Skip to main content

Photonic Bandgap Fibre Based Gas Sensing: Current Status and Future Possibilities

  • Chapter
  • First Online:
Book cover Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

A development of gas concentration sensing systems based on a photonic bandgap fiber (PBGF) is described. Several types of PBG fibers of various parameters and core diameters ranging from 10.9 to 26.25 microns have been designed and tested. The capillary gas flow rate within the fiber has been simulated and measured. A new method for cutting the fiber using focused ion beam in a vacuumed chamber for fine milling was tested to obtain the required angle of the fiber’s end, to avoid the destruction of the cladding structure and to create a novel low-loss splice for use between PBGF and the conventional solid-core fiber. The measurement results obtained using proposed systems for selected types of gases are presented. The experimental results clearly indicated a high overlap between the propagating light and filled gas inside the PBGF. Therefore, these studies can contribute to highly sensitive gas sensing, higher accuracy of wavelength references, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  3. T. Birks, P. Roberts, P. Russell, D. Atkin, T. Shepherd, Electron. Lett. 1995, 31 (1941)

    Google Scholar 

  4. J. Knight, T. Birks, P. Russel, Opt. Lett. 21, 1547 (1996)

    Article  Google Scholar 

  5. J. Harrington, Infrared Fibers and Their Applications (SPIE Press, Washington, USA, 2004)

    Book  Google Scholar 

  6. Y. Fink, D. Ripin, S. Fan, C. Chen, J. Joannopoulos, E. Thomas, J. Lightwave Technol. 17, 2039 (1999)

    Article  Google Scholar 

  7. A. Bjarklev, J. Broeng, A. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, Dordrecht, The Netherlands, 2003)

    Book  Google Scholar 

  8. P. Yeh, A. Yariv, E. Marom, J. Opt. Soc. Am. 68, 1196 (1978)

    Article  Google Scholar 

  9. G. Pickrell, E. Smirnova, in Proceedings of IEEE Sensors Conference (Irvine, California, 2005), doi:10.1109/ICSENS.2005.1597801

  10. C. Cordeiro, M. Franco, G. Chesini, E. Barretto, R. Lwin, C. Brito-Cruz, M. Large, Opt. Express 14, 13056 (2006)

    Article  Google Scholar 

  11. M. Yan, arXiv:physics/0508139v2 [physics.opticals]

  12. J. Laesgaard, A. Bjarklev, J. Am. Ceram. Soc. 89, 2 (2006)

    Article  Google Scholar 

  13. http://www.blazephotonics.com

  14. E. Pone, C. Dubois, N. Guo, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, M. Skorobogatiy, Opt. Express 14, 5838 (2006)

    Article  Google Scholar 

  15. T. Monro, K. Kiang, J. Lee, K. Frampton, Z. Yusoff, R. Monroe, J. Tucknott, D. Hewak, H. Rutt, D. Richardson, in Optical Fiber Communication Conference (OSA Technical Digest Series, Optical Society of Washington, Washington, 2002), p. 70, PD FA1-1

    Google Scholar 

  16. M. van Eijkelenborg, A. Argyros, G. Barton, I. Bassett, M. Fellew, G. Henry, N. Issa, M. Large, S. Manos, W. Padden, L. Poladian, J. Zagari, Opt. Fiber Technol. 9, 199 (2003)

    Article  Google Scholar 

  17. T. Ueda, Y. Okamoto, in Proceedings of 1st Symposium Advanced Photon Processing and Measurement Technology (1998), pp. 25–28

    Google Scholar 

  18. T. Sugiyama, M. Wada, S. Nakajima, T. Ueda, in Proceedings of 4th Workshop on Advanced Photon Processing and Measurement Technology (2001), pp. 63–66

    Google Scholar 

  19. T. Sugiyama, T. Ueda, in Proceedings of Technology Meeting on Sensors and Micromachines (2003), CHS-03-56, pp. 1–4

    Google Scholar 

  20. J. Pawl_at, T. Matsuo, T. Sugiyama, T. Ueda, J. Adv. Oxid. Technol. 9, 150 (2006)

    Google Scholar 

  21. J. Pawl_at, T. Sugiyama, T. Ueda, in Proceedings of 22th Symposium Sensors, Micromachines and Application System (Tokyo, Japan, 2005), pp. 279–284

