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Abstract The pituitary is the core endocrine gland, ruling fundamental processes

of body growth, metabolism, reproduction and stress. Over the past decade, it has

progressively become clear that the pituitary, like many adult tissues, harbors a

population of stem cells. While the molecular depiction of these cells is constantly

expanding, their function remains essentially hidden. From recent studies, the

picture is developing that the stem cells of the adult pituitary are highly quiescent

and mainly come into play during pathological conditions.

Upon transgenic cell-ablation damage in the pituitary, the stem cell compart-

ment is promptly turned on with expansion and expression of the missing hormone.

This activation is accompanied by substantial regeneration of the lost hormonal

cells, a restorative competence that was unexpected in the mature gland. This

regenerative skill, however, rapidly disappears with aging, together with a decline

in the number and fitness of the stem cells. One function of the adult pituitary stem

cells may thus be hidden in the regenerative toolbox of the gland, at least during a

specified and limited time window.

Recent work also showed activation of the pituitary stem cell compartment

during tumor formation in the (mouse) gland. Moreover, pituitary tumors (from

patients and mice) contain a candidate ‘tumor stem cell’ (TSC) population. The
pathogenetic steps of initiation, expansion, invasion and recurrence of pituitary

tumors remain far from understood. A link between the tumor-driving TSC and the

pituitary stem cells may shed new light on this tumorigenic darkness.

To conclude, decoding the hidden functions of pituitary stem cells will not only

lead to better fundamental insights into their role but may also expose (novel)

targets for treating pituitary tumors and for regenerative intervention in pituitary

deficiency, as caused by damage, tumors or aging. Yet, the journey in the ‘hidden
valley’ of pituitary stem cell functions has only just begun, and a long distance still

has to be walked.
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Introduction

The pituitary gland, in unison with the hypothalamus, constitutes the hub of our

endocrine system, governing fundamental processes of growth, metabolism, sexual

development, procreation and coping with immune and stress challenges (Melmed

2010; Vankelecom 2012; Willems and Vankelecom 2014). Due to this strategic

position, malfunctioning of the pituitary leads to important morbidities that can be

life-threatening (Schneider et al. 2007; Willems and Vankelecom 2014). In the past

decade, mounting evidence has been presented that the endocrine gland contains a

population of stem cells, purportedly sitting there to deal with renewal of cells that

are worn out or have been damaged (Vankelecom 2012; Vankelecom and Chen

2014). However, like in comparable adult tissues that do not turn over very actively

such as the brain and lung (Alvarez-Buylla and Lim 2004; Rando 2006; Slack 2008;

Vankelecom 2012; Wabik and Jones 2015), the function of the stem cells residing

in the pituitary remains enigmatic. Compared to the expanding molecular stripping

of the pituitary stem cell phenotype, functional characterization of the cells clearly

lags behind. In general, stem cells in ‘lazy’ low-turnover tissues are highly quies-

cent, and activation only clearly emerges in conditions of disease or damage

(Barker et al. 2010; Huch et al. 2013a,b; Rando 2006; Slack 2008; Vankelecom

2012; Vankelecom and Chen 2014; Wabik and Jones 2015). Regarding the yet

hidden functions of the pituitary stem cells, recent studies have shed some light on

this obscure domain, particularly in the context of early postnatal maturation,

damage repair and tumor growth. In this review, recent findings are summarized

and emerging views presented. In addition, some brief perspectives are offered

regarding therapeutic implementation of this new knowledge.

Primer on Pituitary Biology and Pathology

The pituitary gland consists of the anterior pituitary (AP), the posterior pituitary

(PP) and the intermediate lobe (IL; Fig. 1), the latter being only rudimentary in

humans (Melmed 2010; Vankelecom 2010, 2012). The AP represents the major

endocrine segment of the gland, containing different cell types that each produce

(a) specific hormone(s). Growth hormone (GH) is produced by the somatotropes,

prolactin (PRL) by lactotropes, adrenocorticotropic hormone (ACTH) by

corticotropes, thyroid-stimulating hormone (TSH) by thyrotropes, and luteinizing

hormone (LH) and/or follicle-stimulating hormone (FSH) by gonadotropes (Fig. 1).

Hormone production by the AP is regulated by signals from the hypothalamus, such

as growth hormone-releasing hormone (GHRH) and somatostatin, which stimulate

and inhibit, respectively, pituitary GH synthesis and secretion. The pituitary hor-

mones act on distal target organs where they mainly control the production of

peripheral hormones (such as glucocorticoids from the adrenal cortex and estradiol

or testosterone from the gonads), which in turn negatively feed back on the
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hypothalamus and pituitary. This multilayered interplay between hypothalamus,

pituitary and target organs eventually generates tightly controlled, pulsatile secre-

tion of hormones by the pituitary.

