
ParCoSS: Efficient Parallelized Compiled
Symbolic Simulation

Vladimir Herdt1(B), Hoang M. Le1, Daniel Große1,2, and Rolf Drechsler1,2

1 Group of Computer Architecture, University of Bremen, 28359 Bremen, Germany
{vherdt,hle,grosse,drechsle}@cs.uni-bremen.de

2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Abstract. We present the tool ParCoSS for verification of cooperative
multithreading programs. Our tool is based on the recently proposed
Compiled Symbolic Simulation (CSS) technique. Additionally, we employ
parallelization to further speed-up the verification. The potential of our
tool is shown by evaluation.

1 Introduction

In this paper we propose our tool ParCoSS (Parallelized Compiled Symbolic
Simulation) for verification of cooperative multithreading programs available
in the Extended Intermediate Verification Language (XIVL) format. The XIVL
extends the SystemC IVL [11,15], which has been designed to capture the sim-
ulation semantics of SystemC programs [2,10,13], with a small core of OOP
features to facilitate the translation of C++ code [16]. For verification purpose
the XIVL supports computations with symbolic expressions and the assume and
assert functions with their usual semantic. Our tool and set of XIVL examples
is available at [1].

Verification of (cooperative) multithreading programs is difficult due to the
large state space caused by all possible inputs and thread interleavings. Symbolic
Simulation, a combination of symbolic execution [4,14] and Partial Order Reduc-
tion (POR) [8,9] has been shown to be particularly effective to tackle state explo-
sion [5,6,15]. Recently Compiled Symbolic Simulation (CSS) has been proposed
as further improvement [12]. CSS works by integrating the symbolic execution
engine and POR based scheduler together with the multithreading program, e.g.
available in the XIVL format, into a C++ program. Then, a standard C++ com-
piler is used to generate a native binary, whose execution performs exhaustive
verification of the multithreading program. In contrast to traditional verifica-
tion methods based on interpretation, CSS can provide significant simulation
speed-ups especially by native execution of concrete operations.

This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project EffektiV under contract no. 01IS13022E and
by the German Research Foundation (DFG) within the Reinhart Koselleck project
DR 287/23-1 and by the University of Bremen’s graduate school SyDe, funded by
the German Excellence Initiative.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 177–183, 2016.
DOI: 10.1007/978-3-319-41540-6 10



178 V. Herdt et al.

The implementation of our tool ParCoSS is based on CSS and additionally
supports parallelization to further improve simulation performance. Compared to
the original CSS approach our tool uses a fork/join based state space exploration
instead of manually cloning the execution states to handle non-deterministic
choices due to symbolic branches and scheduling decisions. A fork/join based
architecture most notably has the following advantages: (1) It allows to generate
more efficient code. (2) It drastically simplifies the implementation.

In particular, we avoid the layer of indirection necessary for variable access
when manually tracking execution states and use native execution for all function
calls by employing coroutines. Besides very efficient context switch implementa-
tion, coroutines allow natural implementation of algorithms without unwinding
the native stack and without using state machines to resume execution on context
switches. Additionally, manual state cloning of complex internal data structures
is error prone and difficult to implement efficiently, whereas the fork system call
is already very mature and highly optimized. Finally, our architecture allows for
straightforward and efficient parallelization by leveraging the process scheduling
and memory sharing capabilities of the underlying operating system.

2 Extended Intermediate Verification Language (XIVL)

An example cooperative multithreading program illustrating the core features
of the XIVL is shown in Fig. 1. The program is using two threads to compute
the sum of odd numbers up to the bound specified by the variable x, which is
initialized using a symbolic expression of type int in Line 2 and constrained in
Line 28. The threads synchronize using the wait and notify functions on the
global event e. The XIVL syntax resembles C++, supports integer and boolean
data types with all arithmetic and logic operators, arrays and pointers, is using
high-level control flow structures and has a small set of OOP features including
classes, inheritance and virtual methods with overrides and dynamic dispatch.

