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Abstract Human pluripotent stem cells (hPSCs) present a potentially unlimited

source of specialized cell types for regenerative medicine. Over the last few years

there has been rapid progress in realizing this potential by developing protocols to

generate disease-relevant cell types in vitro on demand. The approach was parti-

cularly successful for the nervous system, where the field is at the verge of human

translation for several indications, including the treatment of eye disorders,

Parkinson’s disease and spinal cord injury. More recently, there has also been

success in deriving anterior pituitary lineages from both mouse and human pluri-

potent stem cells. In vitro-derived pituitary hormone-producing cell types present an

attractive source for repair in patients with hypopituitarism. However, several

hurdles remain towards realizing this goal. In particular, there is a need to further

improve the efficiency and precision with which specific hormone-producing line-

ages can be derived. Furthermore, it will be important to assess the potential of both

ectopic and orthotopic transplantation strategies to achieve meaningful hormone

replacement. The ultimate challenge will be repair that moves beyond hormone

replacement towards the full functional integration of the grafted cells into the

complex regulatory endocrine network controlled by the human pituitary gland.
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Derivation of Human Neural Cell Types for Regenerative

Medicine

The isolation of human embryonic stem cells (ESCs; Thomson et al. 1998) and the

remarkable feat of reprogramming somatic cells back to pluripotency via induced

pluripotent stem cell (iPSC) technology (Takahashi et al. 2007; Takahashi and

Yamanaka 2006; Yu et al. 2007) have set the stage for a new era of regenerative

medicine. Human pluripotent stem cells (hPSCs), a term comprising both human

ESCs and iPSCs, are characterized by their potential to differentiate into any cell

lineage of the body. For many years, the main challenge in the field has been to

capture the broad differentiation potential of hPSCs towards specific cell lineages

relevant to modeling and treating human disease. However, there has been consi-

derable progress recently in establishing differentiation protocol for many key

lineages such as endoderm-derived insulin-producing pancreatic cells (Pagliuca

et al. 2014; Rezania et al. 2014) for the treatment of diabetes or mesoderm-derived

cardiac cells for heart repair (Chong et al. 2014). Some of the most dramatic

successes, however, have involved ectoderm-derived lineages, in particular retinal

and CNS lineages (for review see Tabar and Studer 2014)). In fact, the very first

attempts at translating ESC technology towards the treatment of human patients

was based on the use of oligodendrocyte precursor-like cells in patients with spinal

cord injury (SCI: Alper 2009; Priest et al. 2015). However, SCI patients represent a

challenging target for cell therapy, as the primary defect is a problem of connec-

tivity between the brain and spinal cord rather than the loss of a specific cell type.

Currently, the most widely pursued clinical target is the transplantation of hPSC-

derived retinal pigment epithelial cells (RPEs) in patients with macular degenera-

tion. There are nearly a dozen different RPE-based clinical trials either ongoing or

in the planning phase (Kimbrel and Lanza 2015). Initial results using hESC-derived

RPEs suggest that the approach can be translated safely into humans (Schwartz

et al. 2015).

Beyond eye disorders, there has been particular interest in developing cell-based

therapies for the treatment of various neurodegenerative disorders. In the case of

Parkinson’s disease (PD), several studies demonstrated excellent in vivo survival of

hPSC-derived midbrain dopamine (mDA) neurons in mouse, rat and non-human

primate hosts (Kirkeby et al. 2012; Kriks et al. 2011). The transplantation of mDA

neurons represents an example of replacing a highly specific neuronal subtype and a

strategy that is thought to involve functional integration of the grafted cells into the

existing neuronal networks. Indeed, a recent study from our group used opto-

genetics to demonstrate that functional rescue in the PD host animals depended

on the continued neuronal activity of the grafted hESC-derived mDA neurons, and

“switching-off” the graft led to a reversal of functional benefit within minutes

(Steinbeck et al. 2015). The ability to derive mDA neurons from hESCs and hiPSCs

and the promising pre-clinical data have set the stage for ongoing translational

efforts towards testing this approach in human PD patients. Clinical trials are being

planned in the US, Japan and Sweden, which have led to the formation of G-Force
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PD, a global effort to coordinate hPSC-based cell therapy efforts in PD (Barker

et al. 2015). Another neurodegenerative disease being targeted is Huntington’s
disease where several protocols have been published to generate authentic, striatal

medium spiny neurons and where there is some initial evidence of efficacy in

preclinical models (Arber et al. 2015; Delli Carri et al. 2013; Ma et al. 2012).