Because of its master position, disturbed function of the pituitary causes severe

clinical complications (Schneider et al. 2007; Willems and Vankelecom 2014). For

instance, GH deficiency causes growth disturbances and mental retardation in

children and distorted fat metabolism, weakened muscles, osteoporosis and

Fig. 1 Proposed model of pituitary stem cells and their functions. A cross-section of the (mouse)

pituitary gland (upper left) shows the AP stem cell niche around the cleft (MZ; red) with the

projected germinative wedge regions, and the putative secondary niches distributed all over the AP

parenchyma (red clusters). The MZ stem cells and the in-gland stem cell clusters appear to be

wired into a 3D network (see dotted lines in section and zoom-in drawing). The total stem cell pool

is heterogeneous, encompassing stem (and further-advanced progenitor) cells in different phases

of cell cycle, activation and maturation (indicated by different shapes and red tints), supposedly
typified by different fingerprints of markers (of which the most dominant ones are indicated). To

contribute to the pituitary endocrine cells, the stem/progenitor cells may move from the various

niches into the glandular area (arrows), and EMT may be involved in this migration process. The

pituitary stem cells are only modestly implicated in the low-rate turnover of the gland (see text) but

appear to primarily pop up in the actively remodeling pituitary, as occurring during neonatal

maturation (left), regeneration after cell/tissue destruction (middle), and development of tumors

(with candidate TSC; red) (right). AP anterior pituitary, FS folliculo-stellate, IL intermediate lobe,

MZ marginal zone, PP posterior pituitary
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cardiovascular anomalies in adults, together strongly diminishing quality-of-life

and life expectancy (Gasco et al. 2013). Pituitary deficiency (generally referred to

as hypopituitarism) may be congenital or acquired during life, the latter accounting

for the majority of cases (Mehta and Dattani 2008; Schneider et al., 2007; Willems

and Vankelecom 2014; Zhu et al. 2005). Tumor growth in the pituitary (with a

prevalence for clinically observed tumors of 1:1000) can compress the healthy

endocrine tissue, thereby compromising pituitary function (Melmed 2011;

Vankelecom 2012). Also the treatment procedures of surgical resection or irradia-

tion inflict damage on the pituitary, resulting in hypofunction. In addition, traumatic

brain injury, ranging from car accidents to sport-related impacts (e.g.,by boxing),

represents an important cause of pituitary deficiency (Gasco et al. 2012; Tanriverdi

et al. 2015). The current approach to treat hypopituitarism symptoms is by hormone

replacement therapy (HRT) (Gasco et al. 2013; Schneider et al. 2007; Van Aken

and Lamberts 2005; Willems and Vankelecom 2014). However, the exogenous

hormones also cause side effects, further adding to the reduced quality-of-life.

Moreover, a fundamental shortcoming of HRT lies in its failure to mimic the

natural pulsatility of hormone release by the pituitary. Therefore, restoring deficient

pituitary tissue and function would represent a more ideal tactic (Willems and

Vankelecom 2014). Interestingly, it has recently been shown that the pituitary

gland has the capacity to regenerate cells after destruction (Fu and Vankelecom

2012; Fu et al. 2012). Moreover, the local stem cells appear to participate and

function as activated restorers (see below). This new finding may open the door

toward regenerative opportunities.

The process of tumorigenesis in the pituitary is largely uncomprehended, and

treatment remains suboptimal in up to two-thirds of patients (Melmed, 2003, 2011).

A better understanding of the underlying mechanisms is essential to improve

clinical management. In particular, the question arises whether pituitary tumors

contain a driver population of ‘tumor stem cells’ (TSC), as has been discovered in

other types of tumors (Clevers 2011; Dalerba et al. 2007; Sergeant et al. 2009;

Wouters et al. 2009). Generally speaking, TCS are considered to power the devel-

opment, growth, local invasion, metastasis, therapy resistance and/or recurrence of

tumors. TSC thus represent a very appealing target to understand, treat and erad-

icate the tumor.

Pituitary Stem Cells: Expanding Molecular Portrayal

Stem cells have now been identified in many adult organs. They are considered the

master builders of the tissue, replacing cells that have grown old and finished their

task (homeostatic turnover), producing surplus cells when needed, or regenerating

cells that were destroyed by physical or pathological insults (Alvarez-Buylla and

Lim 2004; Rando 2006; Slack 2008; Vankelecom 2012; Vankelecom and Chen

2014; Wabik and Jones 2015). The tissue stem cells not only give rise to new

specialized cells of the organ but must also perpetuate by producing at least one
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‘selfie.’ Differentiation potential (ranging from uni- to multipotency) and self-

renewal capacity indeed represent the core hallmarks of adult tissue stem cells

(Barker et al. 2010; De Los Angeles et al. 2015; Rando 2006; Wabik and Jones

2015). On the other hand, the degree of activity of adult stem cells is clearly

dependent on the tissue. Some organs show rapid cell turnover within days and

contain highly energetic stem cells that drive this renewal (as, for instance, intestine

and skin). Other organs are more static in their cell composition and only need cell

replacement at a very low pace (such as the brain, heart, liver, pancreas, lung;

Alvarez-Buylla and Lim 2004; Barker et al. 2010; Huch et al. 2013a,b; Rando 2006;

Slack 2008; Vankelecom 2012; Wabik and Jones 2015). The pituitary belongs to

the latter group, undergoing turnover in terms of months rather than days (Levy

2002, 2008; Nolan et al. 1998; Rando 2006; Vankelecom 2012; Vankelecom and

Chen 2014). Stem cells in organs with low turnover appear highly dormant (quies-

cent) and are only jolted awake by strong triggers like loss of cells by damage. Stem

cells, together with their further progressed progenitor cells (that have set off for

differentiation), are typically housed in a dedicated setting of the tissue, the niche,

containing cellular and molecular ‘housemates’ that control the maintenance, self-

renewal and differentiation of the stem cell inhabitants (Alvarez-Buylla and Lim

2004; Rando 2006; Roskams 2006; Slack 2008; Vankelecom 2012; Vankelecom

and Chen 2014; Yin et al. 2013).