    Google Scholar 

  22. G. Pickeral, W. Peng, A. Wang, Opt. Lett. 29, 1476 (2004)

    Article  Google Scholar 

  23. V.P. Minkovich, D. Monzo´n-Herna´ndez, J. Villatoro, G. Badenes, Opt. Express 14, 8413 (2006)

    Google Scholar 

  24. S. Li, S. Liu, Z. Song, Y. Han, T. Cheng, G. Zhou, L. Hou, Appl. Opt. 46, 5183 (2007)

    Article  Google Scholar 

  25. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, Opt. Express 12, 4080 (2004)

    Article  Google Scholar 

  26. M. Petrovich, A. VanBrakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, M. Watson, T. DelMonte, T. Monro, J. Dakin, D. Richardson, in Proceedings of SPIE Opticals East, Boston, USA (2005), pp. 15–29

    Google Scholar 

  27. J. Pawłat, T. Matsuo, T. Sugiyama, T. Ueda, Measurement of low gas concentration using photonic bandgap fiber. J.AOTs 9(2), 150–155 (2006)

    Google Scholar 

  28. J. Pawłat, T. Sugiyama, T. Matsuo, T. Ueda, Photonic bandgap fiber for a sensing device. IEEJ Trans. Sens. Micromachines [E] 127(3), 160–164 (2007)

    Article  Google Scholar 

  29. J. Pawłat, T. Matsuo, T. Sugiyama, T. Ueda, Possibility of gas concentration measurement using photonic crystal fiber. Przegląd Elektrotechniczny (Poland) 5, 31–35 (2007)

    Google Scholar 

  30. J. Pawłat, T. Matsuo, T. Sugiyama, T. Ueda, PBG fiber for gas concentration measurement. Plasma Process. Polym. 4(7–8), 743–752 (2007)

    Google Scholar 

  31. J. Pawłat, T. Sugiyama, X. Li, T. Matsuo, S. Ikezawa, T. Ueda, Low concentration gas measurement using photonic bandgap fiber cell sensor. IEEJ Trans. Sens. Micromachines [E] 128(5), 198–202 (2008)

    Article  Google Scholar 

  32. J. Pawłat, T. Sugiyama, X. Li, T. Matsuo, T. Ueda, low concentration gas sensor based on photonic bandgap fiber cell. SPIE newsroom (2007). doi:10.1117/2.1200801.0979

    Google Scholar 

  33. J. Pawłat, X. Li, T. Matsuo, T. Sugiyama, T. Ueda, PBG fiber low concentration gas sensor. Solid State Phenom. 144, 163–168 (2009)

    Article  Google Scholar 

  34. J. Pawłat, X. Li, Takahiro Matsuo, T. Sugiyama, Y. Zimin, T. Ueda, High-precision gas sensor based on photonic bandgap fiber cell. Solid State Phenom. 147–149, 131–136 (2009)

    Google Scholar 

  35. T. Sugiyama, T. Ueda, J. Pawłat, Laser spectroscopy of minute amounts of gas using photonic bandgap fiber. IEEJ Trans. Sens. Micromachines 129(6), 189–193 (2009)

    Article  Google Scholar 

  36. X. Li, J. Pawłat, J. Liang, G. Xu, T. Ueda, Fabrication of photonic bandgap fiber gas cell using focused ion beam cutting. JJAP 48, 06FK05-1–06FK05-5 (2009)

    Google Scholar 

  37. J. Pawłat, X. Li, Y. Zimin, T. Sugiyama, T. Matsuo, T. Ueda, Gas sensor based on microstructured optic fiber. Przegląd Elektrotechniczny 5, 115–117 (2009)

    Google Scholar 

  38. X. Li, J. Pawłat, J. Liang, T. Ueda, Measurement of low gas concentrations using photonic bandgap fiber cell. IEEE Sens. J. 10(6), 1156–1161 (2010)

    Article  Google Scholar 

  39. J. Pawłat, X. Li, T. Sugiyama, T. Matsuo, Y. Zimin, Toshitsugu Ueda Sensing of Carbon Dioxide and Hydrocarbons Using Photonic Bandgap Fiber. Solid State Phenom. 165, 316–320 (2010)

    Article  Google Scholar 

  40. S. Ikezawa, M. Wakamatsu, Y.L. Zimin, J. Pawlat, T. Ueda, Multi-spectral analytical systems using LIBS and LII techniques, in New Developments and Applications in Sensing Technology, ed. by S.C. Mukhopadhyay, A. Lay-Ekuakille, A. Fuchs. Lecture Notes in Electrical Engineering, vol. 83 (Springer, 2011), pp. 207–232

    Google Scholar 

  41. X. Li, J. Liang, T. Ueda, Applied technique of focused ion beam milling based on microstructure of photonic bandgap fiber. Int. J. Adv. Manuf. Technol. 68, 465–471 (2013)

