Visual Debuggers and Deaf Programmers

. =
Marcos Devaner do Nascimento!®),
2

Francisco Carlos de Mattos Brito Oliveira?,
Adriano Tavares de Freitas®, and Lidiane Castro Silval

! Computer Science Department, Ceara State University,
Itaperi Campus, Fortaleza, Brazil
marcos@projetolead.com.br, lidcastro@gmail.com
2 Computer Science Department, University of Fortaleza, Fortaleza, Brazil
fran.oliveira@unifor.br
3 Computing Department, Federal Institute of Ceard, Maracanai Campus,
Maracanat, Brazil

adriano.freitas@ifce.edu.br

Abstract. We investigated how visual debuggers impact the perfor-
mance of a Java programmer who is deaf or hearing impaired (DHI).
In previous work, we had shown that despite having attended accessible
java course, deaf programmers still perform poorer than their hearing
counterparts in tasks like debugging. In this text, we show that visual
debuggers present a hope of bridging the gap between the two popula-
tions. Typical debugging tasks were assigned to both groups who used
industry standard IDE (Eclipse) and a Visual Debugger (JGrasp). Qual-
itative and quantitative analysis show advantages for the former.

Keywords: Debugger - Accessibility - Usability - Performance

1 Introduction

To secure a position in the workplace for deaf or hearing impaired (DHI) pro-
grammers, studies must show that they have performance similar to their hearing
counterparts. The Laboratory of Distance Education for People with Disabilities
creates and offers seven courses in information technology (IT) through our
accessible learning management system (LMS), among them a basic Java course
using the industry-standard Eclipse programming environment. Although our
LMS is equipped for the DHI and those with missing limbs, the focus of this
text is on the DHI java graduate.

We are interested in empowering the DHI programmer in the daily tasks of
a regular software engineer, such as software evolution, debugging. Some lessons
on our Java course are reinforced by programming exercises (or programming
workshops). Java workshops are implemented on LMS, which allows online col-
laboration between a tutor, a translator and the DHI [25]. Such collaboration is
part of our strategy to create and promote a collaborative environment between
a DHI programmer and a hearing coworker (tutor is not versed in sign language).

© Springer International Publishing Switzerland 2016
M. Antona and C. Stephanidis (Eds.): UAHCI 2016, Part III, LNCS 9739, pp. 26-37, 2016.
DOI: 10.1007/978-3-319-40238-3_3

Visual Debuggers and Deaf Programmers 27

We know that DHI graduates from our courses has inferior performance in
debugging tasks when compared to their hearing counterparts who took the very
same courses [11]. We expect visual debuggers and direct manipulation might
improve the performance of the DHI programmer. We compare how a visual
debugger (JGrasp) affects the activities of a DHI programmer in this paper. Ten
participants from our basic Java course were recruited to debug code in JGrasp
and Eclipse, in a between-subjects experiment. We emphasize that all subjects
have already had contact with the Eclipse tool for debugging activities in our
course.

Performance was measured by: (a) Time to complete the task (TCT); (b)
Number of times the subject asked for external help assistance (HA) and (c)
Number of tasks completed successfully (T'CS). These metrics were submitted
to the Mann- Whitney U-Test, the results were not statistically significant at p <
0.05. But, although the Eclipse tool may have be benefited due to the background
of the participants, the TCT, HA and TCS variables show a similar performance
between the two tools, with JGrasp showing some advantage. We can conclude
that the JGrasp makes use of elements that allow a better familiarization of the
features available.

A questionnaire based on the System Usability Scale (SUS) [5] was also
applied. The average SUS score for JGrasp was 72 and 50 for Eclipse. The
answers submitted to the Mann-Whitney U-Test give us a p-value of 0.01, a
statistically significant result, thus we can conclude that JGrasp was better eval-
uated, usability-wise.

A simular study is presented in [11]. However, in this paper, we show some
aspects of the teaching of DHI. In this way, we can justify more appropriately
the use of visual tools in the deaf learning. Besides, the analysis of the results
is more robust and consistent: the statistical test in the previous work was not
very suitable for the experimental design and sample size; furthermore, we show,
in this article, a qualitative analysis of the studied tools which allows us to
understand what the DHI feel and think on the use of visual tools.

