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Abstract. Brain-Neural Machine/Computer Interface (BNCI) has been used
successfully as an assistive technology to restore communication, improve
control and thus potentially enhance social inclusion. Recently BNCI technol-
ogy and interfaces have evolved to become more usable, thereby allowing the
recording of brain activity to become part of the wider self-quantification
movement. A hybrid BNCI can provide a viable but alternative interface for
Human Computer Interaction, which combines the inputs from BNCI and eye
tracking. This hybrid approach has maintained information transfer rate but
increased robustness and overall usability. The combination of two comple-
mentary technologies provides the possibility for investigating new ways of
human enhancement and has the potential to open up new medical applications.
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1 Introduction

The quintessential application for Brain-Neural Machine/Computer Interface (BNCI) [1,
2] has been as an assistive technology for individuals suffering from neural dysfunction
of such severity that other assistive technologies cannot offer appropriate functionality.
Relevant conditions have included amyotrophic lateral sclerosis, cerebral palsy, stroke,
or spinal cord injury [3]. BNCI aims to enable users to interact with a computer interface
without the use of peripheral nerves and muscles, to restore communication, improve
control and possibly enhance social inclusion [4]. Recently BNCI technology has
evolved from complex research grade systems to more usable bespoke devices, thereby
allowing the recording of Electroencephalographic (EEG) and neuronal activity to
become part of the wider self-quantification movement. Swan states: “Analyzing mul-
tiple QS (quantified self) data streams in real-time (for example, heart-rate variability,
galvanic skin response, temperature, movement, and EEG activity) may likely be
required for accurate assessment and intervention regarding biophysical state” [5].
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For non-invasive use this has led to a proliferation of cheaper, consumer devices, which
can be easily donned and doffed, are more aesthetically pleasing, and use water-based or
dry electrodes. Software development kits have become available to the non-specialist,
thereby extending domain use into additional lifestyle applications, such as gaming [6]
and brain training [7].

Part of the evolution of BNCI has been in the development of hybrid systems which
go beyond pure EEG-based paradigms to those that accept multiple inputs from different
modalities. Pfurtscheller et al. [8] provide an overview of hybrid Brain-Computer
Interface (hBCI) systems, defining concepts and language which has strongly influenced
research development in this area. They discuss different ways of combining Brain-
Computer Interfaces, with the target of reducing errors, improving available selections,
and creating a more usable and robust system. In this paper, we investigate a hBNCI
approach, which influences the speed of operation of a graphical interface as measured
by Information Transfer Rate (ITR). When an acceptable ITR has been reached, then the
collaborative input modalities can be used to ensure more robust operation by reducing
errors (paradoxically this may be at the expense of ITR, as damping may occur in the
system). However, robustness of operation is a crucial factor for user acceptance, par-
ticularly for people with brain dysfunction. In addition, the collection of complementary
BNCI and eye tracking data provides the potential for investigation beyond commu-
nication and control. Thus the application area for hBNCI can move beyond assistive
technology, allowing the exploration of new applications, some of which can be in the
medical domain.

2 Background and BNCI Users

Different experimental paradigms can be applied to generate the desired brain electrical
activity, known as the electroencephalogram that facilitates the interaction with a
chosen computer-based application. Prominent approaches include Event-Related
Desynchronisation/Synchronisation (ERD/ERS), Steady State Visually Evoked
Potentials (SSVEP), and the P300 oddball paradigm (with acoustic or visual stimula-
tion). Each approach is hindered by its own set of limitations, such as time consuming
training and recording, but many inhibiting issues are prevalent in all approaches, such
as intra-subject variability, poor signal quality, and limited duration for wearing the
technology. These issues have been limiting factors for wider exploitation of BNCI
technology in the medical domain. EU FP7 funded projects such as BRAIN,
BRAINABLE and Back Home aimed to bring BNCI technology out of the laboratory
and into the homes of disabled users. This provided a significant stimulus for
addressing communication and control. However, target users involved in the BRAIN
study, for example, had cognitive challenges in addition to their physical disability.
Furthermore, computer literacy also had an impact on the user acceptance of the
technology [9]. In addition to usability issues, poorer BNCI performance was noted in
the target user group of brain impaired people, as compared to the healthy control
group, and the resulting SSVEP controlled system provided a less than acceptable level
of accuracy [10] for the target user group.
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3 Hybrid BNCI

