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Abstract Depression is a highly prevalent complex neuropsychiatric disorder,

which ranks first among all mental and neurological disorders as a contributor to

the global burden of disease. However, available treatments are still far from ideal,

for their specificity as well as their efficacy. This situation can now be improved by

the increasing availability of stem cells, which allows the development of in vitro

human neural systems to model the brain. These models complement observations

from animal models and patients with depression, allowing for a better understand-

ing of the complexity of this psychiatric illness and potential treatments. Cells

derived from the olfactory neuroepithelium, multipotent fetal hippocampal progen-

itor cells (HPCs) and human induced pluripotent stem cells (iPSCs) have shown

promising leads. Using HPCs and iPSC-derived forebrain neurons, we managed to

provide further insights into the action of drugs with antidepressant action as well as

on molecular mechanisms underlying the effect of stress and inflammation, both

linked to the pathophysiology of depression. Particular attention has been paid to

the complex pathways by which the immune and stress systems differently deter-

mine the final developmental fate of HPCs and the synaptic plasticity of iPSCs. The

combination of accessibility and validity of the available stem cells models will

allow further work to increase our insights into the biology of depression and

support the identification of novel therapeutic targets.

Introduction

How Can We Best Study Depression?

Depression ranks first among all mental and neurological disorders as a contributor

to the global burden of disease and causes a heavy load on patients and their
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families. However, available treatments are far from ideal. Only a third of patients

respond to the initial treatment, another third will get better only after several

changes of medication and the rest will go on to be treatment resistant (Rapaport

et al. 2003; Trivedi et al. 2006). Why is this? We still do not know why depression

happens; neither do we clearly understand how antidepressants work. Much of the

current understanding about the pathogenesis of major depression has come from

animal models (Krishnan and Nestler 2011) as well as from peripheral (Felger

et al. 2012) and central nervous system (CNS; Raison et al. 2010) circulating

measurements from patients with depression. Due to the unique and complex

features of human depression, the generation of valid and more insightful depres-

sion models has been less straightforward than modeling other disabling diseases

(Krishnan and Nestler 2011). One possible approach is that of focusing on brain

models, using neural cell lines. Undifferentiated or differentiated tumor-derived

cells have been used as a translationally valid experimental model for several

psychiatric disorders, including depression (Donnici et al. 2008; Alboni

et al. 2013). However, such lines are limited in the cell types they can be made to

resemble and may have major chromosomal abnormalities (Bray et al. 2012). Into

this breach come new brain models of neural stem cells. Using multipotent fetal

hippocampal progenitor cells (HPCs) and human induced pluripotent stem cells

(iPSCs), we have mimicked clinically pertinent conditions to depressive disorders

by combining depressogenic insults and antidepressant strategies (Anacker

et al. 2011b, 2013a, b; Zunszain et al. 2012; Horowitz et al. 2015). Indeed, our

outcomes provided evidence for the efficacy of such models in understanding the

disorder as well as for giving more insights into antidepressants and their mecha-

nisms of action. Particularly, we focused on neurogenesis as a potential candidate

mechanism for the etiology of this condition as well as a substrate for antidepres-

sant action.

The Neurogenesis Theory of Depression

A reduction in hippocampal neurogenesis, that is the birth of neurons from stem

cells, has been suggested as one of the neurobiological alterations mediating the

development of depressive-like behavior in animals, particularly under conditions

of stress (David et al. 2009; Snyder et al. 2011; Surget et al. 2011). In the absence of

effective neurogenesis, the depressive-like behavior elicited in animals by stress

includes the hallmark abnormalities of clinical depression: increased hypothalamic-

pituitary-adrenal (HPA) axis activity, glucocorticoid resistance (that is, impaired

suppression of HPA axis activity by dexamethasone), anhedonia (assessed using the

sucrose preference test), and behavioural despair (assessed using the forced swim

test) (David et al. 2009; Snyder et al. 2011; Surget et al. 2011). Moreover, it has

been suggested that an impaired neurogenesis may also precipitate depressive
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symptoms because of the lack of neurogenesis-dependent cognitive functions, such

as the ability to enhance encoding of new memories and responding to contextual

changes, which may be protective against behavioural despair in the face of

repeated stressors (Sahay et al. 2011). Recent studies showing that the magnitude

of adult neurogenesis in humans is probably larger than generally believed (Snyder

and Cameron 2012; Spalding et al. 2013) provided even stronger support for the

importance of neurogenesis and its proposed involvement in the association

between stress and depression (Snyder et al. 2011).