The structure of this paper is as follows: we show some aspects of deaf learning
in Sect. 2. We, then present the theoretical background in Sect. 3, which deals with
direct manipulation and development environments. In Sect. 4, we present related
work concerning visual debuggers. Section 5 shows our study design and subject
profile; and in Sect. 6 we present and discuss the results. Finally we present our
proposal to build an integrated development environment (IDE) that should keep
the gains of an accessible java learning environment, as reported in [25] and add a
direct-manipulation inspired visual debugger.

2 Deaf Learning

Research shows that students with profound deafness degree have lower acad-
emic achievement compared with their hearing counterparts in all educational
environments [14,18,27].

Bull and colleagues [6] show that deaf students have more difficulty in absorbing
mathematical concepts when compared to listeners during their learning process.

28 M.D. do Nascimento et al.

But hearing loss can not be the cause of the problem. Nunes and Moreno [19] argue
that poor mathematical performance comes from a risk factor related to time, type
of education and learning opportunities for deaf students. To support this thought,
Zarfaty and colleagues [29] showed that 3—4 year-old deaf children have spatial and
time skills comparable to his hearing colleagues with the same age and they also
have better spatial numerical skills.

Barbosa [1] argues that deaf children and listeners seem to have similar per-
formance in cognitive functions less dependent on linguistic stimuli. For Borodit-
sky [4], bilingual people show divergence on the same subject when they have
to approach it in both languages. This change in language also has an impact
on memory. Finally, the author posits that language shapes even the most basic
dimensions of human experience: space, time, causality and relationships with
others.

Most of the educational materials were designed for listeners. For Perlin [21],
the “listener culture” is essentially made up of auditory signals that deaf people
do not use. On the other hand, the deaf use visual signals to understand the
world around them. Furthermore, It is not just the lack of appropriate teaching
materials, the Brazilian Sign Language (Libras) is relatively young and has a
poor vocabulary, compared to Portuguese and lacks many technical terms in
many areas. Online forums can be used for creating these terms. Oliveira and
colleagues [20] present a comparative study on the acceptance of signs created
in person and remotely. They show that acceptable and legitimate signs can also
be produced using web discussions and the users can not distinguish from which
method they come from.

Blatto-Vallee and colleagues [3] show that the use of visual-spatial schematic
representations is a strong positive predictor of mathematical problem solving
performance for deaf students. For Pinto [22], visuality seems to represent, for
the deaf, the main channel for thinking and processing schemes which naturally
allows the acquisition, construction and expression of knowledge, values and
experiences that, otherwise, would be unreachable. The visual channel allows
the reading of the deaf world and it is the support of their mental processing.
The authors report the improvement self-esteem, interest and engagement among
the deaf, when drawings, images and visual manipulations were used in science
education, geography, art and history.

Although there are various visual Java debuggers, to our knowledge, none
had been tested with the deaf. Before proceeding with the discussion of visual
Java debuggers available, we must warn that users who use sign language hold
less information in their short-term memory when compared to non-DHI [2].
This may be partly due to the nature of the visual-spatial information necessary
for the DHI [28].

In a recent research, Sorva and colleagues [26] point out that in the last three
decades, dozens of software systems have been developed in order to illustrate
the runtime behavior of software for novice programmers. However, a desirable
visual debugger for the deaf student should: (1) not overload the visual mode; (2)
offer the programmer portability and flexibility to be used in different workplace
settings; (3) have intuitive interface with accessibility features.

Visual Debuggers and Deaf Programmers 29

3 Direct Manipulation and IDE’s

For Hutchins [15], direct manipulations are visual interfaces in which users oper-
ate on a representation of objects of interest. Rose [23] argues that visibility of
objects and actions on these objects produce a significant difference in productiv-
ity. In some studies cited by the author, these features allow a better domain of
the interface; more competence in performing tasks; ease of learning both basic
and advanced functions; confidence that the user will continue to dominate the
interface even if she stops using it for a while; satisfaction in using the system:;
increases the will of teaching others; and the desire to explore more advanced
aspects of the system [23].

Some integrated development environments (IDEs) have applied not only the
concept of direct manipulation as well as the concept of visualization, to making
complex tasks like debugging a code simpler and more intuitive. Moreno [17]
argues that say that because of the ease of using these instruments, which are
intended for the early stages of a programmed learning process, the strategy is
to make the objects and values visible and manipulated graphically.