There are technical reasons why it could be beneficial to combine different inputs for
BNCI. As already highlighted, different modalities have their own merits and draw-
backs, which are strongly aligned to the application and user variability. Amiri et al.
[11] state: “Compared to other modalities for BCI approaches ….. SSVEP-based BCI
system has the advantage of having higher accuracy and higher information transfer
rate (ITR). In addition, short/no training time and fewer EEG channels are required.”
The BCI component is often used as a switch or selector, for example, see Pfurtscheller
et al. [8]: ERD BCI (brain switch) with SSVEP (control of orthosis); ERD combined
with SSVEP (joint selection); ERD combined with heart rate (joint selection); Eye gaze
(selection) with ERD. In the example of a brain “switch” a control command is only
allowed to be activated when a separate BCI control is active. Such a system mitigates
the risk of false positives. In terms of “selection” it could be that the two inputs work
collaboratively to make a more robust selection. Or, in the example of eye gaze with
ERD, the initial selection is made using eye gaze but this decision is activated with
ERD [12].

The prospect of combining a neural input with another mechanism such as eye gaze
can address under performance issues of BNCI by people with brain dysfunction. Eye
tracking-based control was investigated, producing a hybrid architecture, with the
potential to overcome restrictions of speed and variability, thus providing a more robust
operation [13, 14]. Eye-tracking technology has advanced significantly, producing low
cost portable hardware components with open software interfaces mirroring the tech-
nical advances of BNCI. Consequently, an hBNCI system has been implemented to
facilitate control of a computer interface and virtual domestic smart environment, as
illustrated in Fig. 1.

Fig. 1. Hybrid BNCI architecture showing input devices, signal processing options, user
interface and actuation components
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Users have the ability to open and close doors, control the television or indicate
needs (need for drinking or eating) or emotions. Combining input modalities with
biosignals that have different temporal properties presents a technical challenge in
terms of both data fusion and apposite user interface development. However it can offer
new opportunities beyond current BNCI.

An experiment was devised to test the robustness of the hybrid approach (albeit on
a normal population). Twelve volunteers age 23–57 (8 male, 4 female) interacted with
the user interface for three tasks: domotic control; multimedia playback and commu-
nication. Interaction was by 4-way choice (right, left, up, select). There were two
conditions: eye-tracking only and eye tracking plus BNCI. The Eyetribe Tracker was
used to record gaze (latency < 20 ms with an accuracy for 0.5–1 degree, with the
subject located approximately 50 cm from the monitor). The Emotiv EPOC provided a
BNCI component, using a teeth clench for select. This was chosen as the device comes
pre-selected with a number of classified events (appropriate to the static electrode
montage of this fixed device) as part of the Expressiv suite. Electronic communication
between the eye-tracker/Emotiv headset and user interface is by User Datagram Pro-
tocol (UDP) packets, providing a flexible inter-process communication. These are
generated/triggered asynchronously (by the participant) and managed by the user
interface algorithm, with the slower EEG component acting as a confirmation of the
less constrained eye-gaze. The packets are populated in real-time from the respective
Eyetribe and Emotiv Application Programming Interfaces (APIs), allowing a respon-
sive and controllable interface. Values for duration, accuracy, efficiency (defined in
[15]), and ITR were computed (as defined by Gao et al. [16]). Tables 1 and 2 show the
mean and standard deviation for user performance metrics: time, accuracy, efficiency
and ITR for eye-tracking only and hybrid respectively. In Tasks 1 and 3 the ITRs are
approximately constant but the accuracy and efficiency increase for the hBNCI. In Task
2 the metrics are maintained. Overall accuracy and efficiency are better for the hybrid
system.