Finally, several promising strategies are under development using glial cells. These

include the transplantation of hPSC-derived oligodendrocytes in genetic models of

white matter loss (Wang et al. 2013) and the remyelination of the brain following

radiation-induced brain damage (Piao et al. 2015), a common and serious problem

in cancer patients subjected to cranial irradiation (Greene-Schloesser et al. 2012;

Schatz et al. 2000).

With our increasing ability to generate potentially any neural lineage on demand,

the main challenge in the field has moved beyond making a specific cell type

towards translation and therapy development in regenerative medicine. While the

initial therapeutic targets for cell therapy are focused on replacing highly defined

populations of cells such as RPEs or mDA neurons, it may be necessary in future

studies to replace multiple cell types in combination to achieve meaningful rescue

in a broader range of human disorders. A particular challenge for neuronal cell

therapies is the importance of developing pre-clinical and ultimately clinical evi-

dence that in vitro-derived cells can integrate into the complex circuitry of the

human brain.

Derivation and Application of Human Pituitary Lineages

Replacing endocrine cells is conceptually more straightforward than replacing CNS

neurons because there is no need to re-establish a complex synaptic circuitry to

achieve improved function. However, the pituitary gland is also highly complex

and acts as the master regulator of endocrine function, controlling a diverse range of

responses in the body including stress control, growth and sexual function. Such

complexity makes any treatment of hypopituitarism - the loss of pituitary function –

challenging, as many hormones need to be replaced in a coordinated manner. In the

context of cell therapy, this requires the ability to generate multiple hormone-

producing cells at scale and on demand. To date, the main focus of hPSC-based

approaches for treating endocrine disorders has been on the treatment of type I

diabetes (Bruin et al. 2015). One key rationale for proposing a cell-based approach

in diabetes is successful derivation of functional islet cells from hPSCs (Pagliuca

et al. 2014; Rezania et al. 2014) and the expectation that grafted pancreatic β-cells
will establish a feedback loop sensing glucose and adjusting insulin levels conti-

nuously throughout the day, something that is difficult to achieve by insulin injec-

tions. Furthermore, it appears likely that regulatory control can be achieved with

cells that are not placed orthotopically into the pancreas but injected into a

surgically more accessible tissue with high vascularity, such as the spleen or liver

(Bruin et al. 2015). In contrast, orthotopic placement may be more critical for
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pituitary cells that respond to rapid and short acting signals from the hypothalamus.

The challenge of recreating anterior pituitary lineage diversity in vitro was first

tackled using mouse ESC cells. In a seminal study by the Sasai lab (Suga

et al. 2011), a differentiation protocol was presented that allowed the derivation

of mouse pituitary lineages via a serum-free embryoid body (SFEBq) culture step.

SFEBq conditions were initially developed to generate forebrain lineages from

mouse (Watanabe et al. 2005) and subsequently from human ESCs (Eiraku

et al. 2008). In contrast to the forebrain, which is derived from the CNS, the anterior

pituitary gland is derived from the oral ectoderm, which is part of the cranial

placode lineages during development. To direct cell lineage towards oral ectoderm,

Suga et al. (2011) showed that BMP4 exposure could trigger the induction of

PITX2, an oral ectoderm marker, at the periphery of the differentiating SFEBs.

