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Abstract. One major challenge to the real-world use of brain-computer inter-
face (BCI) technology is the decrease in classifier performance caused by
degradations in electroencephalogram (EEG) signal quality due to artifacts from
non-neural electrophysiological activity and the gross movement of sensors and
other EEG hardware. These artifacts can contaminate or mask the neural signal
and thus cause a decrease in the performance of BCI classifiers due to the
system’s diminished ability to extract relevant features. One strategy to combat
this effect is to identify and remove artifact-contaminated segments of data. We
compared four methods that utilize higher order statistics to detect and artifact
data on their ability to improve BCI classifier performance. We evaluated these
methods on two datasets: a motor movement task and a rapid serial visual
presentation (RSVP) task. In addition to comparing artifact detection methods,
we compared the improvement in BCI classifier performance gained by
removing artifact data to the decrease in performance caused by diminishing the
amount of data available for classifier training. We found that overall the use of
abnormal spectra to detect artifacts resulted in the greatest improvement to BCI
classifier performance.

Keywords: Brain-Computer Interface (BCI) � Electroencephalography (EEG) �
Artifact detection

1 Introduction

One crucial aspect of any brain-computer interface (BCI) system is a pre-processing
pipeline that removes or mitigates non-neural signal components. This requirement is
especially important when electroencephalography (EEG) is used to record neural
activity, as the amplitude of the measured neural signal is small relative to electro-
physiological and environmental noise. Generally, any recorded signal component from
a non-neural source that is equal or larger in amplitude to the target brain-derived
components is referred to as an artifact. These include non-neural electrophysiological
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activity as well as non-physiological sources of noise. Common physiological sources of
artifacts include muscle activity, cardiac activity, eye blinks, and eye movement [1–3].
Non-physiological sources of artifacts include 50/60 Hz line noise, poor electrode
contact, and cable sway [3]. Good BCI design attempts to control for and prevent
artifacts, however, some artifacts such as eye blinks simply cannot be avoided, espe-
cially as research and BCI application moves out of confined settings and into more
realistic, natural scenarios [4].

Artifacts can distort or mask the neurogenic signal in both the time and frequency
domains [1]. BCI classifiers commonly extract time-amplitude or spectral features from
EEG data to build a model distinguishing two or more different classes [5–9]. These
classes may represent different behaviors, such as a left or right hand finger movement
[5], or the neural responses to different stimuli, such as the presentation of a target or
non-target image [6, 8]. The presence of artifacts can prevent a BCI classifier from
building an accurate model, as the features extracted from contaminated training data
may represent properties of the artifact rather than the underlying neural process.
Additionally, the presence of artifacts in test data can cause misclassification even
when the classification model is accurate. Thus it is beneficial to identify segments of
data that are contaminated by artifact and remove them.

There exist multiple computationally efficient methods to identify segments of data
contaminated by artifacts. These methods have typically been evaluated by computing
a hit-rate using manually labeled artifact periods [2]. Using manually-labeled test data
provides an evaluation criterion for a researcher looking to improve data quality for the
sake of producing better statistical differentiation between experimental conditions or
create a better visual representation of a neural process, but may not accurately inform
the BCI developer about which artifact detection method will have the most positive
impact on real-world BCI performance. For instance, it may be the case that the
features used by a classifier are not affected by the presence of one or more types of
artifacts, making the classifier resilient to their presence. Thus, the very definition of
noise and artifact may be different to the BCI developer than it is for the researcher.

Additionally, the performance of a BCI classifier may actually decrease if the
remaining data is insufficient to train an accurate model. That is, models can be overfit
when data is too limited. There is a trade-off between improved performance due to
the removal of artifact-contaminated data and a decrease in performance due to the
reduction in the number of training samples; this tradeoff may differ depending on the
BCI paradigm being used, the robustness of the classifier to noise, and the robustness of
the classifier to a diminished training set.

