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Summary The homeostatic maintenance and functional modification of tissues

require a combination of regulated proliferation and differentiation by somatic stem

cells and more committed progenitors. Of relevance to regenerative medicine

approaches, the endogenous stimulation of cell types for replenishment of damaged

tissues requires an understanding of the signals that promote proliferation and direct

appropriate differentiation to specialised cell types. We recently showed that pitui-

tary stem cells expressing the transcription factor SOX2 are able to contribute to

the generation of new hormone-producing cells during postnatal life. The signals

controlling proliferation in the anterior pituitary are poorly understood and little is

known about the influences supporting the choices between proliferation and quies-

cence among stem cells. The WNT signalling pathway is a major regulator of

proliferation and influences stem cells in multiple tissues throughout the body

as well as cancer stem cells in tumorigenesis. Forced up-regulation of the

WNT pathway specifically in SOX2-positive pituitary stem cells by transgenic

approaches in mouse stimulates a transient burst of proliferation, maintaining

their uncommitted phenotype. These mutated stem cells subsequently induce

tumorigenesis in a non-cell autonomous manner, as they promote proliferation of

surrounding cell types through the secretion of paracrine factors. The studies

presented here aim to provide insights into pituitary stem cell behaviour and their

possible roles during disease states.

“If there were no regeneration there could be no life. If everything regenerated there would
be no death. All organisms exist between these two extremes.” Richard J. Goss, Principles of
Regeneration (1969).
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Introduction

Over the last few years, compelling evidence has demonstrated the presence of

adult somatic stem cells in the murine pituitary gland of mice. In this chapter I will

summarise the critical in vitro and in vivo evidence demonstrating the presence and

functional properties of these cells. In addition, I will highlight how pituitary stem

cells can be involved in tumour formation, as has been shown for stem cell

populations of other organs.

The regulation of stem cell populations is of interest to regenerative medicine

and cancer therapy approaches. Being able to studying the behaviour of stem cells

in their tissue niches can lead to a better understanding of how these behave and

how they are regulated. An abnormal expansion or depletion of such populations

may contribute to neoplasias or organ failure, respectively. In the case of the

pituitary gland, this would manifest as hypopituitarism or pituitary tumours.

Recently, we (Andoniadou/Martinez-Barbera labs) and other groups have provided

evidence that a long-lived, tissue-specific population of undifferentiated progenitor/

stem cells exists within the anterior pituitary gland. Pituitary stem cells (PSCs) are

undifferentiated and are able to generate cells of three main progenitor lineages,

characterized by expression of the transcription factors, PIT1 (POU1F1), TPIT

(TBX19) and SF1 (NR5A1), the expression of which is necessary for terminal

differentiation into hormone-secreting cell types. PIT1-positive progenitors are the

major lineage of the anterior pituitary and give rise to somatotrophs expressing

growth hormone (GH), lactotrophs expressing prolactin (PRL) and thyrotrophs

expressing thyroid stimulating hormone (TSH). Progenitors positive for TPIT

give rise to ACTH-expressing adrenocorticotrophs and MSH-expressing melano-

trophs (refer to Jacques Drouin 2016 for the transcriptional mechanisms regulating

these fate choices). Finally, progenitors expressing SF1 cells give rise to gonado-

trophs that express LH or FSH. All of these populations need to be precisely regu-

lated to ensure appropriate homeostasis and adequate response for hormone

secretion dependent on physiological demand, a process that is very dynamic

throughout life.

To be considered PSCs, the cells need to demonstrate both self-renewal and

differentiation in vivo. Initial studies pointing towards PTCs relied on in vitro

approaches. These identified that there are cells in the postnatal pituitary gland

that have the capacity to expand as colonies in culture, i.e., they have clonogenic

capacity, demonstrating self-renewal in vitro. One population was characterized by

the uptake of the fluorescent dipeptide AMCA and included cells expressing S100

calcium-binding protein B (S100β; Lepore et al. 2005), which have been described

as folliculostellate cells of the anterior lobe (Vila-Porcile 1972). Cells among this

population were able to form adherent colonies in culture. The second population

was characterized by marker expression similar to stem cells of other tissues (Sca1,
Nanog and Oct4) and could form floating spheres (Chen et al. 2005). In later

studies, the same research group showed that there was enrichment in this popu-

lation for the expression of SOX2, SOX9, CD44 and CD133 (Chen et al. 2009).
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Additionally, these cells had active function of ABC transporters, which rendered

them capable of effluxing the vital dye Hoechst 33342, leading to a discrete ‘side
population’ during flow cytometry when analysing levels of expression of Hoechst.

