters the
node must also leave the node.]

4:32 Two types of crops can be grown in par-
ticular irrigation area each year. Each unit
quantity of crop A can be sold for a price
PA and requires WA units of water, LA units
of land, FA units of fertilizer, and HA units
of labor. Similarly, crop B can be sold at a
unit price of PB and requires WB, LB, FB

and HB units of water, land, fertilizer, and

labor, respectively, per unit of
crop. Assume that the available quantities
of water, land, fertilizer, and labor are
known, and equal W, L, F, and H,
respectively.

(a) Structure a linear programming model
for estimating the quantities of each of
the two crops that should be produced
in order to maximize total income.

(b) Solve the problem graphically, using
the following data:

Requirements
per unit of

Resource Crop
A

Crop
B

Maximum available
resources

Water 2 3 60

Land 5 2 80

Fertilizer 3 2 60

Labor 1 2 40

Unit
price

30 25

(c) Define the meaning of the dual vari-
ables, and their values, associated with
each constraint.

(d) Write the dual model of this problem
and interpret its objective and
constraints.

(e) Solve the primal and dual models using
an existing computer program, and
indicate the meaning of all output data.

(f) Assume that one could purchase
additional water, land, fertilizer, and
labor with capital that could be bor-
rowed from a bank at an annual
interest rate r. How would this
opportunity alter the linear program-
ming model? The objective continues
to be a maximization of net income.
Assume there is a maximum limit on
the amount of money that can be
borrowed from the bank.

(g) Assume that the unit price Pj of crop
j is a decreasing linear function
(Po

j�bjxj) of the quantity, xj, pro-
duced. How could the linear model be
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restructured also as to identify not
only how much of each crop to pro-
duce, but also the unit price at which
each crop should be sold in order to
maximize total income?

4:33 Using linear programming model, derive
an annual storage-yield function for a
reservoir at a site having the following
record of annual flows:

Year y Flow Qy Year y Flow Qy

1 5 9 3

2 7 10 6

3 8 11 8

4 4 12 9

5 3 13 3

6 3 14 4

7 2 15 9

8 1

(a) Find the values of the storage capacity
required for yields of 2, 3, 3.5, 4, 4.5,
and 5.

(b) Develop a flow chart defining a pro-
cedure for finding the yields for vari-
ous increasing values of K.

4:34 Water resources planning usually involves
a set of separate tasks. Let the index i de-
note each task, and Hi the set of tasks that
immediately precede task i. The duration
of each task i is estimated to be di.

(a) Develop a linear programming model
to identify the starting times of tasks
that minimizes the time, T, required to
complete the total planning project.

(b) Apply the general model to the fol-
lowing planning project:

Task A: Determine planning objectives and
stakeholder interests. Duration:
4 months.

Task B: Determine structural and nonstructural
alternatives that will influence
objectives. Duration: 1 month.

Task C: Develop an optimization model for
preliminary screening of alternatives
and for estimating tradeoffs among
objectives. Duration: 1 month.

Task
D:

Identify data requirements and collect
data. Duration: 2 months.

Task E: Develop a data management system
for the project. Duration: 3 months.

Task F: Develop an interactive shared vision
simulation model with the
stakeholdes. Duration: 2 Months.

Task
G:

Work with stakeholders in an effort to
come to a consensus (a shared vision)
of the best plan. Duration: 4 months.

Task
H:

Prepare, present and submit a report.
Duration: 2 months.

4:35 In Exercise 4.34 suppose the project is
penalized if its completion time exceeds a
target T. The difference between 14 months
and T months is Δ, and the penalty is P(Δ).
You could reduce the time it takes to
complete task E by one month at a cost of
$200, and by two months at a cost of $500.
Similarly, suppose the cost of task A could
be reduced by a month at a cost of $600 and
two months at a cost of $1400. Construct a
model to find the most economical project
completion time. Next modify the linear
programming model to find the minimum
total added cost if the total project time is to
be reduced by 1 or 2 months. What is that
added cost and for which tasks?

A

E

B

C 

D 

F

G H 
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4:36 Solve the reservoir operation problem
described in Exercise 4.15 using linear
programming. If the reservoir capacity is
unknown, show how a cost function (that
includes fixed costs and economies of
scale) for the reservoir capacity could be
included in the linear programming model.

4:37 An upstream reservoir could be built to
serve two downstream users. Each user
has a constant water demand target. The
first user’s target is 30; the second user’s
target is 50. These targets apply to each of
6 within-year seasons. Find the tradeoff
between the required reservoir capacity
and maximum deficit to any user at any
time, for an average year. The average
flows into the reservoir in each of the six
successive seasons are: 40, 80, 100, 130,
70, 50.