1 event e;
2 int x = ?(int);
3 int sum = 0;
4
5 bool is_odd(int i) {
6 return (i % 2) != 0;
7 }
8
9 thread A {

10 int i = 0;
11 while (true) {
12 wait_event(e);
13 i += 1;
14 if (is_odd(i))
15 sum = sum + i;
16 }

17 }
18
19 thread B {
20 while (x > 0) {
21 x -= 1;
22 notify(e, 0);
23 wait_time (1);
24 }
25 }
26
27 main {
28 assume(x >= 8 && x <= 10);
29 start;
30 assert(sum <= 25);
31 }

Fig. 1. XIVL example program



ParCoSS: Efficient Parallelized Compiled Symbolic Simulation 179

.int num_active_processes 

.bool shutdown 

.sem_t semaphore 

XIVL Model 

C++ Program 

Executable 

Kernel Scheduler 

External
POR Data 

SMT Engine 

.SMT operations and types 

.Handling of symbolic branches 

.Path Merging 

PCSS Library 

.start_simulation

.wait_event 

.notify 

.wait_time 

.register_thread .select_runnable_thread 

Forked Process 
Shared Data 

Fork Engine 

Thread 1 Thread N ... 

Kernel 
Scheduling Loop 

Coroutines 

context switch 

.fork 

.join_all_children 

.shutdown 

Automatic 
Translation 

C++ 
Compiler 

link with 
PCSS lib. 

Fig. 2. Tool overview

3 Implementation Details

To simplify development, facilitate code re-use and the translation process from
XIVL to C++ we have implemented the PCSS (Parallel CSS) library, which
provides common building blocks for parallel symbolic simulation. The PCSS
library is linked with the C++ program during compilation. An overview of
our tool is shown in Fig. 2. In the following we will describe our PCSS library,
provide more details on the fork/join based exploration and briefly sketch the
translation process from XIVL to C++.

3.1 PCSS Library

The right hand side of Fig. 2 shows the main components, and their interaction,
of the PCSS library. Essentially it consists of the following components: kernel,
scheduler, SMT engine, fork engine and some process shared data.

The kernel provides a small set of functions which directly correspond to
the XIVL kernel related primitives (e.g. wait and notify) and allows to sim-
ulate the SystemC event-driven simulation semantics. Furthermore, all thread
functions of the XIVL model are registered in the kernel. The kernel will allo-
cate a coroutine with every thread function as entry point. Coroutines naturally
implement context switches as they allow to jump execution between arbitrarily
nested functions while preserving the local data. Our implementation is using the



180 V. Herdt et al.

1 bool on_branch(const SmtExpr &cond) {
2 auto stat = check_branch_status(cond);
3 if (stat == BranchStatus :: BothFeasible) {
4 bool is_child = fork_engine ->fork();
5 if (is_child)
6 pc = smt ->bool_and(pc, cond);
7 else
8 pc = smt ->bool_and(pc, smt ->bool_not(cond));
9 return is_child;

10 }
11 return stat == BranchStatus :: FalseOnly ? false : true;
12 }

Fig. 3. Symbolic branch execution

lightweight boost context library and in particular the functions make fcontext
and jump fcontext to create and switch execution between coroutines, respec-
tively. The scheduler is responsible for selecting the next runnable thread inside
the scheduling loop of the kernel. Our coroutine implementation allows to eas-
ily switch execution between the scheduling loop and the chosen thread. POR
is employed to reduce the number of explored interleavings. The POR depen-
dency relation is statically generated from the XIVL model and encoded into
the C++ program during translation. At runtime it is passed to the scheduler
during initialization.

The SMT engine provides common functionality required for symbolic execu-
tion. It keeps track of the current path condition, handles the assume and assert
functions, and checks the feasibility of symbolic branch conditions. Furthermore,
the SMT engine provides SMT types and operations. Essentially this is a light-
weight layer around the underlying SMT solver and allows to transparently swap
the employed SMT solver.

The fork engine is responsible to split the execution process into two inde-
pendent processes in case of a non-deterministic choice. This happens when both
branch directions are feasible in the SMT engine or multiple thread choices are
still available in the scheduler after applying POR. One of the forked processes
will continue exploration while the other is suspended until the first terminates.
This approach simulates a depth first search (DFS) of the state space. As an
optimization, the fork engine allows to run up to N processes in parallel, where
N is a command line parameter to the compiled C++ program. Parallelization
is very efficient as the processes explore disjoint state spaces independently.