Cypher and collegues [10] show that the concepts of direct manipulation
applied to development environments can generate greater productivity for
developers. It is a concept that helps in the development of logic, since materi-
alizes abstract concepts, allowing less cognitive demand for the interpretation of
mathematical logic and also allowing the implementation of computational logic
in the development of algorithms.

DHI are strongly rely on visual input [12] and it is reasonable to assume that
they will benefit from an IDE with these characteristics.

4 Related Work

Visual debuggers implement, by its conception, direct manipulation strategies. In
this section, we show some visual debuggers, briefly discuss how they implement
such strategies. We also choose one of them to use in the study reported in this
text and justify our choice.

4.1 Visualizing Programs with Jeliot 3

Jeliot 3 [17] is a tool designed for pupils to learn procedural or object-oriented
programming. Its main feature is the total or partial view of source codes and
control flows. Using this tool, students can develop and, at the same time, see
the visual representation of a running code. During this process students acquire
a mental model of computing that helps to better understand the construction
of the program.

The system is easy to use, has consistent, complete and continuous view and
supports viewing a large subset of programs written in Java. The layout of this
tool is divided into four parts: methods, constants, area for expression evaluation
and instance area as we can see in Fig. 1.

This program seeks to be as consistent as possible in order to reduce the
cognitive load of students during learning. Despite its many qualities, we evalu-
ated that the tool has too many visual information presented at once and that

30 M.D. do Nascimento et al.

Urogram Ldit Control Animation Help

1 import jeliot.io.*: ::
2 p
: ’ ‘ Method Area Expression Evaluation Area
3 class SimpleExample { 4
4 static void main{) { /|| | SimpleExample main x@-
5 ‘ -453 m
6 int a = Input.readInt(): int a -,--IZ'
2 int b = 6; 4
8 float ¢ = {a * b)/100: / “
9 Output.printlnic): 4
10)
11)
12
13
14
15 /
16 Instance and Array Area
i /
18
19
20 /
21 / Constant Area
22 7
23 4 -
24 < || |[GONSTANTE
117777 I
Output
© & » ||«
Edit | Compile Step Play Pause Rewind
Animation —X

JELIOT et TR

000

Fig. 1. Jeliot Interface

might confuse the deaf student. Complex diagrams easily become confused and
difficult to read. Studies show that graphical approaches are more efficient when
the task requires pattern recognition, but not when the visual field is too full of
objects and the task requires detailed information [13].

4.2 Java Interactive Visualization Environment (Jive)

Jive [7] is an interactive execution tool developed by the Department of Science
and Computer Engineering from the University of Buffalo. This system is used
for: (a) debugging Java programs with rich views of object structure and interac-
tions between methods; (b) facilitating maintenance software; providing insight
into the dynamic behavior of programs and (c) teaching and learning Java.

It was originally designed as a stand-alone Java application. Later it was
redesigned to the Eclipse platform and consists of a set of plug-ins and features.
Its distribution takes place using the Eclipse update manager. It provides two
main views to display the running Java programs: the object diagram view and
the sequence diagram view.

This tool uses the object diagram that demand prior knowledge of this type
of diagram, which can generate DHI greater cognitive effort by removing the
focus of logic to the concepts linked to the diagram. Therefore, we judged that
it is not appropriate for the studied scenario.

Visual Debuggers and Deaf Programmers 31

4.3 JGrasp

JGrasp [8] is an IDE developed to provide dynamic and illustrative views of Java
data structures. These views are generated automatically and synchronized with
the data structures in the source code. The user can step through the code
in debug mode or workbench. This integration allows a single environment for
learning data structures. The use of this tool in classroom has been an important
aide for teaching students who deal with such structures, the authors claim.

@@ jGRASP [(=]}
File Edit View Project Settings Tools Window Help

a
Ai=10 : i I
A x=10.0
~ls—=>"an¥ s =
Type java.lang.String [Current] ~ Viewer Presentation -4
M Wwidth =0 4.0 Scale % 1.0 Elements: 13

= v e | e e e
0 1 2 3 4 5 6 7 8 9 10 M 12

3 TETOU~ T KO UUKAOT

Evaluate Expression > :' charat(9)

~||_Se " almost done ";

> s =

Browse Find » L I

Debug = Workbench < .
[C)M™ status: interactions active

Fig. 2. JGrasp Interface

Studies conducted with students indicate that the tool can have a positive
and significant impact on student achievement [9]. Pupils were more productive
and more capable of detect and fix logic errors using JGrasp [16].

