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Abstract Dysregulation of the stress response is implicated in many psychopathol-

ogies. Data gathered over the past two decades have proposed a rather dualistic view

of the central corticotropin-releasing factor (CRF)-urocortin system. Originally, it

was thought that CRF/CRF receptor type 1 (CRFR1) signaling mediated stress-

initiated effects and increased anxiety-like behavior, whereas activation of

urocortins/CRFR2 ensured adequate recovery from stress and restoration of homeo-

stasis. However, this viewwas based on data gained from geneticallymodifiedmouse

models and pharmacological approaches; now, with the emergence of new and more

specific biological tools, it has become clear that this is an over-simplistic proposal. It

is becoming apparent that the function of the CRF-urocortin system’s components

relies profoundly on the spatial and temporal patterns of activity of the CRF family

members. Here, we provide an overview of recent work that proposes a more

dynamic, modulatory role for the CRF system’s central pathways in the modulation

of stress-linked behaviors. Recent findings suggest that the CRF system’s actions are
brain-region specific and dependent on the type of neuronal cell involved.

In 1955, Hans Seyle recognized that the hypothalamic-pituitary-adrenal (HPA) axis

orchestrates the stress response (Selye 1955). However, it took until 1981 for the

structure of its principal regulatory peptide, corticotropin-releasing factor (CRF), to

be characterized (Vale et al. 1981). Neurons in the paraventricular nucleus (PVN)

of the hypothalamus secrete CRF, which binds to receptors in the pituitary, which,

in turn, secretes adrenocorticotropic hormone (ACTH) into the circulation. The

circulating ACTH binds at the adrenal cortex stimulating the synthesis and secre-

tion of glucocorticoids: cortisol in humans and corticosterone in rodents. Gluco-

corticoids are the downstream biological effector of the neuroendocrine stress

response and also provide negative feedback in the HPA axis.
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The CRF family of peptides includes the 41 amino acid peptide CRF and the

more recently discovered urocortin (UCN) 1, 2 and 3. As shown in Fig. 1, this

family of peptides binds to two distinct receptors: the CRF receptor type 1 (CRFR1)

and type 2 (CRFR2). CRF is a high-affinity ligand for the CRFR1, whereas UCN1

binds with equal affinity to both receptors. UCN2 and UCN3 preferentially bind the

CRFR2. However, specificity seems to be lost at higher concentrations of the

ligand, with CRF activating CRFR2. CRFR1 and CRFR2 are produced from

distinct genes and have numerous splice variants (CRFR1α,β, and CRFR2α,β,γ),
some of which are nonfunctional (Perrin and Vale 1999; Grammatopoulos and

Chrousos 2002).

CRF receptors are Gs protein-coupled receptors. They stimulate a cascade of

events, firstly adenylate cyclase, which subsequently activates cyclic AMP

(cAMP). Cyclic AMP stimulates protein kinase A (PKA) to phosphorylate sub-

strates such as the cAMP responsive-element–binding (CREB) protein, thereby

inducing transcription of downstream target genes. In addition, cAMP binds to

exchange proteins, which then activate the extracellular signal-regulated kinase-

mitogen-activated protein kinase (ERK-MAPK) cascade (Gutknecht et al. 2009).

The ERK/MAPK pathway regulates synaptic plasticity, including dendrite stabili-

zation, ion channel transmission, transcription of CREB and other genes, and

receptor scaffolding, trafficking, and crosstalk. Coupling to Gs is the dominant

mechanism for stimulating intracellular calcium mobilization by CRFR1 and

CRFR2. However, CRF receptors also interact with other G protein systems,

including Gq, Gi, Go, Gil/2, and Gz (Grammatopoulos et al. 2001). Coupling to Gq

Fig. 1 The CRF family of neuropeptides and their action on the CRFR1 and CRFR2 (Kuperman

and Chen 2008, with permission). Colored arrows indicate the receptors with which each ligand

preferably interacts; dashed lines indicate a lower affinity binding. CRFR2 has two apparent

membrane-bound splice variants in rodents, resulting in two receptor proteins, CRFR2α and

CRFR2β
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activates PLCβ, which cleaves the phospholipid phosphatidylinositol