3.2 Fork/Join Based State Space Exploration

Executing Symbolic Branches. The on branch function in the SMT engine,
shown in Fig. 3, accepts a symbolic branch condition and returns a concrete
decision, which is then used to control native C++ control flow structures. The
check branch status checks the feasibility of both branch directions by checking
the satisfiability of the branch condition and its negation. In case both branch



ParCoSS: Efficient Parallelized Compiled Symbolic Simulation 181

1 bool ForkEngine ::fork() {
2 int pid = ::fork();
3 if (pid != 0) {
4 num_children ++;
5 while (! try_fork(shared_data , N)) {
6 if (num_children > 0) {
7 join_any_child ();
8 } else {
9 usleep (1); // wait for someone else to join child

10 }
11 }
12 } else {
13 num_children = 0;
14 }
15 return pid == 0;
16 }

Fig. 4. Implementation of parallelized forking

directions are feasible, the execution will fork (Line 4) into two independent
processes and update the path condition (pc) with the normal (Line 6) or negated
condition (Line 8), respectively. Please note that the execution is not forked and
the path condition is not extended when only a single branch direction is feasible.

Parallelization. The forked processes communicate using anonymous shared
memory, which is created during initialization in the first process using the
mmap system call and thus accessible from all forked child processes. The shared
memory essentially contains three information: (1) counter variable to ensure
that no more than N processes will run in parallel, (2) shutdown flag to gracefully
stop the simulation, e.g. when an assertion violation is detected, (3) unnamed
semaphore to synchronize access. The semaphore is initialized and modified using
the sem init, sem post and sem wait functions. Furthermore, each process locally
keeps track of the number of forked child processes (num children). Figure 4
shows an implementation of the fork function. First the fork system call is
executed. The child process (pid is zero) will never block, since executing only
one process will not increase the number of active processes. The parent process
however will first try to atomically check and increment the shared counter
in Line 5. When this fails, i.e. the maximum number N of processes is already
working, the parent process will wait until a working processes finishes, by either
awaiting one of its own children (Line 7) or until some other process joins its
children (Line 9).

3.3 XIVL to C++ Translation

We use the XIVL example from Fig. 1 to illustrate the XIVL to C++ translation
process, which basically performs five steps: (1) Replace native data types (inte-
ger and boolean) and operations with SMT types and operations where necessary



182 V. Herdt et al.

Table 1. Experiment results, T.O. denotes timeout (limit 750 s)

Benchmark Kratos ISS ParCoSS

P-1 P-4 P-8

buffer-ws-p5 1.400 65.951 9.086 2.882 1.987

mem-slave-tlm-bug-50 T.O 3.731 <0.1 <0.1 <0.1

mem-slave-tlm-sym-50 T.O 3.940 <0.1 <0.1 <0.1

pressure-15 1.281 219.300 17.182 5.312 3.855

pressure-bug-50 444.781 0.897 <0.1 <0.1 <0.1

irqmp-8 – 108.670 32.719 10.815 8.237

irqmp-12 – T.O 530.705 178.108 128.257

(here variable x ). Variables which are never assigned a symbolic value (here vari-
ables i and sum) can keep their native type and perform native operations. (2)
Instrument control flow code to query the SMT engine for a concrete decision.
The branch condition x > 0 will be transformed into an SMT expression, e.g. as
smt→ bv gt(x, smt→ bv val(0)), and wrapped by the on branch function of the
smt engine. (3) Generate static POR information for the scheduler. Essentially,
a static analysis is employed to detect read/write and notify/wait dependencies.
A flow- and context-insensitive pointer analysis is used to increase the precision.
(4) Redirect builtin XIVL functions to the SMT engine (assume and assert) and
kernel instance (e.g. wait event and notify). (5) Add a new main function that
will initialize the PCSS library and call the main function of the XIVL model. It
will initialize the global data of the XIVL model and then enter the scheduling
loop of the kernel by calling the start simulation function.