4:38 Two groundwater well fields can be used
to meet the water demands of a single
user. The maximum capacity of the A well
field is 15 units of water per period, and
the maximum capacity of the B well field
is 10 units of water per period. The annual
cost of building and operating each well
field, each period, is a function of the
amount of water pumped and transported
from that well field. Three sets of cost
functions are shown below: Construct a
LP model and use it to define and then plot
the total least-cost function and the asso-
ciated individual well field capacities
required to meet demands from 0 to 25,
assuming cost functions 1 and 2 apply to
well fields A and B, respectively. Next
define another least-cost function and
associated capacities assuming cost func-
tions 3 and 4 apply to A and B, respec-
tively. Finally define a least-cost function
and associated capacities assuming well
field cost functions 5 and 6 apply. You can
check your model results just using com-
mon sense—the least-cost functions
should be obvious, even without using
optimization.

4:39 Referring to Exercise 4.38 above, assume
cost functions 5 and 6 represent the cost of
adding additional capacity to well fields
A and B, respectively, in any of the next five
5-year construction periods, i.e., in the next
25 years. Identify and plot the least-cost
capacity expansion schedule (one that
minimizes the total present value of current
and future expansions), assuming demands
of 5, 10, 15, 20 and 25 are to be met at the
end of years 5, 10, 15, 20 and 25, respec-
tively. Costs, including fixed costs, of ca-
pacity expansion in each construction
period have to be paid at the beginning of
the construction period. Determine the
sensitivity of your solution to the interest
rate used to compute present value.

4:40 Consider a crop production problem
involving three types of crops. How many
hectares of each crop should be planted to
maximize total income?

Resources Max limits Resource requirements

Crops: Corn Wheat Oats

Water 1000/week 3.0 1.0 1.5 units/week/ha

Labor 300/week 0.8 0.2 0.3 person

h/week/ha

Land 625 ha

Yield $/ha 400 200 250

10 5

8
15

5

2 5

4
12

5
3

7

20

1 2

3 4

5 6

14
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Show a graph that identifies the tradeoffs
among crops that can be made without reducing
the total income.

4:41 Releases from a reservoir are used for
water supply or for hydropower. The
benefit per unit of water allocated to
hydropower is BH and the benefit per unit
of water allocated to water supply is BW.
For any given release the difference
between the allocations to the two uses
cannot exceed 50% of the total amount of
water available. Show graphically how to
determine the most profitable allocation of
the water for some assumed values of BH
and BW. From the graph identify which
constraints are binding and what their
“dual prices” mean (in words).

4:42 Suppose there are four water users along a
river who benefit from receiving water.
Each has a known water target, i.e., each
expects and plans for a specified amount.
These known water targets are W1, W2,
W3, and W4 for the four users, respec-
tively. Find two allocation policies. One is
to be based on minimizing the maximum
deficit deviation from any target alloca-
tion. The other is to be based on mini-
mizing the maximum percentage deficit
from any target allocation.
Deficit allocations are allocations that are
less than the target allocation. For example
if a target allocation is 30 and the actual
allocation is 20, the deficit is 10. Water in
excess of the targets can remain in the
river. The policies are to indicate what the
allocations should be for any particular
river flow Q. The policies can be expres-
sed on a graph showing the amount of
Q on the horizontal axis, and each user’s
allocation on the vertical axis.
Create the two optimization models that
can be used to find the two policies and
indicate how they would be used to define

the policies. What are the unknown vari-
ables and what are the known variables?
Specify the model in words as well as
mathematically.

4:43 In Indonesia there exists a wet season
followed by a dry season each year. In one
area of Indonesia all farmers within an
irrigation district plant and grow rice dur-
ing the wet season. This crop brings the
farmer the largest income per hectare; thus
they would all prefer to continue growing
rice during the dry season. However, there
is insufficient water during the dry season
to irrigate all 5000 ha of available irriga-
ble land for rice production. Assume an
available irrigation water supply of
32 × 106 m3 at the beginning of each dry
season, and a minimum requirement of
7000 m3/ha for rice and 1800 m3/ha for
the second crop.

(a) What proportion of the 5000 ha
should the irrigation district manager
allocate for rice during the dry season
each year, provided that all available
hectares must be given sufficient water
for rice or the second crop?