Subsequent exposure to agonists of sonic hedgehog (SHH) signaling triggered

expression of LHX3, which is a definitive anterior pituitary lineage marker. One

remarkable feature during the induction process is the morphogenetic movements

of the oral ectoderm that mimic the formation of Rathke’s pouch, an invagination of
the oral ectoderm occurring during development that results in anterior pituitary

gland formation. However, the overall efficiency of generating Pitx2+ oral ecto-

derm cells was low and most cells in the SFEBq cultures retained a neural identity.

Approximately 1–7% of the non-neural cells expressed specific hormones, a

number that was dependent on further modulation of WNT activation for induction

of growth hormone- (GH) or prolactin (PRL)-producing cells or inhibition of Notch

signaling for obtaining ACTH+ cells (Suga et al. 2011). For the in vitro-derived

ACTH+ cells, Suga et al. (2011) demonstrated CRH-dependent hormone secretion

in vitro. Furthermore, transplanted cells were able to survive in vivo in an animal

with surgically induced hypopituitarism, and they extended the life span of those

animals, presumably by partially restoring their stress response. Some of the key

questions raised by the Suga et al. study include whether the same technology can

be applied for human ESC and iPSCs, whether the overall yield of anterior pituitary

placode and hormone-producing cells can be improved and whether the 3D culture

step, allowing the interaction of oral ectoderm-like and hypothalamic tissue, is

critical for the efficient induction of anterior pituitary lineage cells.

Some initial answers to these questions came from an independent effort in our

laboratories aimed at inducing cranial placode lineages from hPSCs (Dincer

et al. 2013). Similar to the SFEBq technology, the human placode induction

strategy was based on a protocol, dual-SMAD inhibition (Chambers et al. 2009),

that was initially developed for inducing forebrain fates. Under dual-SMAD inhi-

bition conditions, a monolayer of human ESCs or iPSCs can be converted at nearly

100% efficiency into PAX6+ anterior neuroectoderm within about 10 days of

differentiation (Chambers et al. 2009). Dual-SMAD inhibition involves concomi-

tant exposure of hPSCs to inhibitors of BMP signaling (either Noggin or the ALK2/

3 inhibitor LDN193189) and inhibitors of TGFβ, Activin and Nodal signaling

(commonly via the small molecule compound SB431542). In Dincer

et al. (2013), we showed that the key difference between CNS versus placode

induction was the inhibition versus activation of BMP signaling. In contrast to
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the induction of CNS lineage under conditions of dual-SMAD inhibition, placode

induction requires the timed removal of the BMP inhibitor at 48 h after neural

induction, allowing endogenous BMP signaling to rebound. Under these default

placode induction conditions, the majority of the hPSC-derived cells expressed

PAX3, suggestive of trigeminal placode fate (Dincer et al. 2013). However, upon

activation of SHH signaling, there was a marked increase in oral ectoderm markers

such as PITX1 and SIX6. Further differentiation of these pituitary placode pre-

cursors was shown to yield various hormone-expressing cells, including ACTH+,

FSH+ and GH+ lineages with clear evidence of in vitro hormone release. Finally,

our study demonstrated that subcutaneous injection of hPSC-derived pituitary pre-

cursors into nude rats yielded measurable levels of ACTH and GH secretion in vivo.

The findings of Dincer et al. suggested that the robust induction of human pituitary

hormone-expressing cells did not require a 3D culture step. However, the overall

efficiency of pituitary placode induction remained suboptimal. Furthermore, the

media conditions during differentiation included components such as knockout

serum-replacement (KSR) that are known to introduce batch-to-batch variability

into the differentiation process. Furthermore, the study did not attempt to enrich for

specific hormone lineages that may be required to develop better tailored therapies

for each individual patient. A first step towards optimizing cranial placode induc-

tion in the absence of KSR was achieved by another study that carefully optimized

the timing of BMP4 application (Leung et al. 2013). The results indicated that early

exposure to BMP4 could increase overall cranial placode yield whereas the subse-

quent inhibition versus activation of BMP at later stages of differentiation could

modulate the regional identity of hESC-derived placodal cells from PAX6+ anterior

