Chapter 21
Mortality Prediction in the ICU

Joon Lee, Joel A. Dubin and David M. Maslove

Learning Objectives
Build and evaluate mortality prediction models.

1. Learn how to extract predictor variables from MIMIC-II.

2. Learn how to build logistic regression, support vector machine, and decision
tree models for mortality prediction.

3. Learn how to utilize adaptive boosting to improve the predictive performance of
a weak learner.

4. Learn how to train and evaluate predictive models using cross-validation.

21.1 Introduction

Patients admitted to the ICU suffer from critical illness or injury and are at high risk
of dying. ICU mortality rates differ widely depending on the underlying disease
process, with death rates as low as 1 in 20 for patients admitted following elective
surgery, and as high as 1 in 4 for patients with respiratory diseases [1]. The risk of
death can be approximated by evaluating the severity of a patient’s illness as
determined by important physiologic, clinical, and demographic determinants.

In clinical practice, estimates of mortality risk can be useful in triage and
resource allocation, in determining appropriate levels of care, and even in discus-
sions with patients and their families around expected outcomes. Estimates of
mortality risk are, however, based on studying aggregate data from large, hetero-
geneous groups of patients, and as such their validity in the context of any single
patient encounter cannot be assured. This shortcoming can be mitigated by
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personalized mortality risk estimation, which is well discussed in [2, 3], but is not a
subject of the present study.

Perhaps even more noteworthy uses of mortality prediction in the ICU are in the
areas of health research and administration, which often involve looking at cohorts
of critically ill patients. Traditionally, such population-level studies have been more
widely accepted as applications of mortality prediction given the cohort-based
derivation of prediction models. In this context, mortality prediction is used to
compare the average severity of illness between groups of critically ill patients (for
example, between patients in different ICUs, hospitals, or health care systems) and
between groups of patients enrolled in clinical trials. Predicted mortality can be
compared with observed mortality rates for the purpose of benchmarking and
performance evaluation of ICUs and health systems.

A number of severity of illness (SOI) scores have been introduced in the ICU to
predict outcomes including death. These include the APACHE scores [4], the
Simplified Acute Physiology Score (SAPS) [5], the Mortality Probability Model
(MPM) [6], and the Sequential Organ Failure Assessment (SOFA) score [7]. These
scoring systems perform well, with areas under the receiver operator characteristic
(ROC) curves (AUROC:S) typically between 0.8 and 0.9 [5, 6, 8]. Current research
is exploring ways to leverage the enhanced completeness and expressivity of
modern electronic medical records (EMRs) in order to improve prediction accuracy.
In particular, the granular nature (i.e., a rich set of clinical variables recorded in high
temporal resolution) of EMRs can lead to creating a personalized predictive model
for a given patient by identifying and utilizing data from similar patients.

21.2 Study Dataset

This case study aimed to create mortality prediction models using the first ICU
admissions from all adult patients in MIMIC-II version 2.6. In the icustay_detail
table, adult patients in MIMIC-II can be identified by icustay_age_group="‘adult’,
whereas the first ICU admission of each patient can be selected by subject_icus-
tay_seq=1. In addition, all ICU stays with a null icustay_id were excluded, since
icustay_id was used to find the data in other tables that correspond to the included
ICU stays. A total of 24,581 ICU admissions in MIMIC-II met these inclusion
criteria.

The following demographic/administrative variables were extracted to be used
as predictors: age at ICU admission, gender, admission type (elective, urgent,
emergency), and first ICU service type of the ICU admission. Furthermore, the first
measurement in the ICU of the following vital signs and lab tests was each
extracted as a predictor: heart rate, mean and systolic blood pressure (invasive and
noninvasive measurements combined), body temperature, SpO,, respiratory rate,
creatinine, potassium, sodium, chloride, bicarbonate, hematocrit, white blood cell
count, glucose, magnesium, calcium, phosphorus, and lactate. Although the very
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first measurements in the ICU were extracted, the exact measurement time with
respect to the ICU admission time would have varied between patients. Also, this
approach to variable-by-variable data extraction does not ensure concurrent mea-
surements within patient. For the vast majority of the ICU admissions in MIMIC-II,
however, measurements of these common clinical variables were obtained at the
beginning of the ICU admission, or at most within the first 24 h.

As the patient outcome to be predicted, mortality at 30 days post-discharge from
the hospital was extracted. In MIMIC-II, this binary outcome variable can be
obtained by comparing the date of death (found in the d_patients table) and the
hospital discharge date (found in the icustay_detail table). If our focus were on a
greater time period to post-discharge death, we would have extracted mortality date
in an attempt to predict survival time.