4,5-bisphosphate into diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate

(IP3). IP3 then diffuses through the cytosol to bind to IP3 receptors to increase

intracellular calcium levels, whereas DAG activates protein kinase C (PKC), which

activates ERK1/2 via Ras, Raf and MEKs. Gi/0 mediated activation of Gβγ subunits

activates the ERK1/2 by PI-3 kinase and induces PLCγ activation, which increases

intracellular calcium release. Thus, depending on their localization and cellular

context, CRF receptors are able to modulate a wide variety of signaling pathways

(Hauger et al. 2006, 2009) and kinases [including PKA, protein kinase B (PKB),

PKC (Gutknecht et al. 2009), mitogen activated protein (MAP) kinases (e.g.,

ERK1/2), and intracellular Ca2+ concentrations]. CRF receptors activate these

various G-protein systems in a concentration-dependent manner (Grammatopoulos

and Chrousos 2002).

Besides the activated pathway, the desensitization and internalization following

receptor activation seems to depend on the specific ligand bound. Desensitization of

CRFR2 cAMP signaling was shown to occur more rapidly and to a greater extent in

response to UCN2 binding compared to UCN3, whereas CRF is a relatively weak

desensitizing agonist (Gutknecht et al. 2008). Additionally, the internalization of

CRFR2 was shown to be greater upon exposure to UCN2 (Markovic et al. 2008).

In situ hybridization histochemical studies (and recently generated reporter

mice; Justice et al. 2008; Kuhne et al. 2012) have shown that CRFR1 is widely

distributed throughout the brain. The highest expression levels are seen in neocor-

tical, limbic, brain stem regions and the cerebellum (Fig. 2). Moderate levels are

found in the dorsal and median raphe nuclei, and only low levels are found in the

PVN of the hypothalamus (Chalmers et al. 1995; Van Pett et al. 2000). CRFR1 is

expressed in diverse neuronal subpopulations. They have been found on cell bodies,

dendritic shafts and dendritic spines of hippocampal neurons (Chen et al. 2004a,b,

2010). Compared to CRFR1, CRFR2 mRNA has a much more localized distribu-

tion pattern throughout the brain, which is virtually confined to subcortical struc-

tures. The highest levels of CRFR2 expression are found in the lateral septum, the

Fig. 2 The distribution of CRFR1 (yellow) and CRFR2 (pink) mRNA expression in the rodent

brain. AMYG, amygdala; BST, bed nucleus of the stria terminalis; RAPHE, raphe nucleus; SEPT,

lateral septum; VMH, ventromedial hypothalamic nucleus

Genetic Dissection of the Neuroendocrine and Behavioral Responses to. . . 71



ventromedial hypothalamic nucleus, and the choroid plexus (Fig. 2). Moderate

levels are seen in the olfactory bulb, nuclei of the extended amygdala, hippocam-

pus, the PVN and supraoptic nuclei of the hypothalamus, the inferior colliculus and

the raphe nucleus (Chalmers et al. 1995; Van Pett et al. 2000). Only a limited

amount of data is available on brain region-specific modulation of CRFR2 signal-

ing. Among the most investigated regions are the extended amygdala, hippocam-

pus, lateral septum, medial prefrontal cortex, and brain stem nuclei. Additionally,

all four CRF family neuropeptides have been detected in the periphery, in particular

UCN2 and UCN3, which have been recognized as novel modulators of centrally

and peripherally controlled metabolic function (Chen et al. 2004a; Kuperman and

Chen 2008).

Alterations in HPA axis function, attributed to centrally elevated CRF levels,

were observed in depressed patients (Nemeroff et al. 1984; Holsboer 1999; Reul

and Holsboer 2002) and in patients with post-traumatic stress disorder (PTSD;

Bremner et al. 1997; McEwen 2002). These findings stimulated huge interest into

the functioning of the CRF family. CRFR1 and CRFR2 seem to modulate anxiety-

like behavior in a brain region-dependent manner. One obvious explanation for the

differential behavioral effects of CRF receptor activation is that distinct brain

regions simply serve distinct behavioral functions, and their activation would thus

induce a distinct behavioral phenotype. Activation of brain regions implicated in

emotional arousal, such as the extended amygdala, would be expected to increase

anxiety, whereas activation of cognitive control regions, such as the medial pre-

frontal cortex, would contribute to stress coping and reduce anxiety. However, both

the behavioral and electrophysiological effects of CRF receptor activation impli-

cate a more complex underlying mechanism of region dependency and suggest

specificity due to the cell type and ligand concentration.