to PAX3+ posterior placode (Leung et al. 2013). Finally, the study confirmed that

activation of SHH signaling increased the expression of oral ectoderm markers

including PITX1 and PITX2.
More recently, members of the Sasai lab presented a study that adapted their 3D

approach to human cells (Ozone et al. 2016). The study was based on a modified

SFEBq culture system triggering differentiation in the presence of KSR, SHH

agonist and BMP4 to yield 3D structures composed of hypothalamic cells in the

center of the 3D aggregates and oral ectoderm cells at the periphery. In a proportion

of those structures, the authors again observed the spontaneous formation of

Rathke’s pouch-like structures similar to their original data in mouse ESCs, though

at a lower frequency. While the overall induction efficiency of definitive pituitary

lineages remained low, the authors were able to demonstrate both basal and

CRH-induced release of ACTH in vitro that was shown to be suppressed by

hydrocortisone treatment. Similarly, induction of GH could be modulated both

positively and negatively by exposure to GHRH or somatostatin, respectively.

Finally, subcutaneous injection of the 3D aggregates into mice with surgical

hypophysectomy showed evidence of in vivo ACTH production that was respon-

sive to CRH treatment. The transplanted cells also triggered significant, albeit very

low, levels of corticosterone production and led to improved body weight and

survival as compared to sham-grafted animals in hypophysectomized hosts.

Some of the key remaining challenges include further improving the efficiency and

reliability of pituitary lineage differentiation with a greater percentage of hormone-

producing cells.
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Perspectives and Challenges on the Road to Translation

The adenohypophysis (pituitary) is a remarkable endocrine organ that orchestrates

the function of multiple targets via secretion of a set of regulatory hormones in

charge of vital functions such as development, growth, puberty, reproduction,

lactation and, crucially, response to stress. It receives regulatory endocrine input

from the adjacent hypothalamus through a portal circulation system and commu-

nicates with the rest of the organism via an extensive network of vessels. Multi-

tiered feedback is integrated by this master gland, leading to hormonal and meta-

bolic homeostasis (Tabar 2011). The role of regenerative approaches to the adeno-

hypophysis has received very little attention despite the prevalence of pituitary

disorders and the large number of patients requiring pituitary hormone replacement

due to traumatic brain injury, genetic, sporadic or iatrogenic disease. Several

syndromes of pituitary deficiencies are recognized in humans as the result of

mutations of early transcription factors or cell cycle regulator proteins (Melmed

2011). One of the prevalent causes of pituitary deficiency is post-treatment pituitary

and hypothalamic damage. Specifically, and of interest to us, is a group of patients

who suffer from hypopituitarism as a consequence of brain radiation for a variety of

disorders, including hematological malignancies, head and neck cancers, brain

tumors and sellar lesions (Appelman-Dijkstra et al. 2011). In fact, growing interest

in cancer survivorship has identified hypopituitarism as a major contributor to poor

quality of life indices (Darzy 2009). The clinical consequences are extensive and

include fatigue, poor concentration, decreased memory and general cognitive

abilities as well as significantly reduced well-being. In children these consequences

are compounded by more serious learning difficulties and growth and skeletal

problems, as well as a major impact on puberty and sexual function (Chemaitilly

and Sklar 2010). Radiation damage to the hypothalamus and pituitary regions is

progressive and irreversible. Current treatment consists of life-long multiple hor-

mone replacement therapies, a suboptimal solution since static delivery of these

molecules is a poor substitute for normal pituitary gland features such as the

dynamic secretion of hormones in response to circadian patterns, feedback mech-

anisms or stressful conditions. In addition, treatment can be prohibitively expen-

sive, with costs of growth hormone replacement alone exceeding $20,000 per year.

