Standardizing the Human Interaction
in Websites Using Web Application Frameworks

Fernando Arango Isaza and Danny Alvarez Eraso™)

National University of Colombia, Medellin, Colombia
{farango,daalvareze}@unal.edu.co

Abstract. Web Application Frameworks (WAF's) are widely used nowa-
days to build quality web applications. However, developers have to code
views one by one because WAF's offer little support for giving uniformity
to the whole set of views. We propose the use of a View Code Generator
(VCG) to automatize the process and assure views uniformity. Besides
uniformity, our approach also reduces error sources, time to market and
improves the resources allocation efficiency in the overall software life-
cycle.

1 Introduction

Web Application Frameworks are widely used nowadays to build quality web
applications [1-3]. WAFs offer developers, a pre-defined Model-View-Controller
(MVC) architecture [4,5], improve code reuse [6], and several tools (or Helpers)
to implement components. In particular, most WAF's fully support the construc-
tion of highly customizable views.

However, most current WAFs offer no means for standardizing the whole set
of views. This means that developers must ensure that each application view
follows the same data displaying and human interaction strategy; making more
difficult the coding process.

This is inconvenient not only because the coding, per se, takes a great portion
of the development effort —in a meting with start-up companies they estimated
the coding task in 60 % of development effort—, but also because achieving the
required view standardization is difficult, if not impossible, in an environment
with multiple developers.

We propose the use of a View Code Generator (VCG) to assure views uni-
formity. In our approach the VCG divides the views specification in two steps.
The first one, named Object’s Visible Data Specification (or OVDS) specify the
data to be displayed in a particular view. The second, named Theme Specifi-
cation (TS) is common to all views and specify the data layout and view-user
interaction strategy.

To test our approach we coded a VCG in the PISIS Framework, a proprietary
WAF prototype. In our prototype the OVDSs were included as part of the classes
definition. Meanwhile, the TS was hard coded as part of the VCG.

This paper is presented as follows: Sect.1 covers the introduction, Sect. 2
presents antecedents to our work, Sect. 3 presents the VCG for displaying data,

© Springer International Publishing Switzerland 2016
C. Stephanidis (Ed.): HCII 2016 Posters, Part II, CCIS 618, pp. 3-7, 2016.
DOI: 10.1007/978-3-319-40542-1_1

4 F.A. Isaza and D.A. Eraso

Sect. 4 presents our proposal for human interaction standardization and in Sect. 5
we present the conclusions of our work and future work.

2 Antecedents

Rosales et al. in [7] present a recent systematic review on tools for automatic
code generation. Computer-Aided Software Engineering (CASE) tools are among
the most important tools. CASE tools are know for integrating methodologies
and technologies for generating executable source code with the system model
as input [7,8].

However CASE tools have disadvantages. Customization is limited in result-
ing applications, and those initial systems are harder to extend and maintain,
and integration with other systems is hard. So, their usability in web applications
that highly evolve is not easy.

On the other hand WAFs aid web development providing a flexible skeleton
that serves as the base for any application. Every WAF offers a set of helpers
for defining views: Sring Framework [9] aimed for java offers the JSP language
RubyOnRails [10] uses .erb files, and [11] aimed for PHP offers simple PHP files
as the template engine. Also, they offer pre-elaborated components for displaying
data and designing forms.

However these tools are far from generating the application using the design
diagrams as the only input. In particular, designing views with the available
helpers is a manual process that must be done for every view; this is a lot of
work. So, ensuring view uniformity is not easy.

As far as our knowledge reaches there is no WAF with automatic view gen-
eration are available.

3 View Code Generator and PISIS Framework

To reduce the work involved in designing views we propose the use of an auto-
matic VCG that receives both the data to be displayed and the TS as input to
generate all views following a set of conventions.

To test our approach we coded a VCG in the PISIS Framework, a proprietary
WAF prototype written in the PHP language. In our prototype the OVDS was
included as part of the classes definition. Meanwhile, the TS was hard coded as
part of the VCG.

Defining Useful Class Models: We use the classes in the model layer of the
MVC architecture as the core of our application. We added meta-data attributes
to classes in order to make them useful not only to describe the business entities’
data, but also to define what data will be displayed in the class views and the
navigation paths; these two constitutes the OVDS.

The class views are, the main class view showing the attribute values for
a class object, and the class “facets” that list the objects related to a class

Standardizing the Human Interaction in Websites 5

object trough the different class association links. By double clicking one of
those objects, the display focus shift to the information of that object. This
means that classes are the core of the navigation system, so, navigating from
one object to one element in one of his facets also changes the displayed object.

Defining the View Code Generator: After extending classes with view
and navigation information, we implemented an interpreter of that information
to automatize how requests are managed to display all data contained in the
database.

The PISIS Framework uses the Smarty template engine to implement the
interpreter. After that, we extended Smarty functionality using plug-ins to code
an interpreter of the object meta-data that constructs the corresponding HTML
component: labels, tables, lists, urls, etc. This interpreter allocate both the
object’s primitive and the available facets data based on the OVDS. This plug-in
is our VCG.

Even when our VCG is developed inside Smarty, it constitutes a new layer
between the controller and views layer. Theoretically, replacing Smarty for other
technology makes no difference.

About the Theme Support: Our VCG still needs a new interpreter for sport-
ing multiple themes, which will be defined using a specialized language. However,
as a first attempt, we hard-coded the theme inside the VCG.