Increased inflammation can also cause reductions in neurogenesis. Immune

molecules, including interleukin-1beta (IL-1β), IL-6, interferon-alpha (IFN-α) and
tumor necrosis factor-alpha (TNF-α) have been shown to be significantly

upregulated in the peripheral blood of depressed patients (Howren et al. 2009;

Dowlati et al. 2010). Particularly in the context of depression, IL-1β, IL6, IFN-α
and IFN-γ have also been shown to easily move from the periphery into the brain

(Dantzer et al. 2008; Najjar et al. 2013). Once they cross the brain-blood barrier,

these molecules can alter distinct molecular and cellular mechanisms, including cell

proliferation and neuronal maturation (Pickering and O’Connor 2007; Alboni

et al. 2014) associated with complex cognitive processes, such as mood and

learning functions (Makhija and Karunakaran 2013; Shigemoto-Mogami

et al. 2014). In particular, using animal models, IL-1β, IL-18, IFN-α and TNF-α,
have been shown to contribute to inhibition of synaptic plasticity and memory

consolidation (Pickering and O’Connor 2007), causing similar impairments to those

often reported in patients with major depressive disorder or in experimental models

of depression (Pollak and Yirmiya 2002; Capuron and Miller 2004; Zunszain

et al. 2013).

Furthermore, stress and inflammation interact. For example, in response to

chronic IFN-α administration, patients with Hepatitis C Virus showed a hyper-

reactivity of the HPA axis (Capuron et al. 2002; Raison et al. 2010). Most inter-

estingly, around 30% of those patients developed clinically significant depression

(Raison et al. 2009), strengthening the notion that stress and inflammation might be

among the crosstalk pathways leading to the pathogenesis of the depressive disor-

der. Indeed, it is of relevance in this context that stress and inflammation are among

the different downstream molecular mechanisms that distinct antidepressants acti-

vate. Particularly, antidepressants from the selective serotonin reuptake inhibitor

(SSRI) class, such as fluoxetine, have shown to normalize stress-induced HPA

hyperactivity in rodents (Perera et al. 2011; Surget et al. 2011), whereas other

serotonin-norepinephrine reuptake inhibitor (SNRI) antidepressants, such as

venlafaxine, have normalized inflammatory alterations in cytokine-treated

depressed patients (Capuron et al. 2002). However, irrespective of which distinct

downstream molecular mechanisms specific antidepressants activate, those path-

ways may ultimately converge to stimulate neurogenesis, which is proposed as an

essential substrate for antidepressant action (Schloesser et al. 2010).
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Experimental Approaches

Among the approaches available to investigate the complexity of depressive disor-

ders, immortalized cell lines and patient-derived stem cell lines have proved to be

relevant in vitro human neural cell models (Fig. 1). Immortalized cell lines allow

molecular, developmental and pathophysiological mechanisms to be studied with

considerable reliability. Examples of immortalized cell lines are region-specific

neural stem cells and tumour-derived cells. An alternative cell-based approach is to

derive and compare neural cells from patients and control individuals, particularly

using iPSCs or olfactory neuroepithelium-derived cell lines. Indeed, the use of cells

from patients allows a more attentive analysis of the pathological processes arising

from the whole range of genetic susceptibility variants characterizing each indi-

vidual (Srikanth and Young-Pearse 2014). Evidence has shown the significant

incidence of distinct genetic polymorphisms in patients with psychiatric conditions,

including depression (Cao et al. 2015; Chen et al. 2015; Wang et al. 2015),

suggesting the importance of using such models to investigate genetic differences,

which may allow for a predictive diagnosis of this disorder (Pasca et al. 2014). For

the purpose of this chapter we will focus on immortalized stem cells and iPSC

models. We will subsequently report our findings, providing evidence for their

efficacy in understanding depressive disorders and antidepressant mechanisms of

action.

Immortalized Human Neural Cell Lines

Neural Stem Cell Lines

Stem cells derived from human fetal brain are multipotent (i.e., they can give rise to

a range of neurons and glia) and allow developmental and physiological processes

Neural Cell Models

Immortalized human 
cell lines Patient-derived cell lines

Tumor-derived 
cell lines

Region-specific 
stem cell lines

Olfactory 
neuroepithelium-
derived stem cell 

lines 

Induced 
pluripotent 

stem cell lines 

Fig. 1 The different range of neural cell models used to study depressive disorder and mecha-

nisms of action of antidepressants
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to be studied more faithfully. Particularly, clonal neural stem cell lines can be

generated by conditional immortalization, whereby a regulated gene that drives cell

division is introduced into the cell’s genome, allowing controlled expansion and

differentiation (Pollock et al. 2006). Indeed, neural stem cell lines with normal

chromosomes have been established from several human fetal brain regions,

including cerebral cortex, hippocampus and striatum. This approach has several

unique advantages. First, it delivers data from living human brain cells, not easily

accessible in clinical samples; second, it can mimic a multitude of clinically

relevant conditions within a tightly controlled experimental environment, providing

a model system with which to explore the mechanisms of drug treatments for a

variety of psychiatric disorders; and finally, it generates findings that are directly

translatable in clinical samples (Bray et al. 2012). Using this approach, we have

modeled “depression in a dish” using the cell line HPC0A07/03C (provided by

ReNeuron Ltd, London), derived from the hippocampus, which allowed us to

translate findings from bench-to-beside-and-back (Anacker et al. 2011b, 2013a, b;

Zunszain et al. 2012; Horowitz et al. 2015). We will describe our observations in

further detail.

Modeling the Role of Stress

As a first example of our translational approach, we managed to provide

evidence for the detrimental role of stress on hippocampal neurogenesis. Impaired

neurogenesis in rodents has recently been shown to contribute to the development

of depressive-like behaviours, including anhedonia and behavioural despair in

response to acute and chronic stressful insults (Zhu et al. 2014). Using our human

hippocampal model, we showed that cortisol caused a reduction in the generation

of new neurons via glucocorticoid receptor (GR)-dependent mechanisms, an effect

which could be fully reverted by treatment with the SSRI sertraline. Indeed,

subsequent stimulation with a GR-antagonist completely abolished the increase

in neurogenesis induced by the antidepressant (Anacker et al. 2011b). Our model

proved to be effective in providing further details from the complex interaction

between stress and neuronal generation, proposing GR-dependent mechanisms as

possible future targets of antidepressant drug treatment to overcome neurogenesis-

related disturbances in depression (Anacker et al. 2011a).

Modeling the Role of Inflammation and Oxidative Stress

As a second example of the use of our model, we demonstrated the involvement of

inflammation on hippocampal neurogenesis. Previous evidence had reported that

in vitro stimulation with distinct cytokines, including IL-1β, IL-6, IFN-α and

TNF-α, caused a significant alteration in both proliferation and neuronal maturation

of human and animal cells (Borsini et al. 2015). Using our in vitro human neuronal

model, we investigated the effect of two pro-inflammatory cytokines, IFN-α
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(our unpublished observation) and IL-1β (Zunszain et al. 2012), on neurogenesis.

Findings showed that, upon treatment with both cytokines HPCs developed a

“depressive phenotype” comprising reduced neurogenesis. Moreover, IL-1β was

responsible for alterations in transcription pathways regulating the metabolism of

tryptophan. Indeed, the inhibitory effects of IL-1β on neurogenesis were mediated,

at least in part, by activation of the neurotoxic branch of the kynurenine pathway,

one of the main pathways postulated to be involved in the development of depres-

sive disorders (Baranyi et al. 2015).

A third example involved the use of tert-butylhydroxiperoxide (TBHP) to model

oxidative stress. High levels of reactive oxygen species, shown in depressed

patients, are known to affect cellular constituents, leading to neoepitopes and

damage-associated molecular patterns that promote further immune responses

(Bakunina et al. 2015). Cells treated with TBHP showed a dose-dependent increase

in lipid peroxidation as well as reduced cell viability.

Studying Mechanism of Action of Antidepressants

Finally, we used this model to investigate the immunomodulatory properties of

distinct compounds with antidepressant actions. We explored the effects of several

conventional monoaminergic antidepressants and the omega-3 polyunsaturated

fatty acids (n-3 PUFAs), eicosapentanoic acid (EPA) and docosahexanoic acid

(DHA), on HPCs treated with the inflammatory and depressogenic IL-1β. In

contrast to sertraline and DHA, which had pro-inflammatory properties,

venlafaxine and EPA were shown to have anti-inflammatory effects via decreasing

distinct cytokines, including IL-6, IL-8 and IP-10 (Horowitz et al. 2015). In

addition, these compounds showed differential effects on neurogenesis. Again,

the findings demonstrate the efficacy of this model for studying specific mecha-

nisms of action of drugs with antidepressant action.

Tumour-Derived Cell Lines

These lines, with an ability to expand quite readily in culture, provide a standard-

ized and potentially limitless alternative to study intracellular mechanisms of

antidepressant action. Currently, the most commonly used human neural cell line

is SH-SY5Y. This line displays neuronal properties, including neurite outgrowth,

neurotransmitter synthesis and relevant receptor expression. The SH-SY5Y line has

been widely used to study intracellular mechanisms of different antidepressant

action, including the SSRI sertraline, the selective norepinephrine reuptake inhib-

itor (SNRI) desipramine and the norepinephrine–dopamine reuptake inhibitor

(NDRI) bupropion (Lin 2015).
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Patient-Derived Neural Cells

IPSCs

Among the patient-derived cell models, iPSC technology provides distinct cell

types that are considered to be central to psychiatric disorders, such as those of

the cortex and the hippocampus (Jaworska et al. 2015). Indeed, primary somatic

cells, typically from skin, can be taken from an individual and reprogrammed into

pluripotent stem cells that can give rise to all of the cell types that characterize the

body, including those of the CNS. By capturing a patient’s entire genome and any

possible epigenetic variations, iPSCs constitute a unique source of material for

studying neurodevelopmental features of psychiatric disorders in vitro.

Reports are now beginning to emerge in which this technology has been applied

to cells taken from psychiatric patients. For example, human keratinocytes from

healthy controls and patients with bipolar depression have been reprogrammed into

cortical neurons. When compared with control cells, neurons derived from patients

with bipolar depression showed an alteration in the expression of transcripts that

regulate Hedgehog signaling (Cheung et al. 2009), as well as modulations in key

components of the mTOR pathway (O’Shea and McInnis 2015), which have both

been shown to be among the mechanisms involved in the development of depres-

sive disorders (Rajendran et al. 2009; Ignacio et al. 2015). Using iPSC-derived

forebrain neurons, we showed that ketamine, known to have fast-acting antidepres-

sant efficacy in treatment-resistant patients, was able to rescue the detrimental

effects produced by treatment with IL-1β and to increase the number of presynaptic

and postsynaptic proteins.

Olfactory Neuroepithelium-Derived Stem Cells

Cells from the olfactory mucosa, which can be extracted through biopsy, can easily

propagate, forming neurospheres of neural stem cells and differentiating neural

progenitor cells. Although there are no studies using olfactory neuroepithelium-

derived cells from depressed patients, they have been used to study schizophrenia

(Matigian et al. 2010; Fan et al. 2012), suggesting the importance of using such

models to investigate genetic differences, which may allow for a predictive diag-

nosis of depression in certain individuals.

Conclusions and Limitations of the Cell Models

Stem cell-based approaches to study psychiatric disorders are advancing on two

main fronts. On one hand, clonal cell lines which accurately model the CNS are

being used in controlled experiments to assess the mechanisms of antidepressant
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action for psychiatric disorders, which might in the short term lead to advancements

in therapeutic strategies for these conditions. On the other hand, patient-derived

cells and cells from control patients allow the study of pathological processes

deriving from the multiple genetic susceptibility variants, which can now be

investigated with more accuracy. However, both cell models have some limitations

that need to be pointed out. Although human neural cell lines can be used to

investigate the molecular and cellular functions of individual susceptibility genes,

they do not capture the many genetic variables that contribute to the development of

psychiatric disorders (Bray et al. 2012). Patient-derived cell lines offer the advan-

tage of capturing each individual’s whole genome, but there is limited knowledge

as to which cell types are most relevant to study specific psychiatric conditions

(Sandoe and Eggan 2013). In addition, while iPSC technology can model the effects

of medications, these cells may lose the effects of environmental influences that

may contribute to the development of the psychiatric illnesses, such as stressors or

negative life events (Okano and Yamanaka 2014).

Although cell-based models are still unable to elucidate the molecular complex-

ity of psychiatric illnesses, the enormous progress in stem cell technologies has

revolutionized the field of “in vitro disease modeling,” providing not only a window

into the mechanisms underlying the depressive disorder but also a platform for

screening novel therapeutic strategies for the prevention and treatment of this

condition.
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