The ITRs of both configurations were greater than that of a previous SSVEP-only
study which yielded a mean ITR of 15.23 bpm with a standard deviation of 7.9 bpm
and a mean accuracy of 79 % with a standard deviation 14 %. This prior experiment
used similar tasks with external stimulation LEDs, to modulate the EEG and assist
navigation. However, crucially only 6 out of 23 participants completed all three tasks,
which testified to its lack of robustness [17].

Of course this hybrid is based on a low cost commercial headset. It has since been
improved by incorporating an SSVEP component or components. The simplest con-
figuration is to use an on-screen SSVEP stimulation as a switch for the eye tracker.

Table 1. Mean and standard deviation for accuracy, efficiency and information transfer rate for
eye-tracker (N = 12)

Eye-Tracking Time (sec) Accuracy % Efficiency % ITR (bpm)

Task 1 42 (9) 88 (7) 80 (11) 40.98 (7.28)
Task 2 73 (7) 95 (4) 92 (7) 42.75 (3.65)
Task 3 25 (8) 83 (11) 73 (16) 39.75 (9.05)
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However, it is also possible to utilise four stimulation frequencies, allowing for the
following navigation options: (i) SSVEP only; and (ii) SSVEP and eye tracking col-
laborative navigation. The key BNCI components are the quantification of the
on-screen navigation and seamless integration with the user interface.

We utilised an intermediary data fusion module to synchronise multimodal inter-
action and issue a collective command, see Fig. 2. Firstly, the acquired brain signal is
computed online for SSVEP signal detection and classification. Nuisance signals and
noise are cancelled from the SSVEP response by applying the Minimum Energy
Combination method and the best spatial filter for each subject at each frequency is
determined automatically by the BCI. The detection of an SSVEP response in the
user’s EEG is based on power estimation, which occurs after spatial filtering and a
statistical probability method has been applied. This combination enhances separation
of the stimulus frequency component in the EEG [14]. When an appropriate SSVEP
response is detected, the corresponding command is encapsulated within a UDP packet
and forwarded for synchronisation in the data fusion module. At the same time, the eye
tracking data is received by the data fusion module as a series of screen-based coor-
dinates. The responsiveness of the eye tracker is dampened to prevent the coordinates

Table 2. Mean and standard deviation for accuracy, efficiency and information transfer rate for
hybrid (N = 12)

Hybrid Time (sec) Accuracy % Efficiency % ITR (bpm)

Task 1 39 (6) 94 (6) 94 (8) 40.92 (6.12)
Task 2 77 (13) 95 (5) 94 (6) 39.49 (5.76)
Task 3 21 (2) 97 (7) 97 (7) 41.11 (5.36)

Fig. 2. Collaborative processes: fusion and synchronisation of SSVEP-based BNCI and eye
tracker information and actuation events in the local environment.
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buffering and to ensure screen-based coordinates coincide with the trajectory of a user
gaze in real-time. If the coordinates do not match the SSVEP response then they are
ignored until a matching response is detected. The BCI continuously processes the
acquired signal so additional responses can be detected to provide supplementary
commands or to rectify false positives. Both input modalities output data concurrently
for the entirety of the trial. When both modalities are in agreement a command is
classified and encapsulated in another UDP packet, which is transmitted to the
graphical interface. At this stage, commands are translated into selections to actuate
events in the local environment and provide feedback to the end user, completing the
BCI cycle.

4 The Potential of hBNCI for Future Applications

We envisage hBNCI applications along two strands of development. The first will use
widely accessible and affordable ‘off the shelf’ BNCI headsets (as demonstrated in the
experiment above) with manufacturer supplied software interfaces and development
kits. Such kits use dry- or water-based electrodes that can be worn with greater ease.
Lifestyle applications include self-quantification for mindfulness or meditation [18],
BNCI for HCI in gaming and leisure [19] as enhancement. The second category
addresses medical applications using higher quality instrumentation, accessories and
robust software with data stored in a standardised format; components that have also
benefited from recent technical advances. Medically, BNCI has already been employed
for stroke rehabilitation [20–22] and assessing disorders of consciousness [23, 24].
Better quality portable instrumentation can allow for free living assessment and a
further example is ambulatory monitoring of EEG for detection of epilepsy or other
neurophysiological abnormalities [25, 26] or in sleep studies [27].