JGrasp runs mainly in Java Swing and its components implement parts of the
Java Accessibility API. This allows some elements to be available for assistive
technologies. The elements include: text of the source code, text of other Ul
components and an alternative text to graphics components. It also produces
source code and views at runtime [8]. Among other visual debuggers surveyed we
can identify that this tool uses the technique of direct manipulation of objects
which made it stood out from the others. In this tool, students can drag a
variable, drop it into the canvas window and a Presentation viewer opens to
scan it, as shown in Fig. 2.

5 The Study

We were poised to investigate the effects of a visual code debugger, which uses
the direct manipulation technique in the performance of DHI programmers. We
compare the DHI performance in tasks using JGrasp and Eclipse.

32 M.D. do Nascimento et al.

5.1 Participants and Methodology

We recruited ten deaf participants, all male, aged between 25-36 of age, all
graduates from the basic Java course offered by our laboratory. In a between-
subject design, the participants were ramdomly assigned to either one of two
groups: the first group performed the tasks using the JGrasp tool and the second
group using Eclipse.

The participants received a Java algorithm that simulates bank transactions:
withdraw (Subtract any value of the remaining balance) and deposit (Add some
value to the balance exists).

Errors were deliberately included in the methods so that participants could
debug the code, identify and correct them, as shown in Figs.3 and 4. All trials
were videotaped and partcipants interviewed for qualitative analysis. Quantita-
tive data were extracted from video analysis.

3 Detwg - TEste/sr/Programa o

Fle (40 Sewce Pefacser Novgute Semch Prapect Ren Wndow Help
. IR R @D O v Qe i e P I e ()1 [e Cre v |1
ek Acee ol &' e (O Oty
© Ootwp ! kR *~o I
o 1) Pragrams [lovs Apphcstion]
o & Pogeva st oo 30901
o P Theard jman) (Sunpended (eeatport st bee 7 in Pragramal)
B Progiamamanciteng() bae 7
o CAPvagram P\ 40 1 7020 o pre b v (B0 2073 10 §3.47)
() Programajaa 17) Coota o o0
1 -
i class Programs (
PALIC static vald maleString] args) (
Conte nishaConts;
! SIARICONES = mew Conta();
. Systes.ovt, peintin*salde stusli * « sishalonts.salde);
N S1RACONES, Ceposita(309);
- Sten.ovt printing*Seldo stuell * & sishalovta.seldn);
o edahacorts. saca(ion);
Systes.ovt. peinting*Saldo atuals * + slshalonta. salde);

Fig. 3. Subject using Eclipse IDE

A script with four tasks was given to participants to assist them in the
process: (a) Adding a breakpoint in the Withdraw() and Deposit() methods; (b)
Debugging to check if the return values are consistent with the objective of the
method; (c) Fixing any problems found; (d) Debugging again to verify if the
calculations are correct.

O L6t Yoew Dol obeg Duect Semags Inh Diedow Do

ag®é X28e 000 wav ¢2eENE

Fie: Programa i CAlservymarcor devaner Decksog - (GRASP €SO () -0

Visual Debuggers and Deaf Programmers 33

Ok MY 9> ox

|
»
ciaar Progiass |

o= Taesats paaiic seatic vl fy (0 Yow B ode) B0
—, lizte mirrelcg
- 4 o8m > ua n-:O—‘.unxi“u') 83>
Programanan Programas)i+ -
< PO R
] nIraaliees e
Syeten ot ge
] 122932210904 .
Systen st pe B O .
L L | T 1
) . »
varwws | : (e (1eone)
- o
] Nprwy
Wrs > on 29 ateg Regi) e ey
t O
+ [oot > ey 1 Coma) Com

BOF mataConta - iy 491 Contal Conta; Ranc wewnt

.

x(—— l mm [ﬂm-mv—m.«-——'-‘ J
Comple Websages JAASO teages | Rt IO | Idecactons
[Tie || | 3a360 evsas 3000.0 <
L d Sa100 atualr 1999.0
o Saldo ateals 3630.0
—_ GAS1 cperation complete.
(M7
]» 20083 7 -X2COge3T -37478. CORPIIATICHD -XSA00] -XFAIOMpITIANIPEITSIT N o
| =L l"": cosaedt e el I
—] - v !"