Since specific CRF receptor antibodies are lacking, much about the action of the

CRF family has been learned from transgenic mice, overexpressing or knocked out

for the various members. Increased central levels of CRF [induced by either CRF

administration (Britton et al. 1986; Dunn and File 1987; Dunn and Berridge 1990)

or its overexpression in transgenic mice (Stenzel-Poore et al. 1994; Heinrichs

et al. 1997; van Gaalen et al. 2002; Binneman et al. 2008)] produces anxiogenic

behavior, whereas suppression induces anxiolytic effects (Skutella et al. 1994) and

reduced stress-induced anxiety (Skutella et al. 1994). This action was attributed to

CRFR1 activation specifically, since CRFR1 blockage by antisense treatment

(Skutella et al. 1998; Liebsch et al. 1999) or selective antagonists (i.e., antalarmin;

Habib et al. 2000; Valdez et al., 2002) prevented CRF/stress-induced anxiety.

Furthermore, CRFR1 knock-out mice displayed reduced anxiety-like behavior

(Smith et al. 1998; Timpl et al. 1998; Contarino et al. 1999; Muller et al. 2003).

Taken together, these data suggested a critical role for CRFR1 activation in eliciting

stress-induced anxiety. However, although these findings suggest a causative role

for CRFR1 over-activation in stress-related psychopathologies, clinical trials of

CRFR1 antagonists as potential next-generation anxiolytics/antidepressants have

unfortunately met with little success.
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In contrast to CRFR1, the role of CRFR2 in the mediation of psychopathologies

is less clear, and two prominent theories are currently circulating that explain its

role. The most popular view is that CRFR2 activation is responsible for ensuring

homeostasis and counteracts the stress response-provoking effects and anxiety-like

behavior induced by CRFR1 activation (Coste et al. 2001; Bale and Vale 2004;

Heinrichs and Koob 2004; Muller and Holsboer 2006). This theory is primarily

based on the increased corticosterone stress response observed in CRFR2 KO mice

(Bale et al. 2000; Coste et al. 2000), and the anxiogenic phenotype observed in

some (but not all; Coste et al., 2000) of the CRFR2 KO mouse lines (Bale

et al. 2000; Kishimoto et al. 2000). However, the increased levels of anxiety and

stress-related behaviors observed in a mouse line displaying (chronic)

overexpression of UCN3 (Neufeld-Cohen et al. 2012), as well as the observed

reduction in shock-induced freezing in response to reduced CRFR2 expression

(by administration of CRFR2 mRNA antisense oligonucleotides; Ho et al. 2001)

contradict this theory.

UCN1 neurons are mainly localized in the Edinger Westphal nucleus where they

constitute the centrally projecting part of the nucleus to the lateral septum. UCN1

mRNA is also found in the lateral olivary and supraoptic nucleus (Bittencourt

et al. 1999). UCN2 expression has been shown in several regions that are involved

in the physiological and behavioral responses to stress, such as the PVN, locus

coeruleus, and it partly overlaps with CRF and UCN1 expression in the hypothal-

amus and brainstem. UCN2 is thought to be the primary ligand for CRFR2s in the

bed nucleus of the stria terminalis (BNST), PVN, central amygdala, parabrachial

nucleus and nucleus tractus solitarii (Reyes et al. 2001). UCN3 also shows a distinct

expression pattern and is mainly found in the medial preoptic area, rostral

perifornical area, the posterior part of the BNST and the medial amygdala, with

projections observed in the intermediate lateral septum (Lewis et al. 2001) and in

the BNST (Deussing et al. 2010). However, although the sites of mRNA expression

of these ligands are pretty well established, it is still largely unknown at which exact

sites (i.e., axonal, dendritic, synaptic) the ligands are in fact released.

UCN1 neurons are recruited following chronic stress exposure and stay active

for a prolonged period of time, suggesting that this peptide plays a prominent role in

the later, adaptive phase of the stress response (Korosi et al. 2005; Xu et al. 2010;