This is a typical property of many cell types that possess properties of stem or

progenitor cells. This side population has since been described for pituitaries of

other vertebrates (Chen et al. 2005, 2006; van Rijn et al. 2012). In time, additional

markers of cells with this in vitro self-renewal capacity have been put forward to

refine the characterisation of PSCs, including Nestin, PROP1, SOX9, GFRα2 and

PRX1/2 (Gleiberman et al. 2008; Yoshida et al. 2009; Rizzoti et al. 2013; Garcia-

Lavandeira et al. 2009; Higuchi et al. 2014). In the postnatal rodent gland in vivo,

SOX2-positive cells displayed a high degree of overlap with other proposed stem

cell markers such as SOX9 (Rizzoti et al. 2013), PROP1 (Yoshida et al. 2009,

2011), and PRX1/2 (Higuchi et al. 2014). We confirmed that SOX2-positive cells

did not overlap with differentiation markers but we sought to determine if they were

able to give rise to all the differentiated lineages in vivo.

The Lovell-Badge lab reported that floating spheres forming from anterior

pituitary cells, were positive for SOX2 (Fauquier et al. 2008), in line with Sox2
expression in the side population (Gremeaux et al. 2012). Our group utilised a

knock-in mouse strain expressing enhanced yellow fluorescent protein (EYFP)

from the SOX2 locus, allowing identification of SOX2-positive cells (Andoniadou

et al. 2012). We isolated SOX2-EYFP-positive and -negative populations sepa-

rately and plated these under conditions promoting the clonogenic expansion of

single cells as adherent colonies. Only cells within the SOX2-positive fraction were

capable of colony formation. This was also the case when clonogenic potential was

assessed via the generation of floating spheres, as reported by the Lovell-Badge

group (Rizzoti 2010). In the adherent cultures, time-lapse imaging of singe cells

plated at clonal density confirmed that they gave rise to single colonies that

contained multiple EYFP-positive cells, demonstrating self-renewal. Withdrawal

of growth factors and prolonged culture in differentiation conditions promoted the

expression of markers of the three main pituitary lineages and the expression of

differentiation markers, as detected by qPCR (Andoniadou et al. 2012). Interest-

ingly, only a small percentage of SOX2+ cells were able to form colonies (up to 5%

depending on age), possibly reflecting heterogeneity within this population in terms

of their potential; alternatively, the culture requirements allowed for expansion of a

restricted subset of cells, where more cell types could have self-renewal capacity. In

either case, the requirement for a better-defined combination of markers was clear.

To address this issue, we investigated S100β as an additional marker of the pituitary

stem cell population, as these had a significant overlap with SOX2+ cells in vivo

(Fauquier et al. 2008; Andoniadou et al. 2013). We purified this population from

transgenic mice expressing S100β-GFP and found that plating GFP-positive and

-negative cells resulted in the enrichment in colonies forming in the GFP-positive

compartment. Since this property lies solely within the SOX2-positive cells in our

assay (Andoniadou et al. 2013), pituitary stem cells are likely to be enriched within

the double-positive population. Double SOX2/S100β are located along the mar-

ginal zone, the epithelium lining the remnants of Rathke’s pouch lumen, and also in
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the parenchyma of the anterior pituitary, often in groups distributed amongst

hormone-secreting cells. We isolated SOX2 cells expressing GFP from these two

regions by microdissection, and demonstrated that their in vitro clonogenic poten-

tial did not differ between the two locations (Andoniadou et al. 2012). Recent

studies from rat have revealed that double-positive SOX2+/S100β+ cells may be

further refined through in vivo expression of the gene Cxadr, which codes for

coxsackievirus and adenovirus receptor (CAR; Chen et al. 2013). Furthermore,

expression of E-cadherin and the juxtacrine factor ephrin-B2 reportedly define

SOX2+/S100β+/CAR+ cells, both in the marginal epithelium and throughout the

parenchyma (Chen et al. 2013; Yoshida et al. 2015). Analysing the side population,

the Vankelecom group (2010) also reported enrichment in ephrin-B expression in

this stem cell-rich compartment; together the data suggested that ephrin-B expres-

sion was a hallmark of the population containing PSCs.