Fig. 4. Subject using Jgrasp IDE

Table 1. Results by Task - Situated Analysis

Tasks TCS HA Average TCT
JGrasp | Eclipse | JGrasp | Eclipse | JGrasp | Eclipse
Adding a breakpoint in the |4 5 1 2 00:26s | 01:02s
Withdraw() and Deposit()
methods
Debugging to check if the 4 2 5 4 02:06s | 02:51s
return values are
consistent with the
objective of the method
Fixing any problems found 5 3 4 01:39s | 02:08s
Debugging again to verify if |4 2 4 4 01:46s | 02:45s
the calculations are
correct

Methods, analysis and evaluation were applied to both experimental con-

ditions. We use the situated

testing technique to measure participants’ perfor-

mance when debugging task. For this analysis we observe the following variables:
(a) time to complete the task (T'CT); (b) number of times the subject asked for
external help (HA) and; (c) number of tasks completed successfully (TCS).

34 M.D. do Nascimento et al.

We've also applied the System Usability Scale (SUS) standard questionnaire
(Likert Scale) so that the participants could evaluate the usability of the tools.
SUS provides a reliable way to measure usability, is based on the heuristics of
Nielsen [5].

6 Results and Discussions

6.1 Quantitative Analysis

Despite the fact that subjects were familiar with Eclipse (it was the tool used
in their 120 h Java course), the numbers favor JGrasp, although not statistically
significant. TCT, HA and TCS showed in Table1 indicate that.

For each participant, we submitted the TCS, HA and TCT values to the
two-tailed Mann- Whitney U-Test, the results obtained are shown in Table 2. All
the results were not significant at p < 0.05.

Table 2. Two-tailed Mann-Whitney U-Test results

U-value | Critical value | p-value
TCS |6 2 at p <0.05 | 0.2113
HA |65 2 at p <0.05 | 0.25014
TCT |7 2 at p < 0.05 | 0.29834

The average SUS score for JGrasp was 72 and 50 for Eclipse. Researches indi-
cate that a SUS score above 68 [24] is considered above average. The results indi-
cate that JGrasp tool has better usability, according to participants evaluation.

We also applied the SUS scores to the two-tailed Mann-Whitney U-Test.
The U-value obtained was 1 and the p-value was 0.02144. The result is therefore
significant at p < 0.05. In other words, there is a significant difference in the
usability of the two tools.

6.2 Qualitative Analysis

When asked if they would like to use this system frequently, three of five partic-
ipants who used JGrasp strongly agree that they would like to use the system
more often. They commented that the use of the debugger increases the knowl-
edge through practice. This is possible due to the well location of information
on the screen which facilitates the use of the tool. On the other had, from the
five participants who tested Eclipse, two strongly liked. From their comments,
some participants had forgotten some functions and they also said that they
need more practice to be able to use all features of the systems.

When questioned about complexity of the system, all participants disagreed
that JGrasp is complex. Eclipse was described as complex for 40 % of its users.

Visual Debuggers and Deaf Programmers 35

In the comments, they reported lack of knowledge or difficulty in finding icons
in toolbars.

We also asked if the system is easy to use. All five JGrasp users reported
no difficulty. Eclipse users, on the other hand, reported that although the tabs
are well positioned, the windows are not easy to interpret. They said it is due
to visual appeal and one reported that the system needs to be more visually
organized because this is an important issue for a deaf user.

The need of assistance to use the system was another question to the partic-
ipants. Two JGrasp users agreed that they do not need help to use the system.
Only one Eclipse user strongly disagrees with the need of assistance. The lack of
knowledge of the system was the cause that justify the need of help to answer
the tasks.

The subjects were asked whether the various system functions were well
integrated. All JGrasp users reported that it is well organized and easy to use and
three of them answered that the system is not complicated because it offers best
practices for working with the programmer. Eclipse users commented it contains
not grouped windows and features; and the icons are not interactive, therefore
hindering the understanding of the tool. Three of the users said reported that
the functions are far from one another.

When asked if most people would learn to use the system quickly, all users
commented that it depends on development experience and training, and the
learning would be fast both in JGrasp as in Eclipse. Confidence when using the
system was well evaluated in both tools. They say that the more knowledgeable
you are in programming, the more confident you get using the tools.