The discovery of stem/progenitor cells in the pituitary was launched a decade

ago by the identification of a side population (SP) in the adult gland of rodents and

chicken (Chen et al. 2005). SP cells exhibit high efflux capacity, a property

considered characteristic and important for stem cells to defend themselves against

toxic substances. Meanwhile, the existence of stem cells in the pituitary has been

clearly established (Chen et al. 2009; Fauquier et al. 2008; Garcia-Lavandeira

et al. 2009). Their molecular portrayal is steadily expanding; a compact overview

is provided here (for extensive reviews, see Vankelecom 2010, 2012; Vankelecom

and Chen 2014).

Like stem cells of other tissues, pituitary stem cells in general express two

classes of markers, i.e., broad stemness markers and pituitary embryogenesis-

associated factors. Within the first group, the key stem-cell regulatory transcription

factors SOX2 [SRY (sex determining region Y)-box 2] and SOX9 (Arnold

et al. 2011; Jayakody et al. 2012; Pevny and Nicolis 2010) occupy a well-

recognized position. The SOX factors ‘color’ cells that reside in the marginal

zone (MZ), which borders the cleft (Fig. 1), a lumen that is left from the early-

embryonic pituitary structure known as Rathke’s pouch (RP; Vankelecom 2012). In

addition, SOX2-immunoreactive (SOX2þ) cells are present as scattered clusters in

the AP parenchymal area (Fig. 1; Chen et al. 2005, 2009; Fauquier et al. 2008; Fu

et al. 2012; Garcia-Lavandeira et al. 2009; Gremeaux et al. 2012). The several

locations of SOX2þ cells may point to the existence of multiple stem cell niches in

the pituitary, encompassing a major (primary) niche around the cleft and many

secondary parenchymal niches, together taking care of dynamic and/or subtle cell

adaptations in the gland. Interestingly, the SOX2þ cell clusters and MZ cells appear

to be connected (Fu et al. 2012; Gremeaux et al. 2012; Mollard et al. 2012;
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Vankelecom and Chen 2014), thereby forming a three-dimensional (3D) network

throughout the gland (Fig. 1), as also occurs among the different hormonal cell

types (Le Tissier et al. 2012; Mollard et al. 2012). Such an integrated circuit would

allow communication between the stem cells throughout the gland and promote

coordinated actions. Of note, the pituitary stem cells seem to be part of the formerly

identified heterogeneous population of folliculo-stellate (FS) cells within the gland

(Allaerts and Vankelecom 2005), since the stem cells also express the FS cell

marker S100 (Fig. 1). Thus, the SOX2þ cell network may be part of the FS cell

network, the first interconnected functional circuitry identified in the pituitary

(Fauquier et al. 2001). In addition, the cell adhesion molecule E-cadherin

(CDH1) is strongly expressed in the MZ, as well as in S100þ cell patches spread

over the AP lobe (Fauquier et al. 2008), and may participate in stitching the stem

cells together (Fig. 1). Additional general stemness markers found in pituitary stem

cells, although sometimes less well-defined, include OCT4, NANOG, glial cell

line-derived neurotrophic factor receptor alpha 2 (GFRA2), NESTIN and Kr€uppel-
like factor 4 (KLF4; reviewed in Vankelecom and Chen 2014). Of interest, SOX2,

OCT4, NANOG and KLF4 constitute the transcription-factor core of embryonic

stem (ES) and induced pluripotent stem (iPS) cells, the prototypical stem cells

(De Los Angeles et al. 2015; Hyslop et al. 2005; Takahashi and Yamanaka 2006).

Finally, the chemotactic receptor CXCR4 (C-X-C chemokine receptor type 4),

which is more and more classified as a general stemness marker, is also upregulated

in the pituitary stem cell compartment (Horiguchi et al. 2012; Vankelecom 2010,

2012; Vankelecom and Chen 2014).

Within the group of embryonic pituitary-related factors, expression of PROP1

(Prophet of Pit1) seems to be best defined. This transcription factor, which – among

others - is essential for the regulation and migration of RP progenitor cells during

pituitary embryogenesis (Himes and Raetzman 2009; Ward et al. 2005; Zhu

et al. 2005, 2007), is expressed in the SOX2þ cells, although it is not clear yet

whether postnatal expression in the MZ stops after the first postnatal weeks or is

continuous throughout life (Garcia-Lavandeira et al. 2009; Yoshida et al. 2009,

2011). In general, there is no co-localization of PROP1 or SOX2 with hormones

(Chen et al. 2009; Fauquier et al. 2008; Fu et al. 2012a,b; Garcia-Lavandeira

et al. 2009; Gremeaux et al. 2012; Yoshida et al. 2009), supporting the general

notion that stem cell conservators must be downregulated before differentiation

starts. The NOTCH pathway is another essential regulator of pituitary embryogen-

esis (Kita et al. 2007; Monahan et al. 2009; Raetzman et al. 2004; Zhu et al. 2005,

2007), of which several components are upregulated in the adult (mouse) pituitary

stem cell fraction (Chen et al. 2006, 2009; Vankelecom 2010) and are found

expressed in some of the MZ and parenchymal S100þ cells of the (rat) AP

(Tando et al. 2013). Some other transcriptional regulators that play an important

role in pituitary embryonic development (such as Hesx1, the earliest known gene

expressed in the pituitary primordium, Lhx4, Pax6, Otx2, Ascl1 and the Six/Eya/
Dach genes; Kelberman et al. 2009; Zhu et al. 2005, 2007) are also higher

transcribed in the adult pituitary stem cell fraction (Chen et al. 2006, 2009;

reviewed in Vankelecom 2010, 2012), as well as the cyclin-dependent kinase
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inhibitor p57 that, during embryogenesis, emerges in the RP progenitor cells that

stop cycling to embark on differentiation (Bilodeau et al., 2009; Vankelecom 2010;