Ryabinin et al. 2012). The UCN family members’ involvement in stress-related

behavior was assessed in UCN1/UCN2 (dKO) double and UCN1/UCN2/UCN3

(tKO) triple knockout mice. Although the dKO knockout mice displayed no

changes in basal HPA axis activity, they had elevated corticosterone levels follow-

ing acute stress exposure (Neufeld-Cohen et al. 2010b). HPA axis function was

unchanged in tKO mice compared to controls (Neufeld-Cohen et al. 2010a). The

dKO knockout mice displayed decreased anxiety-like behavior under basal and

acute stress conditions, which was accompanied by elevated serotonin concentra-

tions in a number of brain regions, including the dorsal raphe nucleus, hippocam-

pus, basolateral amygdala and subiculum (Neufeld-Cohen et al. 2010b). In contrast,

tKO mice exhibited increased anxiety-like behavior, but only 24 h after restraint

stress. Moreover, tKO mice displayed an increased stress-induced startle response
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(Neufeld-Cohen et al. 2010b). As opposed to dKO mice, the behavioral phenotype

in tKO mice was associated with decreased serotonergic metabolism in regions

such as the septum, central and basolateral amygdala (Neufeld-Cohen et al. 2010a).

Again, the effect of compensatory changes in CRF expression on emotional behav-

ior cannot be excluded in many of the UCN mouse models, as shown in dKO mice

(Neufeld-Cohen et al. 2010b). Overall, the data suggest that the UCN’s binding to

CRFR2 is able to regulate specific aspects of stress-related emotional behavior,

complementing the effects of CRF to CRFR1.

Another great advance in the understanding of the CRF system’s actions can be

accredited to the specificity of genetic or viral-mediated loss-of-function

approaches. For example, deletion of the CRFR1 in glutamatergic neurons reduces

anxiety-related behavior, whereas deletion in dopaminergic neurons increases

anxiety-related behavior (Refojo et al. 2011). Lentiviral-mediated knockdown of

CRF in the central amygdala attenuated stress-induced anxiety-like behavior and

altered HPA axis activity, reinforcing a role for amygdalar CRF in the modulation

of fear and anxiety (Regev et al. 2011). Lentiviral knockdown of CRFR1 in the

basolateral amygdala was also shown to decrease anxiety-like behavior and mim-

icked the anxiolytic effect of environmental enrichment (Sztainberg et al. 2010).

Using stereotactic delivery of lentiviruses into the paraventricular nucleus, Elliott

et al. (2010) targeted CRF by using lentiviral constructs that carried shRNA against

CRF. This approach enabled the site-specific manipulation of gene expression. The

knockdown attenuated chronic stress-induced social avoidance, which was shown

to result from demethylation of the CRF promoter (Elliott et al. 2010).

The BNST is thought to be involved in the regulation of anxiety. It is positioned

as a relay center between the limbic structures and mediates anticipatory stress.

Lentiviral-mediated knockdown of CRFR2 in the BNST increased anxiety-related

behavior both immediately and 24 h after restraint stress. Studying the knockdown

and overexpression of CRFR2 specifically in the BNST revealed an important role

of this receptor in PTSD-like behavior (Lebow et al. 2012).

In some of our most recent work, we have used optogenic regulation of posterior

BNST CRFR2 neurons using bilateral fiber optic implantation. CRFR2 Cre

mice were crossed with conditional channelrhodopsin (ChR2) mice, in which

blue light activates CRFR2-expressing neurons specifically, or with conditional

halorhodopsin (NpHR2) mice, in which yellow light inhibits CRFR2-expressing

neurons specifically. Using this tool, we found that specific activation of CRFR2

neurons in the posterior BNST reduced anxiety-related behavior and, conversely,

their suppression increased anxiety-related behavior (Henckens et al. 2016). Similar

viral-mediated loss-of-function tools were used to knockdown CRFR1 in the globus

pallidus, revealing a previously unknown anxiolytic effect of the receptor in this

brain region, which was further confirmed with site-specific CRFR1 antagonist

administration (Sztainberg et al. 2011). The relevance of CRFR1 receptors in

addiction and reward processes was investigated in the ventral tegmental area

using lentiviral-mediated knockdown. Knockdown of CRFR1 reduced

cue-induced and acute food deprivation, stress-induced cocaine seeking, but had

no effect on self-administering behavior. CRFR1 signalling in the ventral tegmental

74 A. Chen



area presents a target for convergent effects of both cue- and stress-induced

cocaine-seeking pathways (Chen et al. 2014).

In summary, recent advances in methodological approaches have begun eluci-

dating the site-specific actions of the CRF system. Most notably, they suggest that,

via the CRFR2, UCNs might be the central system involved in coping with stress.

Improved understanding of the CRF system holds the promise of better treatment of

stress-related psychopathologies.
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