The Long-Term Maintenance of the Anterior Pituitary

Until recently, evidence to support that cells in the pituitary could act as stem cells

in vivo was lacking. This evidence has now been provided through genetic tracing

of SOX2+ cells, enabled by the generation of inducible mouse strains expressing

CreERT2 under the regulation of the SOX2 promoter, where Cre recombinase is

expressed in SOX2+ cells but will not be active until the administration of tamox-

ifen, allowing temporal control of recombinase action (Andoniadou et al. 2013;

Arnold et al. 2011). We lineage traced cells expressing Sox2 both during gestation

and postnatally (Andoniadou et al. 2013). Similarly, the Lovell-Badge group traced

Sox2-expressing and Sox9-expressing cells from embryonic stages (Rizzoti

et al. 2013). In all cases, these populations gave rise to all committed progenitor

cell types (PIT1, TPIT, SF1) and hormone-secreting cells of the anterior lobe (GH,

PRL, TSH, ACTH, LH/FSH). A similar capacity by both SOX2+ and SOX9+

populations is not surprising since Sox2 and Sox9 are co-expressed in the majority

of cells from late embryonic stages (Rizzoti et al. 2013). What remains unknown is

the extent of heterogeneity within this population. Our assay does not distinguish if

a SOX2+ cell capable of proliferation is multipotent or if there are several distinct

oligopotent SOX2+ sub-populations that collectively cover the different popu-

lations. It is, however, able to demonstrate that the population of SOX2+ cells is

long-lived and does not become depleted over time, something that would be

expected of a transit-amplifying progenitor population. We activated CreERT2 in

postnatal SOX2+ cells, enabling expression of R26R-EYFP, and traced the cells for
six months. We assessed the clonogenic potential of EYFP+ cells at the end of this

period, i.e., the SOX2+ cells as well as their derivatives. We flow sorted for EYFP

expression and cultured the positive and negative populations under adherent

clonogenic conditions. Even after six months, the majority of cells with clonogenic

potential (subpopulation of SOX2+) resided within the EYFP+ fraction, indicating

either that SOX2 cells were long-lived, hence persisting long-term after initial
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labeling, or that the pool of SOX2+ cells was maintained through self-renewal.

Importantly, it excluded the possibility that the SOX2+ pituitary stem cell pool

became depleted. Immunofluorescence staining confirmed that, even after a year of

tracing following tamoxifen administration, EYFP+ cells included SOX2+ uncom-

mitted cells. The above experiments relied on repeated administration of a high

dosage of tamoxifen to ensure that the majority of SOX2+ cells were initially

labelled. We have further analysed the behaviour of SOX2+ cells by labelling

sparse cells through low dosage administration. The above experiments demon-

strate the presence of a long-lived population that retains pituitary stem cell prop-

erties throughout normal life. Ongoing efforts focus on the signals that regulate

activity of this stem cell compartment and on how the potential of PSCs is

maintained during life.

Stem Cells and Pituitary Tumours

Similar to organ-specific stem cells, analyses of many tumours and cancers have

revealed the presence of multipotent cells, which are often thought to drive tumour

formation. Many of the properties of ‘cancer stem cells’ (CSCs) are shared by

normal tissue-specific stem cells: slow cycling status, self-renewal and differenti-

ation capacity and even resistance to cytotoxic drugs. For some tumours, it has been

shown that normal stem cells are transformed into CSCs when targeted to express

oncogenic proteins. For example, intestinal crypt stem cells transform into CSCs

when the WNT/β-catenin pathway is over-activated (Barker et al. 2009; Zhu

et al. 2009). However, progenitor cells or even differentiated cells could give rise

to cells fulfilling CSC criteria upon transformation (Valent et al. 2012; Clevers

2011). Several groups have reported the presence of putative CSCs in human

pituitary adenomas and from mouse pituitary tumour models (Chen et al. 2014;

Xu et al. 2009; Donangelo et al. 2014; Lloyd et al. 2013; Mertens et al. 2015;

Orciani et al. 2015; van Rijn et al. 2013; Yunoue et al. 2011; Hosoyama et al. 2010).

It remains unknown if CSCs arise from PSCs, although their properties can be

similar; for example, both are capable of in vitro self-renewal and differentiation

and PSCs are likely to be chemoresistant like CSCs, since PSCs are found within

the ‘side population’ generated by dye efflux, utilising the same transporter prop-

erties as chemoresistance (Chen et al. 2009).