(b) Suppose that crop production func-
tions are available for the two crops,
indicating the increase in yield per
hectare per m3 of additional water, up
to 10, 000 m3/ha for the second
crop. Develop a model in which the
water allocation per hectare, as well as
the hectares allocated to each crop, is
to be determined, assuming a specified
price or return per unit of yield of each
crop. Under what conditions would
the solution of this model be the same
as in part (a)?

4:44 Along the Nile River in Egypt, irrigation
farming is practiced for the production of
cotton, maize, rice, sorghum, full and short
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berseem for animal production, wheat,
barley, horsebeans, and winter and summer
tomatoes. Cattle and buffalo are also pro-
duced, and together with the crops that
require labor, water. Fertilizer, and land
area (feddans). Farm types or management
practices are fairly uniform, and hence in
any analysis of irrigation policies in this
region this distinction need not be made.
Given the accompanying data develop a
model for determining the tons of crops and
numbers of animals to be grown that will
maximize (a) net economic benefits based
on Egyptian prices, and (b) net economic
benefits based on international prices.
Identify all variables used in the model.
Known parameters:

Ci miscellaneous cost of land preparation per
feddan

PE
i Egyptian price per 1000 tons of crop i

PI
i international price per 1000 tons of crop i

v value of meat and dairy production per
animal

g annual labor cost per worker
f P cost of P fertilizer per ton
f N cost of N fertilizer per ton
Yi yield of crop i, tons/feddan
a feddans serviced per animal
b tons straw equivalent per ton of berseem

carryover from winter to summer
rw berseem requirements per animal in winter
swh straw yield from wheat, tons per feddan
sba straw yield from barley, tons per feddan
rs straw requirements per animal in summer
lNi N fertilizer required per feddan of crop i
lPi P fertilizer required per feddan of crop i
lim labor requirements per feddan in month m,

man-days
wim water requirements per feddan in month

m, 1000 m3

him land requirements per month, fraction
(1 = full month)

Required Constraints (assume known
resource limitations for labor, water, and
land):

(a) Summer and winter fodder (berseem)
requirements for the animals.

(b) Monthly labor limitations.
(c) Monthly water limitations.
(d) Land availability each month.
(e) Minimum number of animals required

for cultivation.
(f) Upper bounds on summer and winter

tomatoes (assume these are known).
(g) Lower bounds on cotton areas (as-

sume this is known).

Other possible constraints:

(a) Crop balances.
(b) Fertilizer balances.
(c) Labor balance.
(d) Land balance.

4:45 In Algeria there are two distinct cropping
intensities, depending upon the availability
of water. Consider a single crop that can be
grown under intensive rotation or exten-
sive rotation on a total of A hectares.
Assume that the annual water requirements
for the intensive rotation policy are
16,000 m3 per ha, and for the extensive
rotation policy they 4000 m3 per ha. The
annual net production returns are 4000 and
2000 dinars, respectively. If the total water
available is 320,000 m3, show that as the
available land area A increases, the rotation
policy that maximizes total net income
changes from one that is totally intensive to
one that is increasingly extensive.
Would the same conclusion hold if instead
of fixed net incomes of 4000 and
2000 dinars per hectares of intensive and
extensive rotation, the net income depen-
ded on the quantity of crop produced?
Assuming that intensive rotation produces
twice as much produced by extensive
rotation, and that the net income per unit
of crop Y is defined by the simple linear
function 5 − 0.05 Y, develop and solve a
linear programming model to determine
the optimal rotation policies if A equals
20, 50, and 80. Need this net income or
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price function be linear to be included in a
linear programming model?

4:46 Current stream quality is below desired
minimum levels throughout the stream in
spite of treatment at each of the treatment
plant and discharge sites shown below.
Currently effluent standards are not being

met, and minimum desired streamflow
concentrations can be met by meeting
effluent standards. All current wastewater
discharges must undergo additional treat-
ment. The issue is where additional treat-
ment is to occur and how much.
Develop a model to identify cost-effective
options for meeting effluent standards
where ever wastewater is discharged into
the stream. The decisions variables include

the amount of wastewater to treat at each
site and then release to the river. Any
wastewater at any site that is not under-
going additional treatment can be piped to
other sites. Identify other issues that could
affect the eventual decision.

Assume known current wastewater flows at site
i = qi.
Additional treatment to meet effluent standards
cost = ai þ biðDiÞci where Di is the total
wastewater flow undergoing additional treatment
at site i and ci < 1.
Pipeline and pumping for each pipeline segment
costs approximately αij + β(qij)

γ.
where qij is pipeline flow between adjacent sites
i and j and γ < 1.

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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