4 Evaluation and Conclusion

We have evaluated our tool on a set of SystemC benchmarks from the liter-
ature [3,7,15] and the TLM model of the Interrupt Controller for Multiple
Processors (IRQMP) of the LEON3-based virtual prototype SoCRocket [17].
All experiments have been performed on a Linux system using a 3.5 GHz Intel
E3 Quadcore with Hyper-Threading. We used Clang 3.5 for compilation of the
C++ programs and Z3 v4.4.1 in the SMT Layer. The time (memory) limit have
been set to 750 s (6 GB), respectively. T.O. denotes that time limit has been
exceeded. The results are shown in Table 1. It shows the simulation time in sec-
onds for Kratos [7], Interpreted Symbolic Simulation (ISS) [6,15], and our tool
ParCoSS with a single process (P-1) and parallelized with four (P-4) and eight
processes (P-8). Comparing P-4 with P-8 allows to observe the effect of Hyper-
Threading. The results demonstrate the potential of our tool and show that our
parallelization approach can further improve results. As expected, CSS can be
considerably faster than ISS. On some benchmarks Kratos is faster due to its
abstraction technique, but the difference is not significant. Furthermore, Kratos



ParCoSS: Efficient Parallelized Compiled Symbolic Simulation 183

is not applicable to the irqmp benchmark due to missing C++ language fea-
tures. For future work we plan to integrate dynamic information, for POR and
selection of code blocks for native execution, into our CSS framework.

References

1. www.systemc-verification.org/ParCoSS
2. Accellera Systems Initiative. SystemC (2012). http://www.systemc.org
3. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. ACM

Trans. Des. Autom. Electron. Syst. 15(3), 21:1–21:32 (2010)
4. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation of

high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)
5. Chou, C.-N., Chu, C.-K., Huang. C.-Y.R.: Conquering the scheduling alternative

explosion problem of SystemC symbolic simulation. In: ICCAD, pp. 685–690 (2013)
6. Chou, C.-N., Ho, Y.-S., Hsieh, C., Huang. C.-Y: Symbolic model checking on Sys-

temC designs. In: DAC, pp. 327–333 (2012)
7. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking SystemC. IEEE

Trans. CAD Integr. Circuits Syst. 32(5), 774–787 (2013)
8. Flanagan, C. Godefroid, P.: Dynamic partial-order reduction for model checking

software. In: POPL, pp. 110–121 (2005)
9. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-

tems. LNCS, vol. 1032. Springer, Heidelberg (1996)
10. Große, D., Drechsler, R.: Quality-Driven SystemC Design. Springer, The Nether-

lands (2010)
11. Herdt, V., Le, H.M., Drechsler, R.: Verifying SystemC using stateful symbolic

simulation. In: DAC, pp. 49:1–49:6 (2015)
12. Herdt, V., Le, H.M., Große, D., Drechsler. R.: Compiled symbolic simulation for

SystemC In: ICCAD (2016)
13. IEEE. IEEE Standard SystemC Language Reference Manual. IEEE Std. 1666

(2011)
14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976)
15. Le, H.M., Große, D., Herdt, V., Drechsler, R.: Verifying SystemC using an inter-

mediate verification language and symbolic simulation. In: DAC, pp. 116:1–116:6
(2013)

16. Le, H.M., Herdt, V., Große, D., Drechsler. R.: Towards formal verification of real-
world SystemC TLM peripheral models - a case study. In: DATE (2016)

17. Schuster, T., Meyer, R., Buchty, R., Fossati, L., Berekovic. M.: SoCRocket - a
virtual platform for the European Space Agency’s SoC development. In: ReCoSoC,
pp. 1–7 (2014). http://github.com/socrocket

http://www.systemc-verification.org/ParCoSS
http://www.systemc.org
http://github.com/socrocket

	ParCoSS: Efficient Parallelized Compiled Symbolic Simulation
	1 Introduction
	2 Extended Intermediate Verification Language (XIVL)
	3 Implementation Details
	3.1 PCSS Library
	3.2 Fork/Join Based State Space Exploration
	3.3 XIVL to C++ Translation

	4 Evaluation and Conclusion
	References


