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Abstract. Calibrated trust in an automation is a key factor supporting full inte‐
gration of the human user into human automation integrated systems. True inte‐
gration is a requirement if system performance is to meet expectations. Trust in
automation (TiA) has been studied using surveys, but thus far no valid, objective
indicators of TiA exist. Further, these studies have been conducted in tightly
controlled laboratory environments and therefore do not necessarily translate into
real world applications that might improve joint system performance. Through a
literature review, constraints on an operational paradigm aimed at developing
indicators of TiA were established. Our goal in this paper was to develop an
operational paradigm designed to develop valid TiA indicators using methods
from human factors and cognitive neuroscience. The operational environment
chosen was driving automation because most adults are familiar with the task and
its consequent structure and therefore required little training. Initial behavioral
and survey data confirm that the design constraints were met. We therefore believe
that our paradigm provides a valid means of performing operational experiments
aimed at further understanding TiA and its psychophysiological underpinnings.

Keywords: Trust in automation · Operational paradigm · Driving automation ·
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1 Introduction

Joint human automation systems have been developed to leverage the abilities of both
agents in order to improve overall task performance. However, true integration has yet
to be realized, and the automated agent is often either misused, or disused entirely
resulting in relatively poor performance outcomes. One reason genuine integration has
not yet been achieved is an apparent lack of user acceptance. The degree to which a
human user accepts an automated agent is thought to be directly related to the level of
trust the human user has in the automation [1–3]. That is, as people gain confidence in
the reliability, robustness, and safety of automated technologies, they develop sufficient
trust to willingly share important decision and/or control authority with such systems.
Therefore, if automated systems are to be used as designed, enabling joint system
performance to reach intended levels, it is important that the human user develop a
certain level of trust in the automation (TiA). However, more important than achieving
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a certain level of TiA is to manage it so that behavioral outcomes such as misuse or
disuse [6–9] do not occur regularly and negatively impact overall performance. Conse‐
quently, an important goal for systems designers is to find a means to calibrate the human
user’s TiA to elicit desired interaction with the automation given the nature of the
ongoing, and dynamic, task context [3, 10–13]. An immediate need if TiA is to be cali‐
brated is to establish quantitative and easily monitored indicators of TiA that are robust
across individuals, task and time. Currently the only method for assessing TiA is by
participant self-report through survey instruments, and few of these surveys have been
validated. However, if objective real-time measurements of TiA can be identified and
demonstrated as valid, systems could be designed to measure and manage TiA for real
world applications that would maximize joint system performance of critical human
automation system tasks.

The goal of this paper is to discuss the conceptual underpinnings of an operational
research paradigm aimed at inference and validation of TiA outcome measures. First,
we discuss important design constraints to such a paradigm based on human factors
research. We then provide an example of how these concepts were realized in operational
research that adapts methods from cognitive neuroscience and human factors engi‐
neering for addressing important issues for TiA and its influence on human-automation
systems. Finally, we provide preliminary high-level analysis of an instantiation of our
proposed paradigm demonstrating that it meets design constraints, and is therefore suit‐
able as a method to identify indicators of TiA.

2 Concepts for Applying Cognitive Neuroscience
to the Operational Study of TiA

Although methods from cognitive neuroscience have been applied in experimental
settings to adaptive human automation systems that scale or mitigate task demands on the
human user [4, 5] there has been little consistency in how the methods have been applied
to specifically study TiA. We propose that such methods, particularly those based in
psychophysiology, have considerable potential to effectively identify indicators of TiA if
applied under appropriate operational constraints. The basis of this proposal is the under‐
standing that trust is a psychological construct and therefore it would seem reasonable that
there would be dynamic psychophysiological variables that enable inferences regarding
extant levels of TiA for a given human user. Indeed, research on interpersonal trust has
revealed measurable physiological changes correlated with changing participant trust and
trust based decision making [6]. Therefore we believe that the application of these cogni‐
tive-neuroscience methods is promising for the study of TiA. However, much research
across these domains (both cognitive neuroscience and human factors) has been labora‐
tory based, leveraging dramatically simplified tasks performed in controlled environ‐
ments, often using a narrow set of psychophysiological and/or behavioral data. These
methods have resulted in important insights about cognitive and behavioral phenomena
underlying human-automation relationships, but these laboratory-based research findings
may be of limited value in more complex operational contexts. This is because they tend

158 K. Drnec and J.S. Metcalfe



to apply to general populations rather than providing an understanding of how human-
automation relationships develop as individuals perform tasks with real-world risks and
consequences. New research paradigms are therefore required if an understanding of
individual relationships are to be understood and leveraged to measure and manage TiA
dynamics for particular operational environments.