21.3 Pre-processing

Some of the extracted variables require further processing before they can be used
for predictive modeling. In MIMIC-II, some ages are unrealistically large
(~200 years), as they were intentionally inserted to mask the actual ages of those
patients who were 90 years or older and still alive (according to the latest social
security death index data), which is protected health information. For these patients,
the median of such masked ages (namely, 91.4) was substituted. Furthermore,
regarding ICU service type, FICU (Finard ICU; this is a term specific to Beth Israel
Deaconess Medical Center where MIMIC-II data were collected) was converted to
MICU (medical ICU) since there are only a small number of FICU admissions in
MIMIC-II and FICU is nothing more than a special MICU.

There are abundant missing data in MIMIC-II. Although there are ways to make
use of ICU admissions with incomplete data (e.g., imputation), this case study
simply excluded cases with incomplete data since missing data is discussed in depth
in [insert reference to Missing Data Chapter, Part 2]. After exclusion of cases with
incomplete data, only 9269 ICU admissions remained. This still is a sufficient
sample size to conduct the present case study, but approaches such as imputation
and/or exclusion of variables with frequent missing data should be considered if a
larger patient sample size is required.

With default settings in R, numeric variables are normally imported correctly
with proper handling of missing data (flagged as NA), but special care may be
needed for importing categorical variables. In order to avoid the empty field being
imported as a category on its own, this case study (1) imported the categorical
variables as strings, (2) converted all empty fields to NA, and then (3) converted the
categorical variables to factors. This case study includes the following categorical
variables: gender, admission type, ICU service type, and 30-day mortality.
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21.4 Methods

The following predictive models were employed: logistic regression (LR), support
vector machine (SVM), and decision tree (DT). These models were chosen due to
their widespread use in machine learning. Although the reader should refer to
appropriate chapters in Part 2 to learn more about these models, a brief description
of each model is provided here.

LR is a model that can learn the mathematical relationship, within a restricted
framework using a logistic function, between a set of covariates (i.e., predictor
variables in this case study) and a binary outcome variable (i.e., mortality in this
case study). Once this relationship is learned, the model can make a prediction for a
new case given the predictor values from the new case. LR is very widely used in
health research thanks to its easy interpretability.

SVMs are similar to LR in the sense that it can classify (or predict) a given case
in terms of the outcome, but they do so by coming up with an optimal decision
boundary in the data space where the dimensions are the covariates and all available
data points are plotted. In other words, SVMs attempt to draw a decision boundary
that puts as many negative (survived) cases as possible on one side of the boundary
and as many positive (expired) cases as possible on the other side.

Lastly, DTs have a tree-like structure that consists of decision nodes in a hier-
archy. Each decision node leads to two branches depending on the value of a
particular covariate (e.g., age >65 or not). Each case follows appropriate branches
until it reaches a terminal leaf node which is associated with a particular outcome.
DT learning algorithms automatically learn an optimal decision tree structure given
a set of data.

We also attempted to improve the predictive performance of the DT by applying
adaptive boosting, i.e., AdaBoost [9]. AdaBoost can effectively improve a weak
predictive model by building an ensemble of models that progressively focus more
on the cases that are inaccurately predicted by the previous model. In other words,
AdaBoost allowed us to build a series of DTs where the ones built later were
experts on more challenging cases. In AdaBoost, the final prediction is the average
of the predictions from the individual models.

In order to run the provided R code, the following R packages should be
installed via install.packages(): e1071, ada, rpart, and ROCR. The training func-
tions for LR, SVM, and DT are glm(), svm(), and rpart(), respectively. For all
models, default parameter settings were used.

For training and testing, 10-fold cross-validation was utilized. Under such a
scheme, the ICU admissions included in the case study were randomly partitioned
into 10 similarly sized groups (a.k.a. folds). The procedure rotated through the 10
folds to train predictive models based on 9 folds (training data) and test them on the
remaining fold (test data), until each fold is utilized as test data.

Predictive performance was measured using AUROC which is a widely used
performance metric for binary classification. For each predictive model, the
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AUROC was calculated for each fold of the cross-validation. In the provided R
code, the comp.auc() function is called to calculate the AUROC given a set of
predicted probabilities from a model and the corresponding actual mortality data.

21.5 Analysis

The following were the AUROCS of the predictive models (shown in mean [s-
tandard deviation]): LR—0.790 [0.015]; SVM—0.782 [0.014]; DT—0.616 [0.049];
AdaBoost—0.801 [0.013]. Hence, in terms of mean AUROC, AdaBoost resulted in
the best performance, while DT was clearly the worst predictive model. DT was
only moderately better than random guessing (which would correspond to an
AUROC of 0.5) and as a result can be considered a weak learner. Note that
AdaBoost was able to substantially improve DT, which is consistent with its known
ability to effectively improve weak learners. Because of the random data parti-
tioning of cross-validation, slightly different results will be produced every time the
provided R code is run. Using set.seed() in R can seed the random number gen-
eration in sample() and make the results reproducible, but this was not used in this
case study for a more robust evaluation of the results.