    Google Scholar 

  42. J. Lightwave Technol. 29(19) (Oct. 1 2011) U-Band Wavelength References Based on Photonic Bandgap Fiber Technology, pp. 2934–2939

    Google Scholar 

  43. X. Li, J. Liang, T. Ueda, Applied technique of focused ion beam milling based on microstructure of photonic bandgap. Int. J. Adv. Manuf. Technol. 68, 465–471 (2013)

    Google Scholar 

  44. X. Li, J. Pawlat, J. Liang, T. Ueda, measurement of low gas concentrations using photonic bandgap fiber cell. IEEE Sens. J. 10(6), 1156–1160 (June 2010)

    Google Scholar 

  45. IEEE Sens. J. 12(7) (July 2012) NIR Spectrum Analysis of Natural Gas Based on Hollow-Core Photonic Bandgap Fiber Xuefeng Li, Member, IEEE, Jinxing Liang, Shuo Lin, Yury Zimin, Student Member, IEEE, Yupeng Zhang, Member, IEEE, and Toshitsugu Ueda

    Google Scholar 

  46. J.T. Kristensen, A. Houmann, X. Liu, D. Turchinovich, Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression. Opt. Express 16, 9986–9995 (2008)

    Article  Google Scholar 

  47. H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, Toward photonic crystal fiber based distributed chemosensors. Proc SPIE 5855, 419–422 (2005)

    Article  Google Scholar 

  48. Y.J. Rao, M. Deng, D.W. Duan, X.C. Yang, T. Zhu, G.H. Cheng, Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 15, 14123–14128 (2007)

    Article  Google Scholar 

  49. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, S. Huntington, Micromachining structured optical fibers using focused ion beam milling. Opt. Lett. 32, 1575–1577 (2007)

    Article  Google Scholar 

  50. M.Y. Ali, A.S. Ong, Fabricating micromilling tool using wire electrodischarge grinding and focused ion beam sputtering. Int. J. Adv. Manuf. Technol. 31, 501–508 (2006)

    Article  Google Scholar 

  51. Y.Q. Fu, N.K.A. Bryan, O.N. Shing, N.P. Hung, Influence of the redeposition effect for focused ion beam 3D micromachining in silicon. Int. J. Adv. Manuf. Technol. 16, 877–880 (2000)

    Article  Google Scholar 

  52. Y.Q. Fu, N.K.A. Bryan, O.A. San, L.B. Hong, Data format transferring for FIB microfabrication. Int. J. Adv. Manuf. Technol. 16, 600–602 (2000)

    Article  Google Scholar 

  53. K. Dean, R. Carpio, Contamination of positive deep-UV photoresists, in Proceedings of Interface ’94 OCG Microlithography Seminar (1994), pp. 199–212

    Google Scholar 

  54. S. MacDonald, N. Clecak, H. Wendt, C. Willson, C. Snyder, C. Knors, N. Deyoe, J. Maltabes, J. Morrow, A. McGuire, S. Holmes. Airborne chemical contamination of a chemically amplified resist, in Advances in Resist Technology and Processing VIII, vol.1466 (Proceedings of SPIE, 1991), pp. 2–12

    Google Scholar 

  55. Semiconductor Industry Association International Technology Roadmap for Semiconductors, http://public.itrs.net

  56. M. Petrovich, A. VanBrakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, M. Watson, T. DelMonte, T. Monro, J. Dakin, D. Richardson, Microstructured fibres for sensing applications ( Proceedings of SPIE Opticals, EastBoston, USA, 2005), pp. 15–29

    Google Scholar 

  57. D. Richardson, F. Poletti, J. Leong, X. Feng, H. Ebendorff-Heidepreim, V. Finazzi, K. Frampton, S. Asimakis, R. Moore, J. Baggett, J. Hayes, M. Petrovich, M. Tse, R. Amezcua, J. Price, N. Broderick, P. Petropoulos, T. Monro, Advances in microstructured fiber technology, in Proceedings of IEEE/LEOS Workshop on Fibres and Optical Passive Components, USA, Institute of Electrical and Electronics Engineers (2005), p.1–9

    Google Scholar 

  58. L. Rothman, D. Jacquemart, A. Barbe, D. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. Flaud, R. Gamache, A. Goldman, J. Hartmann, K. Jucks, A. Maki, J. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pawlat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pawlat, J. et al. (2017). Photonic Bandgap Fibre Based Gas Sensing: Current Status and Future Possibilities. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics