
Stateless Model Checking for POWER

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson,
and Carl Leonardsson(B)

Department of Information Technology,
Uppsala University, Uppsala, Sweden

carl.leonardsson@it.uu.se

Abstract. We present the first framework for efficient application of
stateless model checking (SMC) to programs running under the relaxed
memory model of POWER. The framework combines several contribu-
tions. The first contribution is that we develop a scheme for system-
atically deriving operational execution models from existing axiomatic
ones. The scheme is such that the derived execution models are well
suited for efficient SMC. We apply our scheme to the axiomatic model
of POWER from [8]. Our main contribution is a technique for efficient
SMC, called Relaxed Stateless Model Checking (RSMC), which systemat-
ically explores the possible inequivalent executions of a program. RSMC
is suitable for execution models obtained using our scheme. We prove
that RSMC is sound and optimal for the POWER memory model, in
the sense that each complete program behavior is explored exactly once.
We show the feasibility of our technique by providing an implementation
for programs written in C/pthreads.

1 Introduction

Verification and testing of concurrent programs is difficult, since one must con-
sider all the different ways in which parallel threads can interact. To make mat-
ters worse, current shared-memory multicore processors, such as Intel’s x86,
IBM’s POWER, and ARM, [9,28,29,45], achieve higher performance by imple-
menting relaxed memory models that allow threads to interact in even subtler
ways than by interleaving of their instructions, as would be the case in the
model of sequential consistency (SC) [32]. Under the relaxed memory model of
POWER, loads and stores to different memory locations may be reordered by the
hardware, and the accesses may even be observed in different orders on different
processor cores.

Stateless model checking (SMC) [25] is one successful technique for verify-
ing concurrent programs. It detects violations of correctness by systematically
exploring the set of possible program executions. Given a concurrent program
which is terminating and threadwisely deterministic (e.g., by fixing any input
data to avoid data-nondeterminism), a special runtime scheduler drives the SMC
exploration by controlling decisions that may affect subsequent computations, so
that the exploration covers all possible executions. The technique is automatic,
has no false positives, can be applied directly to the program source code, and
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can easily reproduce detected bugs. SMC has been successfully implemented
in tools, such as VeriSoft [26], Chess [37], Concuerror [17], rInspect [49], and
Nidhugg [1].

However, SMC suffers from the state-space explosion problem, and must
therefore be equipped with techniques to reduce the number of explored execu-
tions. The most prominent one is partial order reduction [18,24,39,47], adapted
to SMC as dynamic partial order reduction (DPOR) [2,23,40,43]. DPOR
addresses state-space explosion caused by the many possible ways to schedule
concurrent threads. DPOR retains full behavior coverage, while reducing the
number of explored executions by exploiting that two schedules which induce
the same order between conflicting instructions will induce equivalent execu-
tions. DPOR has been adapted to the memory models TSO and PSO [1,49], by
introducing auxiliary threads that induce the reorderings allowed by TSO and
PSO, and using DPOR to counteract the resulting increase in thread schedulings.

In spite of impressive progress in SMC techniques for SC, TSO, and PSO,
there is so far no effective technique for SMC under more relaxed models, such
as POWER. A major reason is that POWER allows more aggressive reorderings
of instructions within each thread, as well as looser synchronization between
threads, making it significantly more complex than SC, TSO, and PSO. There-
fore, existing SMC techniques for SC, TSO, and PSO can not be easily extended
to POWER.

In this paper, we present the first SMC algorithm for programs running under
the POWER relaxed memory model. The technique is both sound, in the sense
that it guarantees to explore each programmer-observable behavior at least once,
and optimal, in the sense that it does not explore the same complete behavior
twice. Our technique combines solutions to several major challenges.

The first challenge is to design an execution model for POWER that is suit-
able for SMC. Existing execution models fall into two categories. Operational
models, such as [12,21,41,42], define behaviors as resulting from sequences of
small steps of an abstract processor. Basing SMC on such a model would induce
large numbers of executions with equivalent programmer-observable behavior,
and it would be difficult to prevent redundant exploration, even if DPOR tech-
niques are employed. Axiomatic models, such as [7,8,36], avoid such redundancy
by being defined in terms of an abstract representation of programmer-observable
behavior, due to Shasha and Snir [44], here called Shasha-Snir traces. However,
being axiomatic, they judge whether an execution is allowed only after it has
been completed. Directly basing SMC on such a model would lead to much
wasted exploration of unallowed executions. To address this challenge, we have
therefore developed a scheme for systematically deriving execution models that
are suitable for SMC. Our scheme derives an execution model, in the form of
a labeled transition system, from an existing axiomatic model, defined in terms
of Shasha-Snir traces. Its states are partially constructed Shasha-Snir traces.
Each transition adds (“commits”) an instruction to the state, and also equips
the instruction with a parameter that determines how it is inserted into the
Shasha-Snir trace. The parameter of a load is the store from which it reads its
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value. The parameter of a store is its position in the coherence order of stores
to the same memory location. The order in which instructions are added must
respect various dependencies between instructions, such that each instruction
makes sense at the time when it is added. For example, when adding a store or a
load instruction, earlier instructions that are needed to compute which memory
address it accesses must already have been added. Our execution model therefore
takes as input a partial order, called commit-before, which constrains the order
in which instructions can be added. The commit-before order should be tuned
to suit the given axiomatic memory model. We define a condition of validity for
commit-before orders, under which our derived execution model is equivalent to
the original axiomatic one, in that they generate the same sets of Shasha-Snir
traces. We use our scheme to derive an execution model for POWER, equivalent
to the axiomatic model of [8].

Having designed a suitable execution model, we address our main challenge,
which is to design an effective SMC algorithm that explores all Shasha-Snir
traces that can be generated by the execution model. We address this chal-
lenge by a novel exploration technique, called Relaxed Stateless Model Checking
(RSMC). RSMC is suitable for execution models, in which each instruction can
be executed in many ways with different effects on the program state, such as
those derived using our execution model scheme. The exploration by RSMC com-
bines two mechanisms: (i) RSMC considers instructions one-by-one, respecting
the commit-before order, and explores the effects of each possible way in which
the instruction can be executed. (ii) RSMC monitors the generated execution for
data races from loads to subsequent stores, and initiates alternative explorations
where instructions are reordered. We define the property deadlock freedom of exe-
cution models, meaning intuitively that no run will block before being complete.
We prove that RSMC is sound for deadlock free execution models, and that our
execution model for POWER is indeed deadlock free. We also prove that RSMC
is optimal for POWER, in the sense that it explores each complete Shasha-Snir
trace exactly once. Similar to sleep set blocking for classical SMC/DPOR, it may
happen for RSMC that superfluous incomplete Shasha-Snir traces are explored.
Our experiments indicate, however, that this is rare.

To demonstrate the usefulness of our framework, we have implemented
RSMC in the stateless model checker Nidhugg [33]. For test cases written in
C with pthreads, it explores all Shasha-Snir traces allowed under the POWER
memory model, up to some bounded length. We evaluate our implementation on
several challenging benchmarks. The results show that RSMC efficiently explores
the Shasha-Snir traces of a program, since (i) on most benchmarks, our imple-
mentation performs no superfluous exploration (as discussed above), and (ii) the
running times correlate to the number of Shasha-Snir traces of the program. We
show the competitiveness of our implementation by comparing with an existing
state of the art analysis tool for POWER: goto-instrument [5].

Outline. The next section presents our derivation of execution models. Section 3
presents our RSMC algorithm, and Sect. 4 presents our implementation and
experiments. Proofs of all theorems, and formal definitions, are provided in our
technical report [4]. Our implementation is available at [33].
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2 Execution Model for Relaxed Memory Models

POWER — A Brief Glimpse. The programmer-observable behavior of
POWER multiprocessors emerges from a combination of many features, includ-
ing out-of-order and speculative execution, various buffers, and caches. POWER
provides significantly weaker ordering guarantees than, e.g., SC and TSO.

We consider programs consisting of a number of threads, each of which runs
a deterministic code, built as a sequence of assembly instructions. The grammar
of our assumed language is given in Fig. 1. The threads access a shared memory,
which is a mapping from addresses to values. A program may start by declaring
named global variables with specific initial values. Instructions include register
assignments and conditional branches with the usual semantics. A load 'r:=[a]'
loads the value from the memory address given by the arithmetic expression a
into the register r. A store '[a0]:=a1' stores the value of the expression a1 to the
memory location addressed by the evaluation of a0. For a global variable x, we
use x as syntactic sugar for [&x], where &x is the address of x. The instructions
sync, lwsync, isync are fences (or memory barriers), which are special instructions
preventing some memory ordering relaxations. Each instruction is given a label,
which is assumed to be unique.

As an example, consider the program in Fig. 2. It consists of two threads P
and Q, and has two zero-initialized memory locations x and y. The thread P
loads the value of x, and stores that value plus one to y. The thread Q is similar,
but always stores the value 1, regardless of the loaded value. Under the SC or
TSO memory models, at least one of the loads L0 and L2 is guaranteed to load
the initial value 0 from memory. However, under POWER the order between the
load L2 and the store L3 is not maintained. Then it is possible for P to load the
value 1 into r0, and for Q to load 2 into r1. Inserting a sync between L2 and L3
would prevent such a behavior.

Axiomatic Memory Models. Axiomatic memory models, of the form in [8],
operate on an abstract representation of observable program behavior, intro-
duced by Shasha and Snir [44], here called traces. A trace is a directed graph,

〈prog〉 ::= 〈varinit〉∗ 〈thrd〉+
〈varinit〉 ::= 〈var〉 '=' Z

〈thrd〉 := 'thread' 〈tid〉 ':' 〈linstr〉+
〈linstr〉 ::= 〈label〉 ':' 〈instr〉 ';'
〈instr〉 ::= 〈reg〉 ':=' 〈expr〉 | // register assignment

'if' 〈expr〉 'goto' 〈label〉 | // conditional branch
〈reg〉 ':=' '[' 〈expr〉 ']' | // memory load
'[' 〈expr〉 ']' ':=' 〈expr〉 | // memory store
'sync' | 'lwsync' | 'isync' // fences

〈expr〉 ::= (arithmetic expression over literals and registers)

Fig. 1. The grammar of concurrent programs
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x = 0 y = 0

thread P: thread Q:

L0: r0 := x; L2: r1 := y;
L1: y := r0+1; L3: x := 1;

L0: r0 := x

L1: y := r0+1

L2: r1 := y

L3: x := 1

po,data porfrf

Fig. 2. Left: An example program: LB + data. Right: A trace of the same program.

Event Parameter Semantic Meaning
L3: x := 1 0 First in coherence order for x

L0: r0 := x L3 Read value 1 from L3

L1: y := r0+1 0 First in coherence order for y
L2: r1 := y L1 Read value 2 from L1

Fig. 3. The run L3[0].L0[L3].L1[0].L2[L1], of the program in Fig. 2 (left), leading to
the complete state corresponding to the trace given in Fig. 2 (right). Here we use the
labels L0–L3 as shorthands for the corresponding events.

in which vertices are executed instructions (called events), and edges capture
dependencies between them. More precisely, a trace π is a quadruple (E, po, co, rf)
where E is a set of events, and po, co, and rf are relations over E1. An event is a
tuple (t, n, l) where t is an identifier for the executing thread, l is the unique label
of the instruction, and n is a natural number which disambiguates instructions.
Let E denote the set of all possible events. For an event e = (t, n, l), let tid(e)
denote t and let instr(e) denote the instruction labelled l in the program code.
The relation po (for “program order”) totally orders all events executed by the
same thread. The relation co (for “coherence order”) totally orders all stores to
the same memory location. The relation rf (for “read-from”) contains the pairs
(e, e′) such that e is a store and e′ is a load which gets its value from e. For
simplicity, we assume that the initial value of each memory address x is assigned
by a special initializer instruction initx, which is first in the coherence order for
that address. A trace is a complete trace of the program P if the program order
over the committed events of each thread makes up a path from the first instruc-
tion in the code of the thread, to the last instruction, respecting the evaluation
of conditional branches. Figure 2 shows the complete trace corresponding to the
behavior described in the beginning of this section, in which each thread loads
the value stored by the other thread.

An axiomatic memory model M (following the framework [8]) is defined as a
predicate M over traces π, such that M(π) holds precisely when π is an allowed
trace under the model. Deciding whether M(π) holds involves checking (i) that
the trace is internally consistent, defined in the natural way (e.g., the relation
co relates precisely events that access the same memory location), and (ii) that
various combinations of relations that are derived from the trace are acyclic or
irreflexive. Which specific relations need to be acyclic depends on the memory
model.

1 [8] uses the term “execution” to denote what we call “trace”.
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We define the axiomatic semantics under M as a mapping from programs P
to their denotations [[P]]AxM , where [[P]]AxM is the set of complete traces π of P such
that M(π) holds. In the following, we assume that the axiomatic memory model
for POWER, here denoted MPOWER, is defined as in [8]. The interested reader
is encouraged to read the details in [8], but the high-level understanding given
above should be enough to understand the remainder of this text.

Deriving an Execution Model. Let an axiomatic model M be given, in the
style of [8]. We will derive an equivalent execution model in the form of a tran-
sition system.

States. States of our execution model are traces, augmented with a set of fetched
events. A state σ is a tuple of the form (λ, F,E, po, co, rf) where λ(t) is a label
in the code of t for each thread t, F ⊆ E is a set of events, and (E, po|E , co, rf)
is a trace such that E ⊆ F . (Here po|E is the restriction of po to E.) For a
state σ = (λ, F,E, po, co, rf), we let exec(σ) denote the trace (E, po|E , co, rf).
Intuitively, F is the set of all currently fetched events and E is the set of events
that have been committed. The function λ gives the label of the next instruction
to fetch for each thread. The relation po is the program order between all fetched
events. The relations co and rf are defined for committed events (i.e., events in
E) only. The set of all possible states is denoted S. The initial state σ0 ∈ S

is defined as σ0 = (λ0, E0, E0,∅,∅,∅) where λ0 is the function providing the
initial label of each thread, and E0 is the set of all initializer events.

Commit-Before. The order in which events can be committed – effectively a
linearization of the trace – is restricted by a commit-before order. It is a para-
meter of our execution model which can be tuned to suit the given axiomatic
model. Formally, a commit-before order is defined by a commit-before function
cb, which associates with each state σ = (λ, F,E, po, co, rf), a commit-before
order cbσ ⊆ F × F , which is a partial order on the set of fetched events. For
each state σ, the commit-before order cbσ induces a predicate enabledσ over the
set of fetched events e ∈ F such that enabledσ(e) holds if and only if e �∈ E and
the set {e′ ∈ F | (e′, e) ∈ cbσ} is included in E. Intuitively, e can be committed
only if all the events it depends on have already been committed. Later in this
section, we define requirements on commit-before functions, which are necessary
for the execution model and for the RSMC algorithm respectively.

Transitions. The transition relation between states is given by a set of rules, in
Fig. 4. The function valσ(e, a) denotes the value taken by the arithmetic expres-
sion a, when evaluated at the event e in the state σ. The value is computed in the
natural way, respecting data-flow. (Formal definition in the technical report [4].)
For example, in the state σ corresponding to the trace given in Fig. 2, where
e is the event corresponding to label L1, we would have valσ(e, r0+1) = 2. The
function addressσ(e) associates with each load or store event e the memory loca-
tion accessed. For a label l, let λnext(l) denote the next label following l in the
program code. Finally, for a state σ with coherence order co and a store e to
some memory location x, we let extendσ(e) denote the set of coherence orders
co′ which result from inserting e anywhere in the total order of stores to x in co.
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F t = {e′′ ∈ F |tid(e′′) = t} e = (t, |F t|, λ(t))
� ∃e′, a, l . e′ ∈ F \ E ∧ tid(e′) = t ∧ instr(e′) = (if a goto l)

σ
FLB−−→ (λ[t ←↩ λnext(λ(t))], F ∪ {e}, E, po ∪ (F t × {e}), co, rf)

FETCH

instr(e) = (if a goto l) t = tid(e)
valσ(e, a) ∈ Z \ {0} enabled σ(e)

σ
FLB−−→ (λ[t ←↩ l], F , E ∪ {e}, po, co, rf)

BRT

instr(e) ∈ {sync, lwsync, isync, r:=a}
enabled σ(e)

σ
FLB−−→ (λ, F , E ∪ {e}, po, co, rf)

LOC

instr(e) = (if a goto l)
valσ(e, a) = 0 enabled σ(e)

σ
FLB−−→ (λ, F , E ∪ {e}, po, co, rf)

BRF

instr(e) = ([a]:=a′) enabled σ(e) M(exec(σ′))
σ′ = (λ, F , E ∪ {e}, po, co′, rf) co′ ∈ extendσ(e)

σ
e[positionco′ (e)]−−−−−−−−−−→ σ′

ST

instr(e) = (r:=[a]) enabledσ(e) ew ∈ E instr(ew) = ([a′]:=a′′)
addressσ(ew) = addressσ(e) σ′ = (λ, F , E ∪ {e}, po, co, rf ∪ {(ew, e)}) M(exec(σ′))

σ
e[ew ]−−−→ σ′ LD

Fig. 4. Execution model of programs under the memory model M. Here σ =
(λ, F, E, po, co, rf).

For each such order co′, we let positionco′(e) denote the position of e in the total
order: I.e. positionco′(e) is the number of (non-initializer) events e′ which precede
e in co′.

The intuition behind the rules in Fig. 4 is that events are committed non-
deterministically out of order, but respecting the constraints induced by the
commit-before order. When a memory access (load or store) is committed, a
non-deterministic choice is made about its effect. If the event is a store, it is
non-deterministically inserted somewhere in the coherence order. If the event
is a load, we non-deterministically pick the store from which to read. Thus,
when committed, each memory access event e is parameterized by a choice p:
the coherence position for a store, and the source store for a load. We call e[p]
a parameterized event, and let P denote the set of all possible parameterized
events. A transition committing a memory access is only enabled if the resulting
state is allowed by the memory model M. Transitions are labelled with FLB
when an event is fetched or a local event is committed, or with e[p] when a
memory access event e is committed with parameter p.

We illustrate this intuition for the program in Fig. 2 (left). The trace in Fig. 2
(right) can be produced by committing the instructions (events) in the order L3,
L0, L1, L2. For the load L0, we can then choose the already performed L3 as the
store from which it reads, and for the load L2, we can choose to read from the
store L1. Each of the two stores L3 and L1 can only be inserted at one place in
their respective coherence orders, since the program has only one store to each
memory location. We show the resulting sequence of committed events in Fig. 3:
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the first column shows the sequence of events in the order they are committed,
the second column is the parameter assigned to the event, and the third column
explains the parameter. Note that other traces can be obtained by choosing
different values of parameters. For instance, the load L2 can also read from the
initial value, which would generate a different trace.

Next we explain each of the rules: The rule FETCH allows to fetch the
next instruction according to the control flow of the program code. The first
two requirements identify the next instruction. To fetch an event, all preceding
branch events must already be committed. Therefore events are never fetched
along a control flow path that is not taken. We point out that this restriction
does not prevent our execution model from capturing the observable effects of
speculative execution (formally ensured by Theorem 1).

The rules LOC, BRT and BRF describe how to commit non-memory access
events.

When a store event is committed by the ST rule, it is inserted non-
deterministically at some position n = positionco′(e) in the coherence order. The
guard M(exec(σ′)) ensures that the resulting state is allowed by the axiomatic
memory model.

The rule LD describes how to commit a load event e. It is similar to the ST
rule. For a load we non-deterministically choose a source store ew, from which the
value can be read. As before, the guard M(exec(σ′)) ensures that the resulting
state is allowed.

Given two states σ, σ′ ∈ S, we use σ
FLB(max)−−−−−−−→ σ′ to denote that σ

FLB−−−→
∗
σ′ and

there is no state σ′′ ∈ S with σ′ FLB−−−→ σ′′. A run τ from some state σ is a sequence
of parameterized events e1[p1].e2[p2]. · · · .ek[pk] such that σ

FLB(max)−−−−−−→ σ1
e1[p1]−−−−→

σ′
1

FLB(max)−−−−−−→ · · · ek[pk]−−−−→ σ′
k

FLB(max)−−−−−−→ σk+1 for some states σ1, σ
′
1, . . . , σ

′
k, σk+1 ∈ S.

We write e[p] ∈ τ to denote that the parameterized event e[p] appears in τ . Observe
that the sequence τ leads to a uniquely determined state σk+1, which we denote
τ(σ). A run τ , from the initial state σ0, is complete iff the reached trace execτ(σ0) is
complete. Figure 3 shows an example complete run of the program in Fig. 2 (left).

In summary, our execution model represents a program P as a labeled tran-
sition system TSP

M,cb = (S, σ0,−→), where S is the set of states, σ0 is the initial
state, and −→ ⊆ S× (P ∪ {FLB}) × S is the transition relation. We define the
execution semantics under M and cb as a mapping, which maps each program P
to its denotation [[P]]ExM,cb, which is the set of complete runs τ induced by TSP

M,cb.

Validity and Deadlock Freedom. Here, we define validity and deadlock free-
dom for memory models and commit-before functions. Validity is necessary for
the correct operation of our execution model (Theorem 1). Deadlock freedom is
necessary for soundness of the RSMC algorithm (Theorem 4). First, we introduce
some auxiliary notions.

We say that a state σ′ = (λ′, F ′, E′, po′, co′, rf′) is a cb-extension of a state
σ = (λ, F,E, po, co, rf), denoted σ ≤cb σ′,if σ′ can be obtained from σ by fetching
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in program order or committing events in cb order. Formally σ ≤cb σ′ if po =
po′|F , co = co′|E , rf = rf′|E , F is a po′-closed subset of F ′, and E is a cbσ′-
closed subset of E′. More precisely, the condition on F means that for any
events e, e′ ∈ F ′, we have [e′ ∈ F ∧ (e, e′) ∈ po′] ⇒ e ∈ F . The condition on E
is analogous.

We say that cb is monotonic w.r.t. M if whenever σ ≤cb σ′, then (i)
M(exec(σ′)) ⇒ M(exec(σ)), (ii) cbσ ⊆ cbσ′ , and (iii) for all e ∈ F such that
either e ∈ E or

(
enabledσ(e) ∧ e �∈ E′), we have (e′, e) ∈ cbσ ⇔ (e′, e) ∈ cbσ′

for all e′ ∈ F ′. Conditions (i) and (ii) are natural monotonicity requirements on
M and cb. Condition (iii) says that while an event is committed or enabled, its
cb-predecessors do not change.

A state σ induces a number of relations over its fetched (possibly commit-
ted) events. Following [8], we let addrσ, dataσ, ctrlσ, denote respectively address
dependency, data dependency and control dependency. Similarly, po-locσ is the
subset of po that relates memory accesses to the same memory location. Lastly,
syncσ and lwsyncσ relate events that are separated in program order by respec-
tively a sync or lwsync. The formal definitions can be found in [8], and in our
technical report [4]. We can now define a weakest reasonable commit-before
function cb0, capturing natural dependencies:

cb0σ = (addrσ ∪ dataσ ∪ ctrlσ ∪ rf)+,

where R+ denotes the transitive (but not reflexive) closure of R.
We say that a commit-before function cb is valid w.r.t. a memory model M

if cb is monotonic w.r.t. M, and for all states σ such that M(exec(σ)) we have
that cbσ is acyclic and cb0σ ⊆ cbσ.

Theorem 1 (Equivalence with Axiomatic Model). Let cb be a commit-
before function valid w.r.t. a memory model M. Then [[P]]AxM = {exec(τ(σ0)) |
τ ∈ [[P]]ExM,cb}. ��

Program Blocked run τ Blocked state σ

x = 0 y = 0

thread P: thread Q:

L0: r0:=y; L3: x:=3;
L1: x:=r0; L4: sync;
L2: x:=2; L5: y:=1;

L3[0]
L5[0]

L0[L5]
L2[0]
(L1 blocked)

L0: r0:=y

L1: x:=r0

L2: x:=2

L3: x:=3

L4: sync

L5: y:=1

data

po-loc

sync

sync
co rf

Fig. 5. If the weak commit-before function cb0 is used, the POWER semantics may
deadlock. When the program above (left) is executed according to the run τ (center) we
reach a state σ (right) where L0, L2, L3–L5 are successfully committed. However, any
attempt to commit L1 will close a cycle in the relation co; syncσ; rf; dataσ; po-locσ, which
is forbidden under POWER. This blocking behavior is prevented when the stronger
commit-before function cbpower is used, since it requires L1 and L2 to be committed in
program order.
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The commit-before function cb0 is valid w.r.t. MPOWER, implying (by The-
orem 1) that [[P]]Ex

MPOWER,cb0
is a faithful execution model for POWER. However,

cb0 is not strong enough to prevent blocking runs in the execution model for
POWER. I.e., it is possible, with cb0, to create an incomplete run, which cannot
be completed. Any such blocking is undesirable for SMC, since it corresponds to
wasted exploration. Figure 5 shows an example of how the POWER semantics
may deadlock when based on cb0.

We say that a memory model M and a commit before function cb are deadlock
free if for all runs τ from σ0 and memory access events e such that enabledτ(σ0)(e)
there exists a parameter p such that τ.e[p] is a run from σ0. I.e., it is impossible
to reach a state where some event is enabled, but has no parameter with which
it can be committed.

Commit-Before Order for POWER. We will now define a stronger commit
before function for POWER, which is both valid and deadlock free:

cbpowerσ = (cb0σ ∪ (addrσ; po) ∪ po-locσ ∪ syncσ ∪ lwsyncσ)+

Theorem 2. cbpower is valid w.r.t. MPOWER.

Theorem 3. MPOWER and cbpower are deadlock free.

3 The RSMC Algorithm

Having derived an execution model, we address the challenge of defining an SMC
algorithm, which explores all allowed traces of a program in an efficient manner.
Since each trace can be generated by many equivalent runs, we must, just as in
standard SMC for SC, develop techniques for reducing the number of explored
runs, while still guaranteeing coverage of all traces. Our RSMC algorithm is
designed to do this in the context of semantics like the one defined above, in
which instructions can be committed with several different parameters, each
yielding different results.

Our exploration technique basically combines two mechanisms:

(i) In each state, RSMC considers an instruction e, whose cb-predecessors have
already been committed. For each possible parameter value p of e in the
current state, RSMC extends the state by e[p] and continues the exploration
recursively.

(ii) RSMC monitors generated runs to detect read-write conflicts (or “races”),
i.e., the occurrence of a load and a subsequent store to the same memory
location, such that the load would be able to read from the store if they
were committed in the reverse order. For each such conflict, RSMC starts
an alternative exploration, in which the load is preceded by the store, so
that the load can read from the store.

Mechanism (ii) is analogous to the detection and reversal of races in conventional
DPOR, with the difference that RSMC need only detect conflicts in which a
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load is followed by a store. A race where a load follows a store does not induce
reordering by mechanism (ii). This is because our execution model allows the
load to read from any of the already committed stores to the same memory
location, without any reordering.

Instruction Parameter Semantic Meaning
L0: r0 := x initx (read initial value)
L1: y := r0+1 0 (first in coherence of y)

L2: r1 := y inity (read initial value)
L3: x := 1 0 (first in coherence of x)

Fig. 6. The first explored run of the program in Fig. 2

We illustrate the basic idea of RSMC on the program in Fig. 2 (left). As usual
in SMC, we start by running the program under an arbitrary schedule, subject
to the constraints imposed by the commit-before order cb. For each instruction,
we explore the effects of each parameter value which is allowed by the memory
model. Let us assume that we initially explore the instructions in the order L0,
L1, L2, L3. For this schedule, there is only one possible parameter for L0, L1, and
L3, whereas L2 can read either from the initial value or from L1. Let us assume
that it reads the initial value. This gives us the first run, shown in Fig. 6. The
second run is produced by changing the parameter for L2, and let it read the
value 1 written by L1.

During the exploration of the first two runs, the RSMC algorithm also detects
a race between the load L0 and the store L3. An important observation is that
L3 is not ordered after L0 by the commit-before order, implying that their order
can be reversed. Reversing the order between L0 and L3 would allow L0 to read
from L3. Therefore, RSMC initiates an exploration where the load L0 is preceded
by L3 and reads from it. (If L3 would have been preceded by other events that
enable L3, these would be executed before L3.) After the sequence L3[0].L0[L3],
RSMC is free to choose the order in which the remaining instructions are con-
sidered. Assume that the order L1, L2 is chosen. In this case, the load L2 can
read from either the initial value or from L1. In the latter case, we obtain the
run in Fig. 3, corresponding to the trace in Fig. 2 (right).

After this, there are no more unexplored parameter choices, and so the RSMC
algorithm terminates, having explored four runs corresponding to the four pos-
sible traces.

In the following section, we will provide a more detailed look at the RSMC
algorithm, and see formally how this exploration is carried out.

3.1 Algorithm Description

In this section, we present our algorithm, RSMC, for SMC under POWER. We
prove soundness of RSMC, and optimality w.r.t. explored complete traces.
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The RSMC algorithm is shown in Fig. 7. It uses the recursive procedure
Explore, which takes parameters τ and σ such that σ = τ(σ0). Explore will
explore all states that can be reached by complete runs extending τ .

First, on line 1, we fetch instructions and commit all local instructions as far
as possible from σ. The order of these operations makes no difference. Then we
turn to memory accesses. If the run is not yet terminated, we select an enabled
event e on line 2.

// P[e] holds a run
// preceding the load event e.
global P = λe.〈〉
// Q[e] holds a set of continuations
// leading to the execution of the
// load event e after P[e].
global Q = λe.∅

Explore(τ, σ)
// Fetch & commit local greedily.

1: while(∃σ′.σ FLB−−−−→ σ′){σ := σ′;}
// Find committable memory access e.

2: if(∃e.enabledσ(e)){
3: if(e is a store){

// Explore all ways to execute e.

4: S := {(n, σ′)|σ e[n]−−−→ σ′};
5: for((n, σ′) ∈ S){
6: Explore(τ.e[n], σ′);
7: }
8: DetectRace(τ, σ, e);
9: }else{ // e is a load

10: P[e] := τ;
// Explore all ways to execute e.

11: S := {(ew, σ′)|σ e[ew ]−−−−→ σ′};
12: for((ew, σ′) ∈ S){
13: Explore(τ.e[ew], σ′);
14: }

// Handle R -> W races.
15: explored = ∅;
16: while(∃τ ′ ∈ Q[e]\explored){
17: explored := explored∪{τ ′};
18: Traverse(τ, σ, τ ′);
19: }
20: }
21: }

DetectRace(τ, σ, e)

1: for
er [ew] ∈ τ s.t.

er is a load ∧ (er , e) 	∈ cbσ
∧ addressσ(er) = addressσ(e)

{
// Compute postfix after P[er].

2: τ ′ := the τ ′ s.t. τ = P[er].τ ′;
// Remove events not cb-before e.

3: τ ′′ := normalize(cut(τ ′, e, σ), cbσ);
// Construct new continuation.

4: τ ′′′ := τ ′′.e[*].er [e];
// Add to Q, to explore later.

5: Q[er] := Q[er]∪{τ ′′′};
6: }

Traverse(τ, σ, τ ′)
1: if(τ ′ = 〈〉){
2: Explore(τ, σ);
3: }else{

// Fetch & commit local greedily.

4: while(∃σ′.σ FLB−−−−→ σ′){σ := σ′;}
5: e[p].τ ′′ := τ ′; // Get first event.
6: if(p = *){

// Explore all ways to execute e.

7: S := {(n, σ′)|σ e[n]−−−→ σ′};
8: for((n, σ′) ∈ S){
9: Traverse(τ.e[n], σ′, τ ′′);

10: }
11: }else if(∃σ′.σ

e[p]−−−→ σ′){
12: Traverse(τ.e[p], σ′, τ ′′);
13: }else{

// Only happens when the final
// load in τ ′ does not accept its
// parameter. Stop exploring.

14: }
15: }

Fig. 7. An algorithm to explore all traces of a given program. The initial call is
Explore(〈〉, σ0).

If the chosen event e is a store (lines 3–8), we first collect, on line 4, all
parameters for e which are allowed by the memory model. For each of them,
we recursively explore all of its continuations on line 6. I.e., for each coherence
position n that is allowed for e by the memory model, we explore the continuation
of τ obtained by committing e[n]. Finally, we call DetectRace. We will return
shortly to a discourse of that mechanism.
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If e is a load (lines 9–20), we proceed in a similar manner. Line 10 is related to
DetectRace, and discussed later. On line 11 we compute all allowed parameters
for the load e. They are (some of the) stores in τ which access the same address
as e. On line 13, we make one recursive call to Explore per allowed parameter.
The structure of this exploration is illustrated in the two branches from σ1 to
σ2 and σ5 in Fig. 8(a).
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(a) A new branch τ2.êw[*].er[êw] is added
to Q[er] and later explored, starting from
σ1. τ2 is a restriction of τ1, containing only
events that are cbσ4 -before êw.

(b) Another read-write race is detected,
starting from the leaf of a branch ex-
plored by Traverse. The new branch
τ4.ˆ̂ew[*].er[ˆ̂ew] is added at σ1, not at σ7.

Fig. 8. How Explore applies event parameters, and introduces new branches. Thin
arrows indicate exploration performed directly by Explore. Bold arrows indicate tra-
versal by Traverse.

Notice in the above that both for stores and loads, the available parameters
are determined entirely by τ , i.e. by the events that precede e in the run. In
the case of stores, the parameters are coherence positions between the earlier
stores occurring in τ . In the case of loads, the parameters are the earlier stores
occurring in τ . For stores, this way of exploring is sufficient. But for loads it
is necessary to also consider parameters which appear later than the load in a
run. Consider the example in Fig. 8(a). During the recursive exploration of a
run from σ0 to σ4 we encounter a new store êw, which is in a race with er. If
the load er and the store êw access the same memory location, and er does not
precede êw in the cb-order, they could appear in the opposite order in a run
(with êw preceding er), and êw could be an allowed parameter for the load er.
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This read-write race is detected on line 1 in the function DetectRace, when
it is called from line 8 in Explore when the store êw is being explored. We
must then ensure that some run is explored where êw is committed before er

so that êw can be considered as a parameter for er. Such a run must include
all events that are before êw in cb-order, so that êw can be committed. We
construct τ2, which is a template for a new run, including precisely the events in
τ1 which are cb-before the store êw. The run template τ2 can be explored from
the state σ1 (the state where er was previously committed) and will then lead to
a state where êw can be committed. The run template τ2 is computed from the
complete run in DetectRace on lines 2 and 3. This is done by first removing (at
line 2) the prefix τ0 which precedes er (stored in P[er] on line 10 in Explore).
Thereafter (at line 3) events that are not cb-before êw are removed using the
function cut (here, cut(τ, e, σ) restricts τ to the events which are cbσ-before e),
and the resulting run is normalized. The function normalize normalizes a run by
imposing a predefined order on the events which are not ordered by cb. This
is done to avoid unnecessarily exploring two equivalent run templates. The run
template τ2.êw[*].er[êw] is then stored on line 5 in the set Q[er], to ensure that
it is explored later. Here we use the special pseudo-parameter * to indicate that
every allowed parameter for êw should be explored (See lines 6–10 in Traverse).

All of the run templates collected in Q[er] are explored from the same call
to Explore(τ0, σ1) where er was originally committed. This is done on lines 15–
19. The new branch is shown in Fig. 8(a) in the run from σ0 to σ8. Notice on
line 18 that the new branch is explored by the function Traverse, rather than
by Explore itself. This has the effect that τ2 is traversed, with each event using
the parameter given in τ2, until er[êw] is committed. The traversal by Traverse
is marked with bold arrows in Fig. 8. If the memory model does not allow er

to be committed with the parameter êw, then the exploration of this branch
terminates on line 13 in Traverse. Otherwise, the exploration continues using
Explore, as soon as er has been committed (line 2 in Traverse).

Let us now consider the situation in Fig. 8(b) in the run from σ0 to σ10.
Here τ2.êw[*].er[êw], is explored as described above. Then Explore continues
the exploration, and a read-write race is discovered from er to ˆ̂ew. From earlier
DPOR algorithms such as e.g. [23], one might expect that this case is handled by
exploring a new branch of the form τ2.êw[p].τ ′

3 .̂̂ew[p′].er [̂̂ew], where er is simply
delayed after σ7 until ˆ̂ew has been committed. Our algorithm handles the case
differently, as shown in the run from σ0 to σ13. Notice that P[er] can be used
to identify the position in the run where er was last committed by Explore (as
opposed to by Traverse), i.e., σ1 in Fig. 8(b). We start the new branch from
that position (σ1), rather than from the position where er was committed when
the race was detected (i.e., σ7). The new branch τ4 is constructed when the
race is detected on lines 2 and 3 in DetectRace, by restricting the sub-run
τ2.êw[p].er[êw].τ3 to events that cb-precede the store ˆ̂ew.

The reason for returning all the way up to σ1, rather than starting the new
branch at σ7, is to avoid exploring multiple runs corresponding to the same
trace. This could otherwise happen when the same race is detected in multiple
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runs. To see this happen, let us consider the program given in Fig. 9. A part of
its exploration tree is given in Fig. 10. In the interest of brevity, when describing
the exploration of the program runs, we will ignore some runs which would be
explored by the algorithm, but which have no impact on the point of the example.
Throughout this example, we will use the labels L0, L1, and L2 to identify the
events corresponding to the labelled instructions. We assume that in the first run
to be explored (the path from σ0 to σ3 in Fig. 10), the load at L0 is committed
first (loading the initial value of x), then the stores at L1 and L2. There are
two read-write races in this run, from L0 to L1 and to L2. When the races are
detected, the branches L1[*].L0[L1] and L2[*].L0[L2] will be added to Q[L0].
These branches are later explored, and appear in Fig. 10 as the paths from σ0

to σ6 and from σ0 to σ9 respectively. In the run ending in σ9, we discover the
race from L0 to L1 again. This indicates that a run should be explored where
L0 reads from L1. If we were to continue exploration from σ7 by delaying L0
until L1 has been committed, we would follow the path from σ7 to σ11 in Fig. 10.
In σ11, we have successfully reversed the race between L0 and L1. However, the
trace of σ11 turns out to be identical to the one we already explored in σ6.
Hence, by exploring in this manner, we would end up exploring redundant runs.
The Explore algorithm avoids this redundancy by exploring in the different
manner described above: When the race from L0 to L1 is discovered at σ9, we
consider the entire sub-run L2[0].L0[L2].L1[1] from σ0, and construct the
new sub-run L1[*].L0[L1] by removing all events that are not cb-before L1,
generalizing the parameter to L1, and by appending L0[L1] to the result. The
new branch L1[*].L2[L1] is added to Q[L0]. But Q[L0] already contains the
branch L1[*].L2[L1] which was added at the beginning of the exploration. And
since it has already been explored (it has already been added to the set explored
at line 17) we avoid exploring it again.

thread P: thread Q: thread R:

L0: r := x L1: x := 1 L2: x := 2

Fig. 9. A small program where one thread P loads from x, and two threads Q and R
store to x.

Soundness and Optimality. We first establish soundness of the RSMC algo-
rithm in Fig. 7 for the POWER memory model, in the sense that it guarantees to
explore all Shasha-Snir traces of a program. We thereafter establish that RSMC
is optimal, in the sense that it will never explore the same complete trace twice.

Theorem 4 (Soundness). Assume that cb is valid w.r.t. M, and that M and
cb are deadlock free. Then, for each π ∈ [[P]]AxM , the evaluation of a call to
Explore(〈〉, σ0) will contain a recursive call to Explore(τ, σ) for some τ , σ such
that exec(σ) = π. ��
Corollary 1. RSMC is sound for POWER using MPOWER and cbpower.
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Fig. 10. Part of a faulty exploration tree for the program above, containing redundant
branches. The branches ending in σ6 and σ11 correspond to the same trace. The RSMC
algorithm avoids this redundancy by the mechanism where all branches for read-write
races from the same load er are collected in one set Q[er].

The proof of Theorem 4 involves showing that if an allowed trace exists, then
the races detected in previously explored runs are sufficient to trigger the later
exploration of a run corresponding to that trace.

Theorem 5 (Optimality forPOWER).Assume thatM = MPOWER and cb =
cbpower. Let π ∈ [[P]]AxM . Then during the evaluation of a call to Explore(〈〉, σ0),
there will be exactly one call Explore(τ, σ) such that exec(σ) = π. ��

While the RSMC algorithm is optimal in the sense that it explores precisely
one complete run per Shasha-Snir trace, it may initiate explorations that block
before reaching a complete trace (similarly to sleep set blocking in classical
DPOR). Such blocking may arise when the RSMC algorithm detects a read-write
race and adds a branch to Q, which upon traversal turns out to be not allowed
under the memory model. Our experiments in Sect. 4 indicate that the effect of
such blocking is almost negligible, without any blocking in most benchmarks,
and otherwise at most 10 % of explored runs.

4 Experimental Results

In order to evaluate the efficiency of our approach, we have implemented it as
a part of the open source tool Nidhugg [33], for stateless model checking of
C/pthreads programs under the relaxed memory. It operates under the restric-
tions that (i) all executions are bounded by loop unrolling, and (ii) the analysis
runs on a given compilation of the target C code. The implementation uses
RSMC to explore all allowed program behaviors under POWER, and detects
any assertion violation that can occur. We validated our implementation by
successfully running all 8070 relevant litmus tests published with [8].
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Table 1. A comparison of running times (in seconds) for our implementation Nidhugg
and goto-instrument. The F column indicates whether fences have been inserted code
to regain safety. The LB column indicates whether the tools were instructed to unroll
loops up to a certain bound. A t/o entry means that the tool failed to complete within
900 s. An asterisk (* ) means that the tool found a safety violation. A struck out entry
means that the tool gave the wrong answer regarding the safety of the benchmark.
The superior running time for each benchmark is given in bold font. The SS column
indicates the number of complete traces explored by Nidhugg before detecting an error,
exploring all traces, or timing out. The B (for “blocking”) column indicates the number
of incomplete runs that Nidhugg started to explore, but that turned out to be invalid.

Tool running time (s), and trace count

goto-instrument Nidhugg

F LB Time Time SS B

dcl singleton 7 *0.40 *0.13 3 0

dcl singleton y 7 5.05 0.19 7 0

dekker 10 *229.39 *0.11 5 0

dekker y 10 t/o 0.76 246 0

fib false *1.86 t/o 109171 0

fib false join *0.84 *35.46 11938 0

fib true 7.05 t/o 109122 0

fib true join 8.92 57.67 19404 0

indexer 5 68.16 1.57 19 0

lamport 8 *635.45 *0.12 3 0

lamport y 8 t/o 0.20 50 2

parker 5 1.20 *0.13 5 0

parker y 5 1.24 7.44 1126 0

peterson *0.24 *0.11 3 0

peterson y 0.19 0.11 10 1

pgsql 8 *161.05 *0.11 2 0

pgsql y 8 t/o 0.58 16 0

pgsql bnd t/o *0.11 2 0

pgsql bnd y t/o t/o 36211 0

stack safe 13.84 73.86 1005 0

stack unsafe *1.03 *3.32 20 0

szymanski *1.02 *0.11 17 0

szymanski y 304.87 0.31 226 0

The main goals of our experimental evaluation are (i) to show the feasibility
and competitiveness of our approach, in particular to show for which programs
it performs well, (ii) to compare with goto-instrument, which to our knowledge is
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the only other tool analyzing C/pthreads programs under POWER2, and (iii) to
show the effectiveness of our approach in terms of wasted exploration effort.

Table 1 shows running times for Nidhugg and goto-instrument for several
benchmarks in C/pthreads. All benchmarks were run on an 3.07 GHz Intel Core
i7 CPU with 6 GB RAM. We use goto-instrument version 5.1 with cbmc version
5.1 as backend.

We note here that the comparison of running time is mainly relevant for the
benchmarks where no error is detected (errors are indicated with a * in Table 1).
This is because when an error is detected, a tool may terminate its analysis
without searching the remaining part of the search space (i.e., the remaining
runs in our case). Therefore the time consumption in such cases, is determined
by whether the search strategy was lucky or not. This also explains why in
e.g. the dekker benchmark, fewer Shasha-Snir traces are explored in the version
without fences, than in the version with fences.

Comparison with goto-instrument. goto-instrument employs code-to-code trans-
formation in order to allow verification tools for SC to work for more relaxed
memory models such as TSO, PSO and POWER [5]. The results in Table 1
show that our technique is competitive. In many cases Nidhugg significantly
outperforms goto-instrument. The benchmarks for which goto-instrument per-
forms better than Nidhugg, have in common that goto-instrument reports that
no trace may contain a cycle which indicates non-SC behavior. This allows goto-
instrument to avoid expensive program instrumentation to capture the extra
program behaviors caused by memory consistency relaxation. While this treat-
ment is very beneficial in some cases (e.g. for stack * which is data race free and
hence has no non-SC executions), it also leads to false negatives in cases like
parker, when goto-instrument fails to detect Shasha Snir-cycles that cause safety
violations. In contrast, our technique is precise, and will never miss any behav-
iors caused by the memory consistency violation within the execution length
bound.

We remark that our approach is restricted to thread-wisely deterministic
programs with fixed input data, whereas the bounded model-checking used as
a backend (CBMC) for goto-instrument can handle both concurrency and data
nondeterminism.

Efficiency of Our Approach. While our RSMC algorithm explores precisely one
complete run per Shasha-Snir trace, it may additionally start to explore runs
that then turn out to block before completing, as described in Sect. 3. The SS
and B columns of Table 1 indicate that the effect of such blocking is almost
negligible, with no blocking in most benchmarks, and at most 10 % of the runs.

A costly aspect of our approach is that every time a new event is committed
in a trace, Nidhugg will check which of its possible parameters are allowed by the
axiomatic memory model. This check is implemented as a search for particular

2 The cbmc tool previously supported POWER [6], but has withdrawn support in
later versions.
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cycles in a graph over the committed events. The cost is alleviated by the fact
that RSMC is optimal, and avoids exploring unnecessary traces.

To illustrate this tradeoff, we present the small program in Fig. 11. The first
three lines of each thread implement the classical Dekker idiom. It is impossible
for both threads to read the value 0 in the same execution. This property is used
to implement a critical section, containing the lines L4–L13 and M4–M13. However,
if the fences at L1 and M1 are removed, the mutual exclusion property can be

x = 0 y = 0 z = 0

thread P: thread Q:
L0: x := 1; M0: y := 1;
L1: sync; M1: sync;
L2: r0 := y; M2: r1 := x;
L3: if r0 = 1 M3: if r1 = 1

goto L14; goto M14;
L4: z := 1; M4: z := 1;
L5: z := 1; M5: z := 1;
L6: z := 1; M6: z := 1;
L7: z := 1; M7: z := 1;
L8: z := 1; M8: z := 1;
L9: z := 1; M9: z := 1;
L10: z := 1; M10: z := 1;
L11: z := 1; M11: z := 1;
L12: z := 1; M12: z := 1;
L13: z := 1; M13: z := 1;
L14: r0 := 0; M14: r1 := 0;

Fig. 11. SB+10W+syncs: A litmus test
based on the idiom known as “Dekker” or
“SB”. It has 3 allowed Shasha-Snir traces
under POWER. If the sync fences at lines
L1 and M1 are removed, then it has 184759
allowed Shasha-Snir traces. This test is
designed to have a large difference between
the total number of coherent Shasha-Snir
traces and the number of allowed Shasha-
Snir traces.

violated, and the critical sections may
execute in an interleaved manner.
The program with fences has only
three allowed Shasha-Snir traces, cor-
responding to the different observable
orderings of the first three instructions
of both threads. Without the fences,
the number rises to 184759, due to
the many possible interleavings of the
repeated stores to z. The running time
of Nidhugg is 0.01 s with fences and
161.36 s without fences.

We compare this with the results of
the litmus test checking tool herd [8],
which operates by generating all pos-
sible Shasha-Snir traces, and then
checking which are allowed by the
memory model. The running time of
herd on SB+10W+syncs is 925.95 s
with fences and 78.09 s without fences.
Thus herd performs better than Nid-
hugg on the litmus test without fences.
This is because a large proportion
of the possible Shasha-Snir traces are
allowed by the memory model. For
each of them herd needs to check the

trace only once. On the other hand, when the fences are added, the performance
of herd deteriorates. This is because herd still checks every Shasha-Snir trace
against the memory model, and each check becomes more expensive, since the
fences introduce many new dependency edges into the traces.

We conclude that our approach is particularly superior for application style
programs with control structures, mutual exclusion primitives etc., where relaxed
memory effects are significant, but where most potential Shasha-Snir traces are
forbidden.

5 Conclusions

We present the first framework for efficient SMC for programs running under
POWER. It combines solutions to several challenges. We developed a scheme
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for systematically deriving execution models that are suitable for SMC, from
axiomatic ones. We present RSMC, a novel algorithm for exploring all relaxed-
memory traces of a program, based on our derived execution model. We show
that RSMC is sound for POWER, meaning that it explores all Shasha-Snir traces
of a program, and optimal in the sense that it explores the same complete trace
exactly once. RSMC can in some situations waste effort by exploring blocked
runs, but our experimental results shows that this is rare in practice. Our imple-
mentation shows that the RSMC approach is competitive relative to an existing
state-of-the-art implementation. We expect that RSMC will be sound also for
other similar memory models with suitably defined commit-before functions.

Related Work. Several SMC techniques have been recently developed for pro-
grams running under the memory models TSO and PSO [1,20,49]. In this work
we propose a novel and efficient SMC technique for programs running under
POWER.

In [8], a similar execution model was suggested, also based on the axiomatic
semantics. However, compared to our semantics, it will lead many spurious exe-
cutions that will be blocked by the semantics as they are found to be disallowed.
This would cause superfluous runs to be explored, if used as a basis for stateless
model checking.

Beyond SMC techniques for relaxed memory models, there have been many
works related to the verification of programs running under relaxed memory
models (e.g., [3,11,13–15,19,30,31,35,48]). Some of these works propose pre-
cise analysis techniques for finite-state programs under relaxed memory models
(e.g., [3,11,21]). Others propose algorithms and tools for monitoring and testing
programs running under relaxed memory models (e.g., [14–16,22,35]). Different
techniques based on explicit state-space exploration for the verification of pro-
grams running under relaxed memory models have also been developed during
the last years (e.g., [27,30,31,34,38]). There are also a number of efforts to design
bounded model checking techniques for programs under relaxed memory models
(e.g., [6,13,46,48]) which encode the verification problem in SAT/SMT. Finally,
there are code-to-code transformation techniques (e.g., [5,10,11]) which reduce
verification of a program under relaxed memory models to verification of a trans-
formed program under SC. Most of these works do not handle POWER. In [21],
the robustness problem for POWER has been shown to be PSPACE-complete.

The closest works to ours were presented in [5,6,8]. The work [5] extends
cbmc to work with relaxed memory models (such as TSO, PSO and POWER)
using a code-to-code transformation. The work in [6] develops a bounded model
checking technique that can be applied to different memory models (e.g., TSO,
PSO, and POWER). The cbmc tool previously supported POWER [6], but has
withdrawn support in its later versions. The tool herd [8] operates by generating
all possible Shasha-Snir traces, and then for each one of them checking whether
it is allowed by the memory model. In Sect. 4, we experimentally compare RSMC
with the tools of [5,8].
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