Finally we asked whether it is needed to learn many things before using the
system. All users reported that they need to learn and practice before the use
of the systems. Two JGrasp users strongly agree with the question, while four
Eclipse users strongly agree.

The use of JGrasp platform among deaf users was more acceptable for pre-
senting visual appeal and better distribution of functionality to the developer.
Although the activities to be developed for both two groups needed the assis-
tance for completion, we must emphasize that some users who were in the Eclipse
group already knew the tool. Thus it is justified the use of JGrasp as a good
debug tool for deaf.

7 Conclusion

Providing adequate learning materials, environment and tutoring is not enough
to bridge performance gap between deaf or hearing impaired programmer and
their hearing confederates in real world tasks. Debugging is just part of the many
activities a software developer is involved in. In this paper, we discuss various
concepts and research to improve the performance of DHI programmers in tasks
related to debugging. We found that systems with a visual approach combined
with direct manipulation of objects are preferred by the DHI community.

The findings reported here just encourage further investigation. There is lot
to be done. One thing is sure: We have to intervene in the workspace to improve

36 M.D. do Nascimento et al.

productivity of the DHI programmer. How far should we use vision is a tricky
question. Vision has greater importance the DHI and we should avoid overloading
it. We will carefully design a visual debugger for the DHI, having that in mind.
We should also integrate this visual debugger with our learning object JLoad [25].
In this way we will have an interactive development environment and Java code
debugging, which followed the standards of accessibility and will allow students to
create their codes in an interactive web environment, eliminating the installation
and configuration of an IDE on your machine, bringing mobility for students.

We are currently investigating how several information visualization tech-
niques can be used (alone or in a combined way) to cement that improvement
and embed it in our LMS. No visual debugger was conceived with the DHI
programmer in mind.

References

1. Barbosa, H.H.: Initial mathematical skills in listeners and deaf children. Cad. Cedes
91, 333-347. Title in Portuguese: Habilidades Matematicas Iniciais em Criangas
Surdas e Ouvintes

2. Bavelier, D., Dye, M.W., Hauser, P.C.: Do deaf individuals see better? Trends
Cogn. Sci. 10(11), 512-518 (2006)

3. Blatto-Vallee, G., Kelly, R.R., Gaustad, M.G., Porter, J., Fonzi, J.: Visual-spatial
representation in mathematical problem solving by deaf and hearing students. J.
Deaf Stud. Deaf Educ. 12(4), 432-448 (2007)

4. Boroditsky, L.: How language shapes thought. Sci. Am. 304(2), 62-65 (2011)

5. Brooke, J.: Sus - a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4-7 (1996)

6. Bull, R., Blatto-Vallee, G., Fabich, M.: Subitizing, magnitude representation, and
magnitude retrieval in deaf and hearing adults. J. Deaf Stud. Deaf Educ 11(3),
289-302 (2006)

7. Cattaneo, G., Faruolo, P., Petrillo, U.F., Italiano, G.F.: Jive: java interactive soft-
ware visualization environment. In: 2004 IEEE Symposium on Visual Languages
and Human Centric Computing, pp. 41-43. IEEE (2004)

8. Cross, J.H., Hendrix, D., Umphress, D.A.: JGRASP: an integrated development
environment with visualizations for teaching java in CS1, CS2, and beyond. In:
34th Annual Frontiers in Education, FIE 2004, pp. 1466-1467. IEEE (2004)

9. Cross, J.H., Hendrix, T.D., Jain, J., Barowski, L.: A: dynamic object viewers for
data structures. ACM SIGCSE Bull. 39(1), 4-8 (2007)

10. Cypher, A., Halbert, D.C.: Watch What I do: Programming by Demonstration.
MIT press, Cambridge (1993)

11. do Nascimento, M.D., de Mattos Brito Oliveira, F.C., de Freitas, A.T: How do
deaf or hearing impaired programmers perform in debugging java code? In: Anais
do Simpésio Brasileiro de Informatica na Educagao, vol. 25, pp. 593-601 (2014)

12. Gesueli, Z.M., de Moura, L.: Literacy and deafness: the words display. ETD:
Educacao Temética Digital 7(2), 110-122 (2006). Title in Portuguese: Letramento
e surdez: a visualizagao das palavras