Vankelecom and Chen 2014). Finally, components of the fibroblast growth factor

(FGF) and bone morphogenetic protein (BMP) pathways, having important roles in

the specification and proliferation of RP progenitor cells (Ericson et al. 1998; Zhu

et al. 2005, 2007), are also upregulated in the adult stem cells (Vankelecom 2010;

Vankelecom and Chen 2014). Together, this expression portrait suggests that the

stem cells of the adult pituitary (re-)use the embryonic developmental programs for

their maintenance and progression toward differentiated cells (as also found in

other tissues; Alvarez-Buylla and Lim 2004; Jensen et al. 2005; Roskams 2006;

Slack 2008; Wagers and Conboy 2005).

Finally, a battery of new candidate markers has emerged from recent studies

(extensively reviewed in Vankelecom 2010 and Vankelecom and Chen 2014),

including the retinoic acid-producing retinal aldehyde dehydrogenase 1 (Raldh1;
Fujiwara et al. 2007) and the retinoic acid receptor Rarb (Vankelecom 2010;

Vankelecom and Chen 2014); the transcription factors PRRX1 and PRRX2

(expressed in proliferating RP progenitor cells until cell-cycle exit and start of

differentiation; Susa et al. 2012); the cell-adhesion molecule cadherin-18

(expressed in the MZ in a different pattern than CDH1; Chauvet et al. 2009); the

coxsackievirus and adenovirus receptor (CAR; Chen et al. 2013); the Kr€uppel-like
factor 6 (KLF6; Ueharu et al. 2014); and the juxtacrine signaling molecule ephrin-

B2 (Yoshida et al. 2015). A number of the pituitary stem cell markers identified

may be involved in constructing and maintaining the 3D network, in particular the

cadherins, ephrins and CAR.

An intriguing question is how the multiple markers are distributed within the

stem cell population. Regarding the embryonic markers, it can be assumed that

different stages along the stem cell differentiation path are typified by different

factors in a sequence similar to the embryogenic process. Accordingly, it is

proposed that the pituitary stem cell compartment represents a heterogeneous

pool of cells in different stages of life cycle and activation (Fig. 1), with the

different markers, alone or in combination, designating the different phases, vary-

ing from quiescent stem cell states to committed precursor steps (reviewed in

Vankelecom 2010, and Vankelecom and Chen 2014). Such heterogeneity within

the stem cell population has also increasingly been demonstrated in other organs

(Bond et al. 2015; Donati and Watt 2015). Single-cell transcriptomic analysis of

brain stem cells identified the presence of four subgroups in different stages of

activation (most prominently in response to injury), ranging from dormant to

primed-quiescent, active and active-dividing stem cells (Llorens-Bobadilla

et al. 2015). Of note, pituitary and brain stem cells show striking similarities, in

particular regarding their localization around a lumen (cleft and ventricle, respec-

tively) and their expression of common markers (such as SOX2, NESTIN and

S100; Kriegstein and Alvarez-Buylla 2009). In addition, different stem cell sub-

populations may be distributed over the different proposed niches in the pituitary.

For instance, stem cells in the parenchymal SOX2þ cell clusters may be further

advanced in their ‘priming’ (as compared to the MZ cells) to allow swifter
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contribution to the neigboring parenchymal endocrine tissue, or they may only form

specific cell types more prevalent at the particular parenchymal spots.

Apart from their labeling value, the factors mentioned must, of course, also have

a function in the pituitary stem cells. Not much is known yet about these duties, but

ideas may be inferred from other stem cells or from pituitary embryogenesis. The

transcription factors SOX2, OCT4, NANOG and KLF4 most likely play a role

similar to the one in ES and iPS cells (De Los Angeles et al. 2015; Hyslop

et al. 2005; Takahashi and Yamanaka 2006), i.e., to keep the pituitary stem cells

in an undifferentiated, multipotent state. Genetic disruptions of SOX2 leads to

certain forms of hormonal cell deficiency and pituitary hypoplasia (Jayakody

et al. 2012; Kelberman et al. 2008), at least partly due to a reduced expansion and

function of the RP progenitor cells, thereby giving some hint toward the importance

of SOX2 in adult stem cell regulation. NOTCH signaling is likely also involved in

the control of stem cell proliferation in the adult gland, since NOTCH

downregulation in the embryonic pituitary coincides with cell cycle exit of the

RP progenitor cells and genetic ablation of NOTCH signaling in the developing

pituitary results in severe AP hypoplasia due to reduced proliferative capacity of RP

progenitors (Kita et al. 2007; Monahan et al. 2009; Raetzman et al. 2004; Tando

et al. 2013; Zhu et al. 2005, 2007). In addition, stem cells increase in number in AP

cell cultures upon NOTCH activation (Chen et al. 2006; Tando et al. 2013). SOX2

and NOTCH (together with PROP1) may form an interacting signaling network

within the stem cell compartment (reviewed in Willems and Vankelecom 2014).