In this work, we evaluate the ability of several popular artifact detection methods to
improve the classification accuracy of common BCI classifiers. We compare these
results to a case in which the training set size is held constant in order to distinguish the
effects of removing artifact-contaminated data from that of reducing the size of the
training set.
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2 Background

2.1 BCI Classifiers

Three popular BCI classifiers were used for evaluation: common spatial patterns (CSP),
hierarchical discriminant component analysis (HDCA), and xDAWN. CSP is designed
for motor imagery and motor movement discrimination. CSP learns spatial filters to
create components that maximize the ratio of variance between two task conditions,
then uses the normalized log of variance of the component response as a feature for
task discrimination [5, 9]. HDCA is a general-purpose classifier that is robust to
temporal variability in the neural response. It divides data epochs into equal-sized,
non-overlapping segments, trains a logistic regression classifier on each segment, then
uses the output of each classifier to train a final logistic regression classifier that makes
the final discrimination decision [6]. xDAWN was designed for oddball event detection
and is commonly used for target detection in RSVP paradigms. It creates spatial filters
to maximize the signal to signal plus noise ratio then trains a Bayesian linear dis-
criminate analysis classifier on the resulting components [8].

2.2 Identifying Artifacts Using Signal Statistics and Spectral Power

One common method to deal with artifact-contaminated data is to simply remove it [1].
Prior to analysis, full datasets are commonly separated into equal-sized segments,
called epochs, which are time-locked to events of interest. Delorme et al. [2] presented
several methods using higher-order statistics, extreme values, and power spectral
density to identify artifact-contaminated data. They showed that all of these methods
were effective in identifying artifacts and that the detection of abnormal spectra was
especially effective. We used four artifact detection methods presented in this work to
rank the quality of data epochs: kurtosis, joint probability, extreme values, and
abnormal spectra. Details of these methods can be found in [2, 10], but are paraphrased
below.

Kurtosis. Kurtosis is a measure of the ‘peakedness’ of the probability distribution of a
set of values. It is computed as the fourth standardized moment:

kurtosis xð Þ ¼ Efðx� l xð Þ4g
ðEf (x� l xð Þ2g )2

ð1Þ

where x is the vector of data, E{} is the expectation operator and μ is the mean of the
data. The kurtosis of the normal distribution is 3. Kurtosis values much lower than 3 are
indicative of data that is mostly concentrated above and below the mean, with few
values near the mean. This may reflect a process that varies rapidly between two values,
such as an AC artifact, or a sudden change in signal amplitude offset, such as a
mechanical movement of the electrode or an ocular artifact [2]. Kurtosis values much
higher than 3 are indicative of data that is mostly concentrated close to the mean. This
reflects a process in which the majority of the values are the same, such as in the case of
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a disconnected electrode. Thus, data with an excessively large or small kurtosis may
contain an artifact.

Joint Probability. Another method to utilize the distribution of values within an epoch
to detect artifacts is joint probability. In a broad sense, it computes the likelihood of
observing the distribution of values in an epoch, given the distribution of values in the
entire dataset. A probability density function (De) is computed for each electrode
(e) using the entire dataset. Within each epoch (i), the joint log probability of values is
computed for each electrode using:

Je ið Þ ¼ � logð
Y

x2Ai

pDeðxÞÞ ð2Þ

where pDe(x) is the probability of observing the value x given De over all data in
channel e and Ai are the values in epoch i.

Extreme Values. Neurogenic EEG signals are typically smaller than 100 μV in
amplitude [1]. Large deviations in signal amplitude are then most likely the result of
non-neural signal contamination. Thus, segments of data containing values much larger
in amplitude than the rest of the dataset may contain an artifact.

Abnormal Spectra. Clean EEG has a frequency range of 0.01 to 100 Hz and has a
power spectral density (PSD) that falls off roughly proportional to increasing frequency
[1]. Some artifact types have characteristic spectral properties that cause abnormal
deviations from the typical EEG PSD. For example, muscle artifacts have a large power
concentration between 20–60 Hz and eye-related artifacts have a large power concen-
tration between 1–3 Hz [2]. Segments of data displaying large increases in power
amplitude in these frequency ranges relative to the rest of the data may contain an artifact.

3 Methods

We evaluated our chosen artifact detection methods on their ability to improve BCI
performance using two different BCI paradigms as exemplar cases. The first data set
was a finger movement study in which subjects performed self-paced movement of the
middle and index fingers of both hands. The second data set was a rapid serial visual
presentation (RSVP) study in which subjects were asked to detect targets of interest
within a stream of rapidly presented visual stimuli.