3 Design Constraints

In order for research in this domain to be of use in operational settings, it is important
that experimental conditions engender, as close as is reasonable, authentic levels of trust
in ways reflective of operational influences. The relevant literature suggests three critical
design considerations if this goal is to be met, (1) establishing a task-relevant risk and
consequence structure, (2) engendering TiA levels as a function of automation relia‐
bility, and (3) engendering TiA levels as a function of workload. In addition to the
theoretically based design constraints, it is critical, if human automation interaction is
to be studied, that the subject be motivated to use the automation in a way that is organic
to the operational environment. Moreover, we argue that it is critical to develop and
validate that these factors have been successfully implemented if the paradigm is to be
useful for more detailed research in the cognitive and neural underpinnings of variations
in TiA and TiA-related decisions with regard to interactions with automation.

3.1 Risk and Consequence

Development of TiA requires inducing the perception of task-related risk or conse‐
quence to the human user [7, 8]; if consequences are low or irrelevant to the human,
levels of TiA fail to be important. Generally speaking, we consider that without risk,
trust is irrelevant to decision making. In order to develop a sense of risk and consequence
it thus appears necessary to facilitate a sense of personal investment in the task outcome.
While there may be multiple ways to achieve this, one of the more common methods in
research has been to link performance outcomes with extrinsic rewards. Typically, these
rewards are financial because most adults have daily experience with financial motiva‐
tion or gain. Though not directly applicable to many operational contexts, we chose
financial motivation as a proven means of creating the needed senses of task investment
and risk. Certainly, given the high cost of vehicle-based incidents, financial concerns
tend to be common among real-world drivers as well.

3.2 Engendering TiA as a Function of Automation Reliability

Research has yielded much evidence as to what intrinsic and external factors affect extant
levels and dynamic changes of TiA in the operational context of human automation inte‐
grated systems [1, 8–10]. In the general case, the degree or level of TiA appears to result
from the evaluation of observations against a priori expectations about how an automa‐
tion should behave. Initially, most people would expect a real-world automation to be
reliable and to be consistent over time, as well as being able to aid in achieving the task
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goal [1, 11]. Thus, with some exceptions [11], most human users will have an a priori
expectation that the automation will be trustworthy, and therefore the initial level of TiA
is likely to be relatively high. Reliability, or the degree to which the human user perceives
the automation to be accurately performing tasks for which it was designed has signifi‐
cant effects on TiA levels is especially important at the start of automation use. Subse‐
quently, consistency over time becomes critical to dynamic patterns of TiA levels; human
users will continue to use, and even benefit from a slightly unreliable (above 70 % reli‐
able) automation if the errors are predictable and consistent over time [12, 13].

3.3 Engendering TiA as a Function of Workload

Workload has been well established as a key influence on behaviors that have tradition‐
ally been attributed to TiA. For instance, under high-workload conditions, some people
will choose to use an automation for which they hold low trust simply because some
assistance is presumed to be better than none [14, 15]. Conversely, research also suggests
that under conditions of low workload, human users tend towards manual operating mode
[14, 16], likely because of boredom [16]. Therefore, this and other previous research has
clearly demonstrated the interaction between workload and trust, leading to the expecta‐
tion that the effects on psychophysiological variables for each factor would be difficult to
disentangle. An operational paradigm focused on real-world outcomes should thus care‐
fully consider the impact of workload in the design of their study on TiA.

3.4 Motivation

If the automation is never used, TiA levels cannot be established, and further, there is
no interaction to observe. However, if the participants are rewarded or otherwise explic‐
itly instructed to use the automation, results may reflect experimental design rather than
the influence of TiA. One way of motivating natural interaction with the automation is
to introduce automation independent secondary task of high value; the logic underlying
this is that an automation that sufficiently handles lower value task elements will free
operator resources to handle the higher value task. For instance, while modern driving
automations are designed to prevent vehicle-vehicle collisions, not all are as capable of
predicting and responding to the sometimes erratic and suddenly changing behavior of
pedestrians (and other drivers). Therefore, it would be an appropriate driving strategy
to engage a driving automation to manage vehicle control, enabling the human occupant
to remain vigilant for pedestrians and similar potential hazards.