In the adult pituitary, PROP1 may be required in the progressing stem/progenitor

cells to enable migration from the MZ or the in-gland stem cell clusters toward the

parenchyma for further differentiation. This proposed role is based on knowledge

from embryogenesis, where genetic inactivation of PROP1 results in failure of RP

progenitors to migrate from the proliferative progenitor region to the developing

AP, resulting in extensive pituitary hypoplasia and absence of nearly all AP cell

lineages (Himes and Raetzman 2009; Ward et al. 2005; Zhu et al. 2005, 2007). The

prominent presence of the epithelial marker CDH1 and the tight-junction protein

CAR suggests a role for these factors in stitching the marginal and parenchymal

niches of stem cells together in a 3D network (Fig. 1). Escape from this ‘imprison-

ment’ would require conversion of the organized connected epithelial cell type to

the untied and motile mesenchymal cell phenotype through the process of

epithelial-mesenchymal transition (EMT; Kalluri and Weinberg 2009; Vankelecom

and Chen 2014). PROP1 may be required for EMT since it downregulates CDH1 by

activating the expression of the CDH1 repressor SNAI2/SLUG in the RP progenitor

zone (Himes and Raetzman 2009). Stem cell migration in the adult gland may

further be regulated by CXCR4, which is known for its chemotactic activity and

regulation of EMT (Hu et al. 2014; Kalluri and Weinberg 2009). Also NESTINþ

pituitary cells have previously been shown to possess motile capacity (in vitro) as a

possible result of EMT (Krylyshkina et al. 2005). Finally, ephrin signaling may play

a role in the formation and organization of the proposed 3D stem cell network

through actions of attraction and repulsion (Solanas and Batlle 2011). Taken
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together, a number of the factors identified seem to be involved in regulating the

balance between movement and bonding of the pituitary stem cells.

In conclusion, the pituitary stem cell phenotyping list is progressively

expanding. Although one can speculate on the role these markers play in adult

pituitary stem cell regulation, a firm foundation remains to be provided.

Pituitary Stem Cells: Uncovering the Hidden Functions

As mentioned above, new tissue cells can be generated by the resident stem cells

during homeostatic turnover, adaptive responses to body requirements and regen-

erative reactions to tissue damage (Alvarez-Buylla and Lim 2004; Rando 2006;

Slack 2008; Vankelecom 2012; Vankelecom and Chen 2014; Wabik and Jones

2015). Whether stem cells in the pituitary also form or renew hormonal cells during

postnatal life is a tempting question. Given the slow turnover rate of the adult gland

(Levy 2002, 2008; Nolan et al. 1998; Rando 2006; Vankelecom 2012; Vankelecom

and Chen 2014), the involvement of stem cells would be most evident in situations

of more activated cell remodeling in the tissue. Recently, studies have started to

explore the functional position of pituitary stem cells in more dynamic conditions,

including neonatal maturation, adaptation to endocrine demands, regeneration after

damage, and tumor formation.

Neonatal Pituitary Maturation

The (rodent) pituitary undergoes a substantial growth phase immediately after birth,

with increasing numbers of hormonal cells developing during the first neonatal

week(s) (Melmed 2010; Vankelecom 2010, 2012; Vankelecom and Chen 2014).

During this period, the pituitary stem cell population resides in a state of activation

as compared to later in life, showing higher cell numbers, higher proliferation rate

and higher stem cell functionality (i.e., sphere-forming and multipotent differenti-

ation capacity; Chen et al. 2005, 2009; Gremeaux et al. 2012). Moreover, stemness

and embryonic markers are prominently expressed in neonatal stem cells (Chen

et al. 2009; Gremeaux et al. 2012; Kikuchi et al. 2007). The topography of the

SOX2þ cells further underlines this higher activation status, with increased num-

bers of clusters in the neonatal AP lobe and higher abundance of SOX2þ cells at the

junctions of the AP and IL (wedges), with signs of SOX2þ cells sprouting from

these putative germinal regions (Gremeaux et al. 2012; Fig. 1). Neonatal SOX2þ

cell clusters in the vicinity of the MZ are clearly connected to the MZ (Gremeaux

et al. 2012), supporting the idea that the cell clusters observed in the AP lobe

originate from this zone (Fig. 1). Of note, SOX2 is mainly not observed together

with hormones, which may be interpreted again as mutual exclusion, i.e., with
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differentiation only occurring when the guardians of multipotency like SOX2 are

downregulated or extinguished.

Tracing of SOX2þ cells from embryonic to neonatal age (technically speaking,

by tamoxifen induction in pregnant Sox2CreERT2/R26YFPflox/flox mice) revealed

traced ‘yellow fluorescent protein’-positive (YFPþ) cells in the neonatal pituitary

that express early and late differentiation markers of hormonal cells, indicating that

embryonic SOX2-expressing cells contribute to neonatal hormonal cells

(Andoniadou et al. 2013; Rizzoti et al. 2013). It should be realized that this finding

does not automatically mean that the neonatal stem cells per se drive the early

expansion phase (by forming new hormonal cells) during those first weeks after

birth. Short-term SOX2þ lineage tracing should, therefore, be done within the

neonatal period itself. YFP was also found together with SOX2, indicating that

the embryonic SOX2þ progenitor cells persist after birth (e.g., by themselves or

after self-renewal). Also in other tissues, SOX2þ postnatal (stem) cells originate

from fetal SOX2þ (progenitor) cells (Arnold et al. 2011). This idea is also in line

with the embryonic phenotype of the postnatal pituitary stem cells, as supported by

the marker expression profile (see above).

Taken together, the activated nature of the stem cell compartment during the first

weeks after birth suggests a dynamic participation in the neonatal maturation

process of the gland, although most evidence so far is circumstantial.