4 Standardizing the Human Interaction Strategy

The views generated by our VCG cover CRUD (Create, Read, Update and
Delete) operations. This is done by, standardizing how HTTP requests are man-
aged by the controller layer and by including the same edition controls for table
or data lists.

To do this we implemented a single class that works as a master controller
capable of keeping track of the displayed object, managing transition to other
object and serving the creation and edition of records. This mechanisms was
automatically injected to all views.

This way we ensure that the human interaction strategy remains the same
in all views making easier for the final user to learn how to use the application.
This also reduces the need of developing multiple controllers and in consequence,
this strategy reduces the total development effort and improves maintainability.

So, in Fig. 1 we show PISIS Framework MVC architecture for automatic view
generation.

Reading and Displaying Records: The application has a default displayed
object from where the user can navigate to all the objects in the system. The
navigation elements displayed are the object facets and correspond to the object’s
visible data.

6 F.A. Isaza and D.A. Eraso

I Casmodes” — — T T T 71

Pa

class 1]

Clasz| vee

|
m New OID/ Master
I Actualization Controller
| : 1
| |
| 1
- — | I
_T View | T
1 Code
Full HTML Documents | Generator
Automatically Generated
View I controller
* Displayed Obect (DO) *Object Visible Data (OVD)
* Theme (T) *Qbject ID(OID)

Fig. 1. PISIS Framework MVC architecture for automatic view generation.

We defined a data manipulation layer to read database records and trans-
form them into objects. This layer is often referred as the WAF ORM (Object-
Relational Mapping) implementation. The current version of PISIS deals with
this by manually coding every interaction.

Inserting and Editing Records: Records can be inserted/edited in one of
the displayed object facets by using the edition controls available in all views in
edition mode, see Fig. 2. This allows the table lines to be used as edition forms,
multiple changes can be applied to the list but they are not intermediately
committed to database; data is written only after pushing the save button. The
reader must note that this behavior is useful to support undo/redo operations,
as well as convenient for reuse code for showing and editing records.

3007743 : Lenguajes Logicos y Funcionales

2013-3/ Mi-V 10-12 / M8-201
bibliografia ‘ estudiantes ‘ ‘ grupos ‘ [pruebas

¥ Secciones y Actividades del Curso

Introduccion:
o @ Historia y Multiplicidad de Lenguajes

g

o J |Lenguajes Declarativos vs. Lenguajes Procedurales
° ? Ejemplos en C y Haskell
Logica de Proposiciones:
° Elementos sintacticos: sentencias atémicas, conectores logic

° Elementos Semanticos: Interpretacion, tablas de verdad, mode

CAk A4 840 N4 A1 ACC

Fig. 2. PISIS Framework Edition controls.

Standardizing the Human Interaction in Websites 7

5 Conclusions and Future Work

We proposed a VCG to automatize and standardize the view generation process
in web applications using a Framework prototype. Also, we proposed a MCV
architecture that eliminates the need of writing controllers using the class models
as the core of the application definition. As a consequence, classes are the place
where the developer should focus the development effort.

Our approach saves a lot of coding effort as well as it standardizes the whole
set of views and the human interaction strategy. This is done by centralizing
HTTP request regarding CRUD operations in a master controller that later
passes the response to the VCG. Finally, the VCG generates the HTML docu-
ment and inject standardized edition controls.

Our future research is focused on the definition of a TS interpreter that allows
separating the Theme layout from the VCG. We will implement an interpreter
for supporting different TSs so that developers can build their own layouts.

We will define an ORM to replace improve our data manipulation layer and
reduce the need of writing SQL statements.

References

1. Chen, B., Hsu, H.-P., Huang, Y.: Bringing desktop applications to the web. IT
Prof. 18(1), 34-40 (2016)

2. Vuksanovic, I.P., Sudarevic, B.: Use of web application frameworks in the develop-
ment of small applications. In: MIPRO, 2011 Proceedings of the 34th International
Convention, pp. 458-462 (2011)

3. Shan, T.C., Bank, W., Hua, W.W.: Taxonomy of Java Web Application Frame-
works, p. 07 (2006)

4. Krasner, G., Pope, S.: A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. J. Object Oriented Program. 1, 26-49 (1988)

5. Leff, A., Rayfield, J.: Web-application development wusing the
Model/View/Controller design pattern. In: Proceedings of the Fifth IEEE
International Enterprise Distributed Object Computing Conference, pp. 118-127
(2001)

6. Schwabe, D., Rossi, G., Esmeraldo, L., Lyardet, F.: Web design frameworks: an
approach to improve reuse in web applications. In: Murugesan, S., Desphande, Y.
(eds.) Web Engineering. LNCS, vol. 2016, p. 335. Springer, Heidelberg (2001)

7. Rosales, V., Alor, G., Garcia, J., Zatarain, R., Barrén, M.: An analysis of tools
for automatic software development and automatic code generation, in Revista
Facultad de Ingenierfa Universidad de Antioquia, pp. 75-87 (2015)

8. Johns, M., Beyerlein, C., Giesecke, R., Posegga, J.: Secure code generation for web
applications. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS,
vol. 5965, pp. 96-113. Springer, Heidelberg (2010)

9. Spring.io: Spring Framework (2002). https://projects.spring.io/spring-frame
work/. Accessed 07 Apr 2016

10. Heinemeier, D.: Ruby on Rails (2005). http://rubyonrails.org/. Accessed 10 Mar
2016

11. EllisLab: Codelgniter Web Framework (2006). https://www.codeigniter.com/.
Accessed 07 Apr 2016

https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
http://rubyonrails.org/
https://www.codeigniter.com/