4 Implementing Operational Constraints into a Research
Paradigm

Consider the example of our recently developed leader-follower driving paradigm during
which participants were asked to perform a set of tasks relevant to real-world driving.
Driving is a model paradigm for our purposes for several reasons. Driving is a task that
many people engage in daily, and therefore little training is needed for subjects to perform
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an experimental driving task. In addition, driving automations are becoming increasingly
common and consequently people are interacting with automations in a natural way.
Therefore, an experimental driving paradigm appears to be an excellent operational
context to address our questions regarding TiA and human automation interaction.

4.1 Primary Task and Environment

Participants were instructed to drive a simulated vehicle one full lap around a two-lane
course. Task objectives included lane position control and maintenance of a “safe”
distance from other vehicles, and particularly the lead vehicle in front of them. Auto‐
mations with different capabilities were presented in different experimental conditions.
For conditions in which the automation was available, participants had the option to
enable or disable the automation at any moment. Lateral (wind gusts) and longitudinal
(lead vehicle speed changes) perturbations were introduced to further challenge the
performance of the driving task. In addition, participants were solely responsible for
avoiding collisions, as the automation had no explicit collision avoidance capabilities.
Therefore, the chosen automation independent secondary task involved avoiding colli‐
sions with frequently-appearing pedestrians by responding to them with button presses
on a game controller. Pedestrians appeared approximately once every 6 s, distributed
randomly on either side of the road, and 15 % stepped in the vehicle path.

4.2 Risk and Consequence

Risk and consequence were expressly manipulated through use of a game-like scenario
where each deviation from task parameters had a preset consequence that was known
to the participants. The point structure was chosen to encourage a specific hierarchical
economy of decision making that was reflective of the risk structure in the real world.
For example, collision with a pedestrian incurred the most severe penalty, whereas an

Fig. 1. Summary of experimental paradigm. (A) Ride Motion Simulator shown as a participant
completes the driving task while wearing a 64-channel EEG cap. (B) Experimental task. Subjects
drove a vehicle (ownship; right lane follow) while following a lead vehicle (right lane lead) and
were instructed to maintain following distance and lane position. The varying reliability (low and
high) of the driving automation are represented by the distributions labeled ơL and ơF.
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incorrect button press incurred very little penalty. In order to make the reward significant
in the context of adult experience $200 was chosen as a maximum reward, of which
$100 could be lost incrementally due to performance decrements. To enhance the
realism, and therefore a sense of risk and consequence, participants completed all tasks
in an immersive 6-degree of freedom ride motion simulator (Fig. 1A).

4.3 Reliability

In order to develop sensitive measures of TiA it is necessary to encourage a variation
of TiA levels both within and across conditions. To this end we implemented two
different levels of driving performance reliability; high and low. Reliability character‐
istics were realized by using lane and speed offsets approximately described by normal
distributions with parameters specific to reliability condition as shown in Fig. 1B. The
high reliability condition had narrow lane and range offset distributions whereas the
distributions in the low reliability automation were broader. The low reliability auto‐
mation offsets reduced the appearance of consistency over time; here, the offsets were
large enough to make it appear that the automation ‘wandered’ gradually across the lane
and following range to varying degrees based on condition.

4.4 Workload

Management of task loading was an important design constraint because of the known
interaction between TIA and subjective workload; especially as affecting psychophysio‐
logical measures which are of ultimate interest in subsequent analyses. In two “full
control” conditions (heading + speed control with low and high reliability) there was an
inherent difference in workload owing to reduction in tasking for the human when the
automation was performing well. Thus, we expected subjective workload in the high reli‐
ability, full (FH) condition to be less than in the low reliability full (FL) condition. The
“speed only” conditions were introduced to allow balancing of workload across these
conditions. During the speed only, high reliability (SH) condition, it was thought that
subjects would primarily need to respond to lateral perturbations because the automation
was near perfect in responding to longitudinal perturbations. Conversely, in speed only,
low reliability (SL) conditions it would have been necessary to respond to almost all of the
perturbations. To balance this circumstance across the speed only conditions, lateral
perturbations were introduced more frequently in the SH as compared with the SL, thus
aiming to maintain comparable overall workload in both and, importantly, allowing for
inferences regarding TIA that were not confounded by effects of increased workload.

4.5 Experimental Design

The average drive time around the course for each condition lasted approximately
12 min. The two different automation capabilities were full control, i.e., both lane and
range conforming ability, the second only controlled the speed of the vehicle. Automa‐
tion reliability groups were high and low reliability. A 2 × 2 design was realized through
automation type (S, F), and automation reliability (L, H); the manual run was treated as
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a baseline condition. The experiment consisted of five conditions; manual driving only,
full automation with high reliability (FH), full automation with low reliability (FL),
speed automation with high reliability (SH), and speed automation with low reliability
(SL).