Basal and Adapting Adult Pituitary

Basal Turnover The contribution of stem cells to the slow homeostatic turnover in

the postnatal gland was only recently demonstrated (Andoniadou et al. 2013;

Rizzoti et al. 2013). Tamoxifen-induced SOX2þ or SOX9þ lineage tracing starting

from four to eight weeks of age revealed the existence of hormoneþ cells derived

from the traced (YFPþ) cells as analyzed 8 to 14 months later. However, their

number was small, which in the first place reflects the low turnover rate of the adult

gland under physiological conditions but at the same time suggests that the contri-

bution of stem cells to new hormonal cells is only very limited under basal

conditions. Endocrine cell turnover in the basal pituitary would thus mainly rely

on proliferation of differentiated hormonal cells (Langlais et al. 2013; Vankelecom

and Chen 2014). The vast majority of the YFPþ cells were still SOX2þ/SOX9þ

after the long-term tracing, supporting a long-lived stem cell phenotype of high

quiescence and/or a persistent (but slow) self-renewal activity. Taken together, the

findings from lineage tracing do not support a major input of stem cells in adult

pituitary homeostatic turnover, which is in line with findings in other ‘lazy’ tissues
(Barker et al. 2010; Huch et al. 2013a,b; Rando 2006; Slack 2008; Vankelecom

2012; Wabik and Jones 2015).

Plastic Cell Adaptations In contrast to the quite immeasurable cell neogenesis

under basal conditions, the pituitary’s cell composition more actively changes in
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response to peripheral signals conveying endocrine needs. As a prominent example,

the number (and activity) of lactotropes rises during pregnancy and lactation to

meet the heightened demand for PRL (Haggi et al. 1986; Vankelecom 2012). This

expansion is at least partly due to elevated estrogen levels in these conditions. The

involvement of stem cells may be concluded from the recent observation that short-

term estradiol treatment (of male mice) causes a 10-fold increase in dividing SOX2þ

cells. The total number of SOX2þ cells, however, did not change, suggesting that the

generated daughter cells immediately stopped expressing SOX2 to differentiate into

the demanded lactotropes (Rizzoti et al. 2013). To underpin a direct contribution of

stem cells to the expanding lactotrope population, lineage-tracing experiments are

further needed. Whether the stem cells also play a role in the rise of somatotropes

during puberty, or in the (continuous) adaptation of gonadotropes during sexual

maturation and estrous cycling, is at present unknown.

Other forms of enhanced pituitary cell remodeling are seen when negative

feedback dissipates because of ablation of target organs. Adrenalectomy causes a

swift, transient rise in corticotropes, whereas gonadectomy triggers a fast and

transitory increase in gonadotropes. Previous studies provided circumstantial evi-

dence that ‘hormonally null cells’ (the at that time postulated pituitary stem cells)

contribute to the new corticotropes and gonadotropes (Levy 2002, 2008; Nolan

et al. 1998; Nolan and Levy 2006). Recent studies provided more direct evidence

that pituitary stem cells are involved. The SOX2þ cells along the cleft expand after

adrenalectomy (Langlais et al. 2013). In addition, SOX9þ lineage tracing showed

that ~20% of the newborn corticotropes are derived from the SOX9þ stem cells

(Rizzoti et al. 2013). The other new ACTHþ cells may be produced by corticotrope

proliferation (see also Langlais et al. 2013). After gonadectomy, dividing SOX2þ

cells increase by four-fold but total SOX2þ cell numbers do not change (Rizzoti

et al. 2013), again suggesting that the generated progenitor cells immediately

differentiate with prompt disappearance of SOX2.

Taken together, recent studies provide supportive evidence that adult pituitary

stem cells have the capacity to differentiate into hormonal cells in vivo under

challenging physio- and pathological conditions.

Pituitary Regeneration and Impact of Aging

A number of adult tissues are capable of restoring cells following destruction by

physical or chemical impacts (Rando 2006; Vankelecom 2012; Vankelecom and

Chen 2014; Willems and Vankelecom 2014; Wabik and Jones 2015). In several of

these regenerative responses (like in muscle), stem cells are mobilized and directly

involved to generate the new cells (Conboy and Rando 2005). Also in slow-

turnover organs like liver and pancreas, hidden (‘facultative’) stem cells are acti-

vated under certain damaging conditions to drive the regenerative reaction (Barker

et al. 2010; Huch et al. 2013a,b; Rando 2006; Slack 2008; Vankelecom 2012;

Wabik and Jones 2015; Xu et al. 2008).
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Regarding the pituitary, it has only recently been established that the adult,

mature gland has the potential to regenerate cells after destruction. Through a

transgenic mouse approach, damage was inflicted in the pituitary by killing the

somatotrope (GHþ) cells using diphtheria toxin (DT; Fu et al. 2012; Luque

et al. 2011). The injury triggered an immediate response of the pituitary stem

cells, which started to expand in number and to co-express GH (Fu et al. 2012).

Five to six months after ablation, the somatotrope cell number was significantly

restored (up to 60%). The study for the first time showed that the pituitary, when

suffering damage at adult age, has the potential to regenerate destroyed tissue

(Fu et al. 2012). In addition, it advanced the stem cells as the likely drivers of

regeneration (Fig. 1) and source of the newborn somatotropes. Meanwhile, this

regenerative capability appeared more general and not limited to somatotropes. In

an analogous model in which lactotropes were destroyed with DT (Fu and

Vankelecom 2012), restoration was also observed (up to ~60%) although clearly

faster (already after four to six weeks), which may be due to the involvement and

cooperation of more than one process. Stem cell participation with expansion and

PRL co-expression was again observed, but in addition there was enhanced prolif-

eration of the surviving (or newly formed) PRLþ cells as well as increased numbers

of double PRLþ/GHþ cells, suggestive of an activated transdifferentiaton process

of somatotropes toward lactotropes (Fu and Vankelecom 2012). Finally, pituitary

stem cells also expanded in number following gonadotrope ablation by DT, but

detailed analysis of this mouse model was not possible because of cardiotoxicity

(Vankelecom, unpublished observations).