As a comparison, a previous study [2] reported mean AUROCS of 0.658 (95 %
confidence interval (CI): [0.648,0.668]) and 0.633 (95 % CI. [0.624,0.642]) for
SAPS I and SOFA, respectively, for predicting 30-day mortality for 17,152 adult
ICU stays in MIMIC-II, despite that the analyzed patient cohort was a bit different
from the one in this case study. More advanced SOI scores such as APACHE IV
would have achieved a comparable or better performance than the predictive
models investigated in this case study (only SAPS I and SOFA are available in
MIMIC-II), but it should be noted that those advanced SOI scores tend to use a
much more comprehensive set of predictors than the ones used in this case study.

21.6 Visualization

Figure 21.1 shows the performances of the predictive models in a boxplot. It is
visually apparent that AdaBoost, LR, and SVM resulted in similar performance,
while DT yielded not only the worst performance but also the largest variability in
AUROC, which sheds light on its sensitivity to the random data partitioning in
cross-validation.

Figure 21.2 is an interesting visualization of the prediction results, where each
circle represents a patient and the color of the circle indicates the prediction result
(correct or incorrect) of the patient. Random horizontal jitter was added to each
point (this simply means that a small random shift was applied to the x-value of
each point) to reduce overlap with other points. Prediction results from only one of
the ten cross-validation folds are shown, with a threshold of 0.5 (arbitrarily selected;
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Fig. 21.1 A box and whisker plot showing mortality prediction performances of several predictive
models from 10-fold cross-validation. AUROC Area under the receiver operating characteristic
curve; DT Decision tree; LR Logistic regression; SVM Support vector machine
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Fig. 21.2 Prediction results for individual patients as a function of age, stratified by predictive
model. Results from only one of the ten cross-validation folds are plotted here

the reader may be interested in studying how this threshold affects this figure)
applied to the estimated mortality risks from the predictive models (by calling the
th.pred() function in the R code). Figure 21.2 shows the prediction results as a
function of age, but the variable on the y-axis can easily be changed to some other
variable of interest (e.g., heart rate, creatinine). One observation that is clear in
Fig. 21.2 but not in Fig. 21.1 is that predictive accuracy is higher for younger
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patients (e.g., <40 years) than for older patients, across all predictive models. This
is most likely due to the fact that mortality rate is much lower among younger
patients than older patients, and predictive models can achieve a high accuracy by
biasing towards predicting low mortality risks (however, this would lead to a low
sensitivity). Hence, it is important to note that although Fig. 21.2 conveys a sense
of overall accuracy, it does not reveal sensitivity, specificity, positive predictive
value, or negative predictive value.

21.7 Conclusions

Using clinical and demographic data from the MIMIC II database, this case study
used machine learning algorithms to classify patients as alive or dead at 30 days
after hospital discharge. Results were comparable to those obtained by the most up
to date SOI scores currently in use. Unlike these scores, however, the learning
algorithms used did not have access to specific diagnoses and procedures, which
can add considerable predictive power. An advantage of using only clinical and
demographic data, however, is that they are more routinely available and as a result
predictive models based on them can be used more widely. Moreover, our algo-
rithms were applied to an undifferentiated population of critically ill patients, rather
than tailored to specific groups such as those following cardiovascular surgery (i.e.,
cardiac surgery recovery unit (CSRU) patients), which has also been shown to
enhance predictive performance [3]. The success of prediction seen in this case
study likely reflects the power of the learning algorithms used, as well as the utility
of both the size and granularity of the database studied.

One useful prospect that leverages the dynamic nature of EMR data is the
potential to update training data and prediction models as the most recent clinical
data become available. This would theoretically lead to equally dynamic scoring
systems that generate more accurate predictions by reflecting current practices.
A trade-off becomes apparent between the use of the most current data, which is
likely to be the most representative, and the inclusion of older data as well, which
may be less relevant but provides greater statistical power.

21.8 Next Steps

Although AUROCSs near 0.8 represent good performance, the fact that LR, SVM,
and AdaBoost resulted in similar performance may imply that performance could
be limited by the predictor variables rather than model selection. A meaningful
future study could further investigate predictor selection or different representations
of the same variables (e.g., temporal patterns rather than measurements at a specific
time point; see the Hyperparameter Selection chapter of Part 3).
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Since the default parameter settings were used for the LR, SVM, DT, and
AdaBoost, another reasonable next step is to investigate how changing the
parameters affect predictive performance. Please refer to R Help or appropriate R
package documentation to learn more about the model parameters.