One of the key challenges to restorative strategies, regardless of the etiology of

hypopituitarism, involves decisions regarding orthotopic or ectopic graft implanta-

tion. Grafts of pituitary tissue or primary cell suspensions from human fetal or

rodent sources have been performed extensively using ectopic (Fu and Vankelecom

2012) or more or less orthotopic placement in the pituitary (Falconi and Rossi

1964), hypothalamus (Tulipan et al. 1985) or in the third ventricle (Vuillez

et al. 1989). Overall, pituitary tissue or cells survive very well with the exception

of conditions of immunological mismatch. A major concern with ectopic (i.e.,

subcutaneous or kidney) placement is the absence of hypothalamic control. The

adenohypophysis is connected to the hypothalamus by a portal vein system that

allows the immediate delivery of hypothalamic factors, thus bypassing the systemic

circulation. Data from transplants in the hypothalamus, third ventricle or the
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hypophysis sites suggest that pituitary grafts demonstrate improved function and

response to feedback when they are in immediate contact with the hypothalamus

(Harris and Jacobsohn 1952; Maxwell et al. 1998). Some of the most successful

results have been obtained upon transplantation in hypophysectomized female rats

at the level of the median eminence, with good outcomes including restoration of

estrus cycles, ability to conceive and lactate pups, adequate growth hormone and

ACTH levels, as well as near normalization of body size in comparison to normal

controls (Harris and Jacobsohn 1952). Data from transplantation of mouse

ESC-derived pituitary cells (injected in the renal capsule) suggested statistically

significant elevation of basal ACTH and corticosterone (Suga et al. 2011). From a

translational perspective, ectopic placement in the subcutaneous tissue offers sig-

nificant advantages due to the low risk of the intervention (e.g., in a subcutaneous

location) and easy accessibility in case of complications. The experimental evalu-

ation of ectopic grafts may therefore be a justifiable strategy, though integration

within the hypothalamic-pituitary-target organ axis and homeostatic control is more

likely to be achieved if grafts are placed in the vicinity of the hypothalamus or even

within the gland itself. Interestingly, in humans, placement in the sella is simpler

than in rodents, due to the development of minimal invasive transnasal endoscopic

approaches to the sella and anterior skull base. Experimental evidence of hypo-

thalamic control upon grafting of pituitary cells requires complex assays and

readouts, including stimulation tests [e.g., response to thyrotropin releasing hor-

mone (TSH) or to growth hormone-releasing hormone (GHRH) etc.], physiological

stress tests [e.g., exposure to cold, arginine testing followed by evaluation of

variations in pituitary hormone levels (Akalan et al. 1988; Fisker et al. 1999;

Guillemin 2005)]. Behavioral testing can also contribute to the evaluation of the

integrity of the hypothalamic-pituitary-target organ axis and its feedback loops.

Demonstrating appropriate integration into the neuroendocrine system and its

physiological and homeostatic feedback loops should be considered an important

component of both efficacy and safety of this strategy. Obviously uncontrolled or

random secretion of key hormones such as ACTH or growth hormone can have

serious negative health consequences.

Additional considerations in translational strategies would include the possibil-

ity of grafting specific pituitary sublineages, e.g., ACTH- or growth hormone-

secreting. This approach might require more sophisticated differentiation protocols

and, likely, selection strategies that should be compatible with good manufacturing

practice (GMP) conditions and safety standards.

Conclusion

The recent successful derivation of pituitary placode lineage and the range of

anterior pituitary hormone-producing cells are very exciting advances that will

likely herald the development of restorative strategies in humans. Several chal-

lenges along the road to translation remain to be tackled. Key questions include the
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ability to develop selective pituitary sublineages that produce a single target

hormone, the development of grafting strategies for human patients, and the

demonstration of integration of the grafted cells into the hypothalamic-pituitary-

peripheral target axis, a goal that is fundamental to the safety assessment of the cell

therapy-based approach to hypopituitarism.

Note Added in Proof

A recent manuscript from our team presents a fully defined and efficient protocol

for the derivation of anterior pituitary hormone producing cells from human pluri-

potent stem cells and demonstrates hormone release in a rat model of hypo-

pituitarism (Zimm et al. 2016).
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