3.1 Participants

We used data from 14 of 18 participants in a rapid serial visual presentation (RSVP)
experiment and from 11 of 12 subjects in a motor movement experiment. Datasets
containing excessive artifacts were deemed inappropriate for the current study and
excluded. The investigators obtained the approval of the Institutional Review Boards of
the Army Research Laboratory’s Human Research and Engineering Directorate and
adhered to Army policies for the protection of human subjects [11, 12].
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3.2 Stimuli and Procedure

Insurgent-Civilian RSVP. Subjects were seated in front of a computer monitor and
presented simulated images from a desert metropolitan environment. Images were
presented at a rate of 2 Hz. In each image, if a person holding a gun was present it was
considered a target image; if no humans were present in the image it was considered a
non-target image. Subjects were instructed to attend to the presented images and count
the number of target images. A total of 110 target images and 1346 non-target images
were presented to each subject. For more information regarding this study, see [13].

Finger-Tapping. Subjects performed self-paced finger tapping movements using the
middle or index finger of either hand. The time at which the downward movement of
the finger was completed was recorded using a force-detecting switch. Subjects were
instructed to leave between 4 and 5 s between successive taps. In each two minute
block, the subject was told which finger to tap. The finger being tapped was changed on
each trial. Subjects completed a total of 32 blocks so that each finger was used in 8
blocks.

3.3 Physiological Recording

Insurgent-Civilian RSVP. EEG data were recorded at 1024 Hz from 64 scalp elec-
trodes using a BioSemi ActiveII system (Amsterdam, Netherlands). Channels were
referenced offline using the average potential measured at two electrodes placed over
the left and right mastoids. The data was bandpass filtered 0.1–50 Hz to reduce signal
drift and high frequency noise.

Finger-Tapping. EEG data were recorded at 1024 Hz from 256 scalp electrodes using
a BioSemi ActiveII system (Amsterdam, Netherlands). Channels were referenced
offline using the average potential measured at two electrodes placed over the left and
right mastoids. The data was bandpass filtered 0.1–50 Hz to reduce signal drift and
high frequency noise.

3.4 Rejecting Epochs Based on High-Order Statistics

BCI Classification. CSP and HDCA were used to discriminate left from right hand
finger movements in the finger-tapping dataset. Finger-tapping data was resampled to
128 Hz and RSVP data was resampled to 256 Hz. None of the scalp electrode channels
were removed in either dataset prior to analysis. Continuous data was segmented into
epochs around the event of interest. The event of interest for the finger-tapping data
was defined as the detection of the downward movement of a finger based on the
switches. Finger-tapping data was epoched -500 ms to 1500 ms relative to the event for
HDCA and 500 ms to 1500 ms relative to the event for CSP; these epoch windows
were determined to be optimal for each classifier based on a preliminary parameter
search. The event of interest for the RVSP dataset was the onset of the presentation of a
target or non-target stimulus image. RSVP data was epoched 0 to 500 ms relative to the
event for all classifiers.

Comparing EEG Artifact Detection Methods for Real-World BCI 95



Epoch Ranking. Joint probability, kurtosis, extreme values, and abnormal spectra
methods were used to rank epoch quality. The joint probability was computed using the
EEGLAB function jointprob.m [14]. Built-in MATLAB (MathWorks, Natick, MA)
functions were used to compute kurtosis and extreme values. These measures were
computed for each channel within each epoch and normalized within channel across all
epochs. Epochs were then ranked based on the absolute value of their normalized
value, with larger values indicating a higher likelihood of containing an artifact.

The power spectral density of each channel within epoch was computed using the
MATLAB function pmtm.m which implements a slepian multi-taper method to esti-
mate the power spectral density (PSD) for the epoch. The mean PSD within each
channel across all epochs was subtracted from each channel PSD estimate. For each
epoch, the maximum spectral power (in dB) was found in the 0-2 Hz range and the 20–
40 Hz range; these correspond to the frequency range of typical eye and EMG artifacts,
respectively [1]. These two values were treated as a vector and the L^2 norm was used
as a derived value to rank the epoch quality.

Cross-Validation. A 20-by-5 cross validation procedure was used to estimate classifier
performance. Epochs are first randomly assigned to one of five partitions. Four of the
partitions are used to train the classifier then the predictive accuracy of the model is
tested on the remaining partition. The partition that is held out as the test set is rotated
until all five partitions have served as the test set exactly once. The data is then
repartitioned and the same procedure carried out again; this is repeated 20 times.