To improve predictive performance, we have previously considered a person-
alized mortality prediction approach where only the data from patients that are
similar to an index patient (for whom prediction is to be made) are used for training
customized predictive models [2]. Using a particular cosine-similarity-based patient
similarity metric and LR, the maximum AUROC this study reported was 0.83. In
light of this promising result, the reader is invited to pursue similar personalized
approaches with new patient similarity metrics.

Bayesian methods [10] offer another prediction paradigm that may be worth
investigating. Bayesian methods strike a balance between subject-matter expertise
(for mortality prediction in the ICU, this would correspond to clinical expertise
regarding mortality risk) and empirical evidence in the clinical data. Since the
machine learning models discussed in this chapter were purely empirical, the
explicit addition of clinical expertise through the Bayesian paradigm can potentially
improve predictive performance.

Aside from AUROC, there are other ways to evaluate predictive performance,
including the scaled Brier score. Please see [11] for more information. Once a
threshold is applied to predicted mortality risk, more conventional performance
measures such as accuracy, sensitivity, specificity, etc. can also be calculated. Since
each performance measure has pros and cons (e.g., while AUROC provides a more
complete assessment than simple accuracy, it becomes biased for skewed datasets
[12]), it may be best to calculate a variety of measures for a holistic assessment of
predictive performance.

Lastly, data quality is often overlooked but plays an important role in deter-
mining what predictive performance is possible with a given set of data. This is a
particularly critical issue with retrospective EMR data, the recording of which may
have had minimal data quality checks. Implementation of more rigorous data
quality checks (e.g., outliers, physiologic feasibility) prior to predictive model
training is a meaningful next step.

21.9 Connections

While this chapter focused on mortality prediction, the data extraction and analytic
techniques discussed here are widely applicable to prediction of other discrete (e.g.,
hospital re-admission) and continuous (e.g., length of stay) patient outcomes. In
addition, the nuances related to MIMIC-II such as handling ages near 200 years and
the service type FICU are important issues for any MIMIC-II study.

The machine learning models (LR, DT, SVM) and techniques (cross-validation,
AdaBoost, AUROC) are widely used in a variety of prediction, detection, and data
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mining applications, not only in but beyond medicine. Furthermore, given that R is
one of the most popular programming languages in data science, being able to
manipulate EMR data and apply machine learning in R is an invaluable skill to
have.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The reader can reproduce the
present case study by running the following SQL and R codes verbatim:

e query.sqgl: used to extract data from the MIMIC II database.
e analysis.R: used to perform data processing.

References

1. Kuzniewicz MW, Vasilevskis EE, Lane R, Dean ML, Trivedi NG, Rennie DJ, Clay T,
Kotler PL, Dudley RA (2008) Variation in ICU risk-adjusted mortality: impact of methods of
assessment and potential confounders. Chest 133(6):1319-1327

2. Lee J, Maslove DM, Dubin JA (2015) Personalized mortality prediction driven by electronic
medical data and a patient similarity metric. PLoS ONE 10(5):e0127428

3. Lee J, Maslove DM (2015) Customization of a severity of illness score using local electronic
medical record data. J. Intensive Care Med, 0885066615585951

4. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of
disease classification system. Crit Care Med 13(10):818-829

5. Legall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score
(SAPS-II) based on a european north-american multicenter study. Jama-J Am Med Assoc
270:2957-2963

6. Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J (1993) Mortality
Probability Models (MPM 1I) based on an international cohort of intensive care unit patients.
JAMA 270(20):2478-2486


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/MIT-LCP/critical-data-book

324 21 Mortality Prediction in the ICU

7. Vincent J, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart C, Suter P,
Thijs L (1996) The SOFA (sepsis-related organ failure assessment) score to describe organ
dysfunction/failure. Intensive Care Med 22(7):707-710

8. Gursel G, Demirtas S (2006) Value of APACHE II, SOFA and CPIS scores in predicting
prognosis in patients with ventilator-associated pneumonia. Respiration. 73(4):503-508

9. Freund Y, Schapire R (1995) A desicion-theoretic generalization of on-line learning and an
application to boosting. Comput Learn Theory 55(1):119-139

10. Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis, vol 2. Taylor &
Francis, UK

11. Wu YC, Lee WC (2014) Alternative performance measures for prediction models. PLoS One
9(3)

12. Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In:
Proceedings of the 23rd international conference on Machine learning—ICML’06, pp 233—
240



	21 Mortality Prediction in the ICU
	21.1 Introduction
	21.2 Study Dataset
	21.3 Pre-processing
	21.4 Methods
	21.5 Analysis
	21.6 Visualization
	21.7 Conclusions
	21.8 Next Steps
	21.9 Connections
	Code Appendix
	References