A recent follow-up characterization study of the somatotrope ablation-and-

regeneration model revealed some interesting features of the pituitary’s regenera-
tive capacity (Willems et al. 2016). First, the regeneration level appeared to be

capped (at ~60%, or in other words, restoration to ~70% of the normal GHþ cell

number), even if the recovery period was largely extended from 0.5 to 1.5 year.

Either the regenerative power of the pituitary does not go beyond certain levels or

higher restoration is not needed to reach sufficient ‘physiological’ GH activity.

Serum GH concentrations were restored to about one-third of normal values, at the

same time indicating that regeneration does not only occur at the morphological

level but also, although in a more limited fashion, at the functional (hormone-

secretory) level. Furthermore, and rather surprisingly, the restorative capacity of the

pituitary fades very fast at aging; middle-aged mice (eight months old) no longer

showed recovery (as compared to eight-week-old mice), not even after long recu-

peration periods (Willems et al. 2016). Interestingly, this disappearance of regen-

erative competence coincides with a decline in pituitary stem cell number.

Moreover, the stem cells of the older pituitary are less talented in generating

spheres (as a functional characteristic of stem cells), which decrease in number

and size, although differentiation to hormonal cell lineages still occurs in the

spheres. SOX2þ signals in the spheres from the older pituitaries were most of the

time found in the cytoplasm and not in the nucleus of the cells, where SOX2 should

be present to maintain the stem cell phenotype (Willems et al. 2016). Taken

together, these findings suggest a decrease in overall fitness of the pituitary stem
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cells at aging - not being maintained in a primitive state - which may lead to fast

(-er) exhaustion of their potential during differentiation and regenerative attempts.

In other tissues (e.g., muscle and heart), the stem cell population is also negatively

affected by age, undergoing a decline in number and regenerative capacity (Blau

et al. 2015; Hariharan and Sussman 2015).

Further intriguingly, restoration was not observed anymore when the injury

impact was prolonged by extending the DT injection period (from 3 to 10 days),

although the somatotrope ablation grade obtained was identical (Willems

et al. 2016). The stem cell compartment still reacted to the prolonged injury by

promptly expanding (although somewhat less than after the short-term injury

impact), but no co-expression of GH was found despite the fact that the stem

cells were still capable of differentiating into all hormonal cell types when assessed

in vitro (using pituispheres; Willems et al. 2016). As found in other tissues (like the

hippocampus and the hematopoietic system), the regenerative power may become

exhausted when subsequent attempts are over and again suffocated during the long-

term impact (Botnick et al. 1979; Sierra et al. 2015). Stem cells may have reached

their expansive limit or crossed their threshold of restorative competence, or the

reacting, regenerating stem cell pool may become depleted while possibly other,

more quiet, stem cell populations remain unaffected (which would explain the

preservation of sphere-forming and multipotent capacity). Alternatively, the obser-

vation of a remaining intrinsic functionality after prolonged DT treatment may

suggest that a deficiency in stem cell regulatory networks, as emanating from the

niche, pituitary parenchyma or systemic circulation, may lie at the basis of the

regenerative failure.

Finally, our recent characterization study started to search for molecular mech-

anisms underlying regeneration and exposed some embryonic, stemness and

repairing pathways that may be involved in the stem cell reaction to injury, in

particular EMT, growth factor (FGF and epidermal growth factor, EGF) and Hippo

pathways (Willems et al. 2016). Activation of FGF and EGF can lead to increased

pituitary stem cell numbers, as has been demonstrated in AP cell aggregate cultures

(Chen et al. 2006).

Taken together, recent studies support a function for pituitary stem cells in

pituitary regeneration (Fig. 1). Activation of the stem cells and movement to the

site of injury may be steered by embryonic, proliferative (growth factor), migratory

(EMT) and restorative (Hippo) signaling pathways. This regenerative capacity

appears not boundless but limited both in age-related terms and final efficacy.

Pituitary Tumorigenesis

As mentioned, the process of tumorigenesis in the pituitary remains far from

understood (Melmed, 2003, 2011; Vankelecom and Gremeaux 2010; Vankelecom

2012). An appealing but largely untouched question is about the position of the

pituitary stem cells during the tumorigenic event in the tissue. Furthermore, are
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TSC present in pituitary tumors, and if so, are they linked to the resident stem cells?

Previous studies regarding this subject have been extensively reviewed before

(Florio 2011; Lloyd et al. 2013; Vankelecom and Gremeaux 2010; Vankelecom

2012; Vankelecom and Chen 2014). Some candidate TSC were proposed, for

instance, based on spheroid formation (Xu et al. 2009) and marker expression

(Barbieri et al. 2008), but convincing evidence was not provided and some results

remained questionable (discussed in Vankelecom and Gremeaux 2010;

Vankelecom 2012; Vankelecom and Chen 2014).