13. Graciano, A.B.V.: Object tracking based on pattern structural recognition: Ph.D.
thesis, Sao Paulo University (2007). Title in Portuguese: Rastreamento de objetos
baseado em reconhecimento estrutural de padroes

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Visual Debuggers and Deaf Programmers 37

Gregory, S.: Mathematics and deaf children. Issues Deaf Educ. 119-126 (1998)
Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Hum.
Comput. Interact. 1(4), 311-338 (1985)

de Aquino Leal, A.V.: Teaching programming in high school: An approach using
standards and games with concrete materials. Master’s thesis (2014). Title in Por-
tuguese: Ensino de Programagdo no Ensino Médio Integrado: Uma Abordagem
Utilizando Padroes e Jogos com Materiais Concretos. http://repositorio.bc.ufg.br/
tede/handle/tede/3613

Moreno, A., Joy, M.S.: Jeliot 3 in a demanding educational setting. Electron. Notes
Theor. Comput. Sci. 178, 51-59 (2007)

Nogueira, C.M.I., Zanquetta, M.E.M.: Deafness, bilingualism and traditional teach-
ing of mathematics. Zetetiké: Revista de Educagdo Matemdtica 16(30), 219-
237 (2009). Title in Portuguese: Surdez, bilingiiismo e o ensino tradicional de
Matematica: uma avaliacao piagetiana

Nunes, T., Moreno, C.: Is hearing impairment a cause of difficulties in learning
mathematics. Dev. Math. Skills, 227-254 (1998)

de Oliveira, F.C., Gomes, G.N., de Freitas, A.T., de Oliveira, A.C., Silva, L.C.,
Queiroz, B: A comparative study of the acceptability of signs for the brazilian
sign language created in person and remotely. In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, pp. 207-211. ACM (2015)
Perlin, G.: The place of deaf culture. A invengdo da surdez: cultura, alteridade,
identidade e diferenca no campo da educagdo, pp. 73-82 (2004). Title in Por-
tuguese: O lugar da cultura surda

de Souza Pinto, M.A., dos Santos Gomes, A.M., Nicot, Y.E.: The visual experi-
ence as a facilitator in science education for deaf students. Revista Areté: Revista
Amazonica de Ensino de Ciéncias 5(09) (2014). Title in Portuguese: A experiéncia
visual como elemento facilitador na educagao em ciéncias para alunos surdos
Rose, A., Plaisant, C., Shneiderman, B.: Using ethnographic methods in user inter-
face re-engineering. In: Proceedings of the DIS 1995: Symposium on Designing
Interactive Systems, pp. 115-122 (1995)

Sauro, J., Lewis, J.R.: Quantifying the User Experience: Practical Statistics for
User Research. Elsevier (2012)

Silva, L.C., de Oliveira, F.C., de Oliveira, A.C., de Freitas, A.T.: Introducing
the jLoad: a java learning object to assist the deaf. In: 2014 IEEE 14th Inter-
national Conference on Advanced Learning Technologies (ICALT), pp. 579-583.
IEEE (2014)

Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization
systems for introductory programming education. ACM Trans. Comput. Educ.
(TOCE) 13(4), 15 (2013)

Traxler, C.B.: The stanford achievement test: national norming and performance
standards for deaf and hard-of-hearing students. J. Deaf Stud. Deaf Educ. 5(4),
337-348 (2000)

Wilson, M., Emmorey, K.: Comparing sign language and speech reveals a universal
limit on short-term memory capacity. Psychol. Sci. 17(8), 682—-683 (2006)
Zarfaty, Y., Nunes, T., Bryant, P.: The performance of young deaf children in
spatial and temporal number tasks. J. Deaf Stud. Deaf Educ. 9(3), 315-326 (2004)

http://repositorio.bc.ufg.br/tede/handle/tede/3613
http://repositorio.bc.ufg.br/tede/handle/tede/3613

	Visual Debuggers and Deaf Programmers
	1 Introduction
	2 Deaf Learning
	3 Direct Manipulation and IDE's
	4 Related Work
	4.1 Visualizing Programs with Jeliot 3
	4.2 Java Interactive Visualization Environment (Jive)
	4.3 JGrasp

	5 The Study
	5.1 Participants and Methodology

	6 Results and Discussions
	6.1 Quantitative Analysis
	6.2 Qualitative Analysis

	7 Conclusion
	References