In our quest to determine if PSCs are transformed to CSCs following expression

of an oncogenic protein, we uncovered a non-cell autonomous role for these cells in

tumour formation through the expression of paracrine factors that promote tumour

formation by a different cell population. We focused on mutations in CTNNB1, the
gene encoding β-catenin; these mutations have been identified in numerous tumours

and in the pituitary, identified in the majority of adamantinomatous cranio-

pharyngioma (ACP) tumours (Buslei et al. 2005). ACPs are aggressive tumours

with a tendency to infiltrate the brain, vascular structures and optic tracts (Muller

2014). They represent the most common pituitary tumour type in children and are
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mostly paediatric (Muller 2013). The mutations responsible for the generation of

ACP activate the WNT/β-catenin pathway by preventing the degradation of

β-catenin and resulting in its accumulation (Martinez-Barbera 2015). A hallmark

of ACP is the presence of small cell clusters that strongly accumulate nucleo-

cytoplasmic β-catenin, as revealed by immunohistochemistry (Buslei et al. 2007;

Hofmann et al. 2006). We expressed this mutation embryonically throughout the

developing pituitary primodium, from the early specification of Rathke’s pouch

using the Hesx1-Cre driver. Hesx1Cre/+; Ctnnb1lox(ex3)/+ animals develop tumours

very similar to human ACP and contain the hallmark β-catenin-accumulating cell

clusters that activate the WNT/β-catenin pathway (Gaston-Massuet et al. 2011). We

assessed the mouse tumours for the presence of cells reminiscent of CSCs, which

have self-renewal and differentiation properties in vitro, and found an increase of

clonogenic cells, up to three times the number compared to normal pituitaries

(Gaston-Massuet et al. 2011). These cells expressed markers of stem cells such as

Sox2; however, immunofluorescence experiments showed that these predominantly

co-localised within the β-catenin-accumulating clusters. This population of SOX2+

cells was expanded compared to normal numbers. In an effort to identify if these

cells acted as CSCs in this neoplasm to generate the tumour mass, we pursued a

different approach. We expressed the oncogenic β-catenin specifically in SOX2+

stem cells of postnatal pituitary glands using a mouse model where timing of

expression of the oncogenic protein is dependent upon administration of tamoxifen

(Sox2CreERT2/+; Ctnnb1lox(ex3)/+ mouse model). This approach resulted in tumours

that were similar to human ACP and the previous embryonic model (Andoniadou

et al. 2013). The advantage of this approach was that it allowed us to lineage-trace

the fate of the PSCs carrying the oncogenic mutation and determine their contri-

bution to the tumour mass. As done previously for normal PSC lineage tracing,

SOX2+ cells were targeted simultaneously to oncogenic β-catenin and EYFP,

allowing identification of daughter cells derived from the mutated SOX2+ PSCs

(Sox2CreERT2/+; Ctnnb1lox(ex3)/+;R26EYFP/+). These experiments confirmed that the

typical cell clusters derived from SOX2+ cells but, intriguingly, they revealed that

the bulk of the tumour mass did not. Therefore, mutated SOX2+ PSCs were not

transformed into CSCs by oncogenic β-catenin; instead, the cell clusters that they

generated were found to have the capacity to induce tumours through paracrine

signalling (Andoniadou et al. 2013). Through isolating the cluster cells and

performing gene expression analyses, we identified that they expressed a vast

array of growth factors, chemokines and cytokines including members of the

TGF, FGF and PDGF families of growth factors among many others. These cells

could therefore act as signalling centres, likely changing the microenvironment and

facilitating tumorigenesis (Andoniadou et al. 2012, 2013). An observation that was

indicative of the potential of these cluster cells was that actively proliferating cells,

as marked by immunofluorescence of Ki67, were readily detected in close proxim-

ity to the cell clusters in both mouse and human ACP (Gaston-Massuet et al. 2011).

Several of the identified cytokines and growth factors have been shown to play a

role in normal pituitary physiology as well as in pituitary adenomas (Arzt

et al. 1999, 2009; Graciarena et al. 2004). Future work aims to reveal the

108 C.L. Andoniadou



mechanisms whereby cell clusters may induce paracrine cell transformation and

promote tumour growth as well as the cell of origin of the ACP tumour mass. Taken

together our data reveal that pituitary gland stem cells have the potential to contri-

bute to tumorigenesis when mutated. In the case of ACP, they can instigate tumour

formation in a non-cell autonomous manner, but this does not preclude the possi-

bility of them acting as CSCs in other tumours.

Further research will better characterise PCS to reveal their defining features and

potential as well as the mechanisms that regulate their activities, which can only

enhance our ability to understand their possible role in disease and future regener-

ative medicine approaches, leading to more effective prognoses and treatments.
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