Epoch Rejection. For each subject, rejection methods, and dataset, a baseline per-
formance value (in AUC) was computed using the entire dataset. Next, each method
was evaluated by removing set percentages of data based on the ranking variables
described above. In each case the data was removed then the cross-validation scheme
was rerun to obtain a new estimate of the classifier performance. The percentage of data
removed was incremented until the decrease in performance caused by reducing the
training data available outweighed the increase in performance caused by the removal
of artifact-contaminated data. In this case, as the percentage of data removed increases,
the size of the training set naturally decreases by default; we will call this the dynamic
training set (DTS) case.

To observe the effect of removing artifact-contaminated data in the absence of
changes in training set size, we repeated this process using a fixed testing and training
set size. Based on the results of the DTS case, we selected a percentage of data removal
where the effect of the reduced training set size seems to equally counteract the effect of
removing artifact data. We constrain the size of the training (and test) sets based on the
size of the training and test sets for this level of data removal. For example, if we have
100 epochs, select 50 % as our removal constraint, and use an 80/20 split for training
and testing data, our training and test set sizes will be set at 40 (100*0.5*0.8) and 10
(100*0.5*0.2), respectively. In the baseline (no data removal) case, we would then
select 40 epochs for the training set and 10 epochs for the test set from the pool of 100
epochs on each iteration of the outer fold of the cross-validation. When we begin
removing artifact data, we first remove it from the pool of available epochs, and again
select 40 epochs for the training set and 10 epochs for the test set. This ensures that any
change in classifier performance is attributable to the removal of artifact contaminated
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data rather than a change in the size of the training set. We will refer to this case as the
fixed training set (FTS) case.

4 Results

To compare the effect of different percentages of data removal, we performed a 3-way
ANOVA test using percentage of data removed, artifact detection method, and subject
as the three grouping variables. We compared conditions using the increase in AUC
relative to the mean baseline (no data removed) AUC. A multiple comparisons test was
then performed using the Tukey-Kramer method with an alpha value of 0.05 to
determine which percentages of data removal caused a significant increase or decrease
in AUC over baseline. Note that error bars in Figs. 1, 2, 3 and 4 represent minimal
group separation distances as computed by the multiple comparisons test and not
standard deviation because this gives a better depiction using a more relevant statistic.

4.1 Finger Tapping

HDCA. Figure 1 shows the results of the multiple comparisons test for HDCA clas-
sification performance on the finger-tapping data. In the DTS case, the detrimental
effect of reducing the training set size clearly outweighs the improvement gained by
removal of artifact-contaminated data. The joint-probability, kurtosis, and abnormal
spectra methods of artifact detection all cause a decrease in performance relative to

Fig. 1. Multiple comparisons for the effect of epoch rejection on HDCA performance in
classifying right from left hand movements in a motor movement dataset. The effect of reducing
the training set size significantly decreases AUC compared to baseline for all epoch rejection
methods. In the dynamic training set (DTS) case, the size of the training and test sets decrease as
the percentage of data removed increases. This decreases classifier performance and counteracts
the positive effect of removing artifact data. In the fixed training set (FTS) case, the size of the
training and test sets remain the same as the percentage of data removed increases. This control
allows the effect of removing artifact data on classifier performance to be observed by itself.
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baseline when 30 % or more of the data are rejected. The extreme values method of
artifact detection performs even worse, showing a significant decrease in performance
when 20 % or more of the data are rejected. In the FTS case, all rejection methods
show an increase in classifier performance over baseline at all rejection percentage
levels. Joint probability and extreme values show a weak upward trend in classifier
performance, peaking at 40 % data removal, but the kurtosis and abnormal spectra
methods do not show a relationship between data removal percentage and classifier
performance.

CSP. Figure 2 shows the results of the multiple comparisons test for CSP classification
performance on the finger-tapping data. In the DTS case, the improved classifier
performance gained by the removal of artifact-contaminated data clearly outweighs the
decrease in performance caused by decreasing the size of the training set. All methods
cause improved classifier performance at all data rejection percentages, with the
exception of a 10 % removal using the kurtosis method. In the FTS case, the joint
probability and kurtosis artifact detection methods do not show a significant
improvement in classifier performance when only 10 % of the data are rejected, but all
other detection method and rejection percentage combinations show significant
improvement in classifier performance over baseline.