For the hBNCI combining modalities (eye gaze for measuring compliance and
identification of stimuli, and EEG for measuring engagement) it may be possible to
investigate learning for people in classroom scenarios or to investigate conditions such
as Dyslexia [28]. A significant contribution can be made in trying to understand the
underlying neural cause and triggers associated with mental processing, communica-
tion and interaction issues defined as Autistic Spectrum Disorder (ASD). Friedrich
et al. have successfully used BCI games for neurofeedback and treatment for children
with ASD [29]. A suite of clinical tools were developed within the EU FP7 funded
Michelangelo Project [30]. In order to investigate interaction of a child with ASD, a
number of elements can be brought together: a task (e.g., an imitation game),
engagement with the task (this can be determined from observation, video analysis or
directly by measuring eye gaze from the computer and the effect of the task, as
measured by physiological signals such as the electrocardiogram (ECG) and EEG).
Figure 3 shows the visualisation of synchronized, aggregated data acquired during a
task, which permitted therapists and clinicians to better ascertain, or identify, factors
contributing to the onset of unwarranted behaviour during the task, thereby leading to
personalization of the therapeutic intervention protocol in use.
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The clinical tools also permitted further EEG analysis, which comprised off-line,
artefact removal (using video playback to identify an appropriate resting state period),
followed by event identification, such as eye contact during the task, during which the
related EEG signal was processed via clustering techniques in order to identify areas of
interest. The clinician is subsequently able to view the results from the analysis, select
the appropriate number of synchrostates and visualize the corresponding brain activity
for the event [31]. Consequently, such tools, which incorporate EEG as another
physiological component, can potentially provide additional insights into both the
treatment and understanding of the underlying conditions.

Subsequently, the hBNCI is potentially important for medical applications as it
measures complementary biosignals: gaze which can infer attention and task engage-
ment, for example, and brain activity can provide measures of processing of infor-
mation by the brain. Hence (many) applications for which these components interact
can be studied. Controlled psychophysiological studies such as the effect on the EEG of
visual semantic content become possible (e.g. the brain’s reaction to food for people
with eating disorders [32], visual stimuli for people with addictions such as alcohol and
smoking [33]). In addition, it is possible to correlate visual tasks with brain activity for
basic research in areas such as monitoring smooth pursuit, saccades, motion onset
visual evoked potential and quantification of nystagmus. This may allow further
investigation of the vestibule-ocular reflex.

Recent technical advances leading to new lifestyle and novel medical application
can extend the reach of BNCI from the specialist laboratory to the neurophysiology
clinic and into the living room, thereby engaging a wide user cohort. Abdulkader et al.
[34] provide an interesting review of BCI applications and the associated challenges. In
reference to the medical domain they classify three streams: prevention, detection and
diagnosis, and rehabilitation and restoration. For prevention they cite smoking, alco-
holism and motion sickness; for detection and diagnosis they provide examples of
tumor detection, brain disorders and sleep disorders; and for rehabilitation they provide
examples of brain stoke, disability and psychological disorders.

Fig. 3. Michelangelo project aggregated data visualisation on clinical user interface

An SSVEP and Eye Tracking Hybrid BNCI 75



Brunner et al. [35] provide an overview on how BCI research and European
funding in this area has grown over the last ten years and a vision of future BCI. It was
expected that passive BCIs would enrich human-computer interaction; BCI tools would
be commonly used to support other research domains; and investigations would con-
tinue into the possibility of BCI for rehabilitation [36]; and there could be a shift from
non-invasive BCIs to invasive BCIs for systems developed to compensate for move-
ment disorders [36].
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