A recent study of our group found that pituitary adenomas (as obtained from

human patients) contain a SP with prominent expression of tumor stemness markers

(like CXCR4) and stemness signaling pathways (like EMT) and that enriches for

cells that form tumorspheres in a self-renewing sequence (Mertens et al. 2015). The

pituitary tumor SP (as analyzed for the AtT20 cell line) showed tumor-growth

advantage in vivo in immunodeficient mice. Thus, the pituitary tumor SP holds

molecular and functional characteristics supporting a TSC phenotype. In addition,

CXCR4 signaling may be involved in AtT20 tumorigenesis since inhibition of the

pathway reduced tumor size in vivo as well as EMT activity (cell motility) in vitro

(Mertens et al. 2015). Moreover, the AtT20 SP showed resistance to the chemo-

therapeutic drug temozolomide (Mertens and Vankelecom, unpublished observa-

tions), further supporting a TSC phenotype. Also interestingly, the SP of pituitary

tumors displays some appealing molecular differences with the candidate TSC

(SP) of malignant cancer types (melanoma and pancreatic cancer; Van den Broeck

et al. 2013; Wouters et al. 2013) such as an upregulated senescence program, which

might explain why pituitary tumors typically remain benign (Mertens and

Vankelecom, unpublished observations).

The pituitary tumor SP also shows upregulated expression of SOX2 (Mertens

et al. 2015), which may indicate either a link between the stem cells and the putative

TSC or simply activation of SOX2 expression in the candidate TSC. Moreover,

pituitaries from a mouse model in which pituitary (PRLþ) tumors develop in situ

(i.e., the dopamine receptor D2 knockout or Drd2-/- mouse) contains more SP and

SOX2þ cells than wildtype glands (Mertens et al. 2015). This observation is in

accordance with the presence of a TSC (characterized by SP and SOX2þ pheno-

type) in the mouse pituitary tumors, adding up to the SP and SOX2þ cells of the

surrounding normal tissue. In addition, or alternatively, the observation may point

to an activated and expanded ‘normal’ stem cell compartment when tumorigenesis

is occurring in the gland. Regarding the latter idea, it is not known yet what the

consequence of pituitary stem cell activation may be. As already mentioned above,

it is assumed that disappearance of SOX2 from the nucleus (by exclusion or active

expulsion) is needed to allow differentiation (Chen et al. 2009; Fu et al. 2012;

Vankelecom and Chen 2014; Willems and Vankelecom 2014), as has been dem-

onstrated in ES cells (Baltus et al. 2009). The observation in Drd2-/- pituitaries of a

predominant increase in SOX2þ cells in which SOX2 is present in the cytoplasm

(Mertens et al. 2015) might support a high(-er) differentiation rate toward the tumor

PRLþ cells.
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Alternatively, stem cell activation may represent a defence reaction or may

paradoxically activate the TSC or feed the tumor by paracrine influences. An

indirect role of SOX2þ stem cells as paracrine tumor-activating cells has also

been suggested in a mouse model of adamantinomatous craniopharyngioma

(Andoniadou et al. 2013; Gaston-Massuet et al. 2011; see also Andoniadou

2016), a pituitary tumor that originates from ectopic remnants of RP and in that

way clearly differs from the typical AP tumors. On the other hand, resident stem

cells may directly generate the TSC, as has been shown in some other tumor types

(e.g., of intestine, skin and brain; Barker et al. 2009; Chen et al. 2012; Lapouge

et al. 2011; Schepers et al. 2012). Stem cell lineage tracing in mouse models

developing typical pituitary tumors is now needed to explore the link between

tumorigenesis, TSC and stem cells in the pituitary.

Taken together, another hidden function of the pituitary stem cells may reside in

the process of tumorigenesis (Fig. 1), either as the direct creators of the TSC or as

the reacting compartment activated in response to the tumorigenic assault occurring

in the tissue, resulting in a paracrine impact that likely is intended to defend the

tissue but may eventually fuel the tumor.

Conclusion and General Perspectives

Recent studies have started to unveil the hidden functions of pituitary stem cells.

Their job appears to primarily emerge in the active or challenged pituitary, i.e.,

during neonatal maturation, tumorigenesis and repair of damage (Fig. 1). The stem

cells seem much less involved in the more subtle adaptations during basic turnover.

Aging has an early and negative impact on the number and fitness of the pituitary

stem cells, likely explaining the regenerative failure with advancing age. From the

currently available data, embryonic programs appear to be recycled for postnatal

stem cell regulation, activation and differentiation. Further efforts are needed to

pinpoint the molecular mechanisms underlying the stem cell functions. An addi-

tional intriguing aspect to be deciphered is how the newborn endocrine cells

topographically and functionally integrate into the (existing) hormonal cell

networks.

More insight into the pituitary stem cell role and regulation may in the end

advance the treatment of hypopituitarism patients, particularly within the context of

regenerative medicine (extensively reviewed in Vankelecom and Chen 2014 and

Willems and Vankelecom 2014). Pituitary stem cells may provide life-long cures

for mutation-, surgery- and/or trauma-induced pituitary deficiencies. The endoge-

nous stem cells may be stimulated to restore or repair the defective tissue, or the

missing hormonal cells may be generated from stem cells ex vivo and implanted.

The approaches are expected to be superior to HRT, which generates artificial

hormone levels and cannot mimic hormone secretory cyclicity and pulsatility.

However, many pressing issues remain, particularly regarding functional
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integration and safety, before moving to translational applications to cure condi-

tions of hypopituitarism.

In sum, pituitary stem cells represent potential protagonists in the gland with still

mysterious functions in pituitary biology and pathology, although recent studies

have started to ‘write’ some possible scripts. Clearly, there remains a long way to go

in the still under-explored domain of pituitary stem cell functions and associated

clinical opportunities.
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