4.2 Insurgent-Civilian RSVP

HDCA. Figure 3 shows the results of the multiple comparisons test for HDCA clas-
sification performance on the RSVP data. In the DTS case, the joint-probability and
abnormal spectra artifact detection methods seem to overcome the decrease in per-
formance due to decreased training set size. They show significant improvement over
baseline at 25 % removal and above, and at 10 % removal and above, respectively. The
kurtosis and extreme values methods do not cause a significant increase or decrease in

Fig. 2. Multiple comparisons for the effect of epoch rejection on CSP performance in classifying
right from left hand movements in a motor movement dataset. The benefit of removing artifact
contaminated data outweighs the detriment of decreasing the training set size.
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classifier performance. In the FTS case, all rejection methods show significant
improvement over baseline. Performance improves over baseline for abnormal spectra
at 5 % or greater data rejection, extreme values at 10 % or greater rejection,
joint-probability at 15 % or greater rejection, and kurtosis at 20 % or greater rejection.

xDAWN. Figure 4 shows the results of the multiple comparisons test for xDAWN
classification performance on the RSVP data. In the DTS case, the kurtosis method
does not show a significant increase or decrease in performance. The joint-probability
and extreme value methods show a significant decrease in classifier performance rel-
ative to baseline when 20 % or more of the data are removed. The abnormal spectra
based rejection method shows a significant increase in performance from 20–25 %
removal, but dips back below significance at the 30 % level. In the FTS case, the joint

Fig. 3. Multiple comparisons for the effect of epoch rejection on HDCA performance in
classifying target from non-target image presentations in an RSVP dataset.

Fig. 4. Multiple comparisons for the effect of epoch rejection on xDAWN performance in
classifying target from non-target image presentations in an RSVP dataset.
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probability shows the only constantly increasing trend in classifier performance with
increased data removal and only achieves a significant improvement at the 30 % level.
Other rejection methods show a more irregular trend. Kurtosis-based rejection results in
a significant decrease in performance at 5 % and 10 % rejection levels. Abnormal
spectra based rejection results in a significant decrease at the 15 % rejection level.
Finally, extreme value based rejection shows a significant increase in classifier per-
formance at 10 % and 15 % rejection levels.

5 Discussion

Based on the results presented here, it is apparent that care must be taken to ensure a
balance is met between the increase in classifier performance from the removal of
artifact-contaminated data and the decrease in performance from reducing the training
set size. In all cases other than RSVP classification with xDAWN, we see a clear
difference in classifier performance between the fixed and dynamic training set cases,
with the dynamic training set case consistently performing worse. This indicates that
reducing the training set size does decrease classifier performance, but it can be seen
that in many cases the benefit of removing artifact-contaminated data can overcome
this detriment. CSP classification of the finger-tapping data and HDCA classification of
the RSVP data seem to benefit in particular from epoch rejection with both showing a
significant increase in performance when using most rejection methods. Interestingly,
HDCA classification of the finger-tapping dataset shows a dramatic drop in perfor-
mance when any of the detection methods are used to reject data. It is unclear at this
point why HDCA classifier performance did not show this dramatic drop when applied
to the RSVP data. Further study will be needed to determine if this difference in
performance between motor and RSVP paradigms is consistent across other datasets.

In the cases where epoch rejection improved classifier performance, the abnormal
spectra method consistently performed best. However, the current study only consid-
ered limited feature spaces, i.e. those captured by the classification methods HDCA,
xDAWN, and CSP. When analyzing a new dataset, other methods of artifact detection
should be considered, with the final selection tailored to the specific problem space.
Based on our current results and the previous findings of Delorme et al. [2], we
recommend the use of abnormal spectra as the starting point for improving BCI
classifier performance.

In real-world BCI scenarios where the amount of training data is limited, careful
consideration must be given as to how much data is rejected due to artifacts. The
classifier-paradigm pairs studied here showed differences in their sensitivity to training
set reduction and to artifact contamination. Further work must be done to develop an
understanding of how to choose the best classifier for a paradigm, taking into con-
sideration the amount of training data that will be available and the probability of
artifact occurrence within that data.
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