Psychophysiological sensors (electroencephalography (EEG), electrocardiography,
galvanic skin response (GSR), and eye tracking) were fitted to each participant and then
they completed a 10 min training session where they experienced both types of auto‐
mation and some of the experimental tasks. After training, data collection began with
onset of a manual condition, followed by the other four conditions in a counterbalanced
sequence. The course was designed with straight as well as both gradual and sharply
curved zones in order to change the likelihood that a trust based decision about auto‐
mation use would need to be made. Surveys were administered both before the experi‐
ment and in between each condition in order to ascertain whether or not we had met our
task constraints. The surveys of focus for this paper were the NASA-TLX to assess
workload, and trust in automation surveys to gauge TiA levels.

5 Initial Results

Our goal was to develop a paradigm for use in studying TiA as well as neural and
cognitive correlates in the operational environment of human automation systems.
Previous research aimed at understanding TiA specifies particular, operationally-rele‐
vant design constraints that must be met for a successful paradigm to be developed.
These include specification of a risk and consequence structure, managing the perceived
reliability of automation to influence TiA, and balancing workload. An indication of
successful paradigm development, therefore, would be the demonstration of having met
these experimental design constraints. Here, we provide subjective survey and behav‐
ioral data indicating that our main design was effective.

TiA levels have been shown to be affected by automation reliability. Therefore, it
would be expected that low reliability conditions would correspond to low TiA, whereas
high reliability conditions would correspond to high TiA. Figure 2A illustrates the rela‐
tionship between subjective ratings of system trustworthiness and automation reliability
by condition. The TiA data were analyzed with a mixed model where reliability and
type were fixed and subject data treated as random. There was a significant effect of
automation type (F(1, 71) = 3.47, p < 0.05) and reliability (F(1, 71) = 71.43, p < 0.01).
More important, there was also a significant interaction between automation type and
reliability (F(1, 71) = 5.0, p < 0.05). Figure 2B shows that automation-related decision-
making behavior, as revealed in the percentage of time the automation was engaged,
reflected the change in apparent TiA as expected.

To examine whether we successfully constructed our paradigm to account for a
suspected confound between subjective workload and trust in automation, we assessed
the NASA-TLX. Weighted scores are shown in Fig. 3 and hypothesis tests with mixed-
model ANOVA confirmed a significant automation type by reliability interaction (F(1,
71) = 7.8, p < 0.05).
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Fig. 3. Overall weighted average scores from the NASA TLX administered at the completion of
each driving condition.

6 Discussion

Our aim was to develop an experimental paradigm that allows the study of TiA in the
context of interactions with driving automation, an increasingly common operational
environment. Behavioral and survey results indicate that we met the required design
constraints derived from the TiA literature. For example, TiA levels had a clear rela‐
tionship with automation reliability conditions, a key factor in TiA development.
Figure 2A may also highlight the importance of predictability in TiA preservation; while
SL was less trusted than SH, the SL condition appeared to be more trustworthy than the
FL condition. This finding likely speaks to the issue of intersecting risk, trust, and
predictability. That is, the speed control was likely experienced as generally lower risk
than full control because it did not have the capability of steering into the path of an
oncoming vehicle. Moreover, its following ability was so consistently poor in the SL
condition that subjects almost always took over control immediately upon experiencing
a longitudinal perturbation. Time spent using the automation should reflect TiA levels.
Figure 2B shows the distribution of the percentage of time the automation mode was
engaged per condition. One important variable, workload, needed to be controlled for
across the speed only conditions. This was done by increasing the number of lateral
perturbations that were introduced during the SH condition. Figure 3 gives NASA-TLX

Fig. 2. (A) Subjective ratings (percent) of system trustworthiness, assessed with a visual analogue
scale based on Muir (1996) and (B) percent of time automation was used when available.
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scores indicating that the changes made to the perturbation ratio successfully balanced
subjective workload across the speed only conditions.

The behavioral and survey data indicate that our paradigm successfully achieved our
goals. More importantly, in achieving the overt objectives of the study, this paradigm
provides a valid start to future analysis beginning with the baseline understanding that
the data were collected in accord with key constraints required for operational relevance.
If our initial high level results indicated that, for instance, workload was not controlled
adequately, any subsequently observed significant differences in psychophysiological
variables could not be clearly attributed to TiA alone. However, more than understanding
the changes in the psychophysiological variables associated with dynamic levels of TiA,
is the inquiry into how changes in these variables might reflect the psychophysiological
underpinning for the observed behavior, i.e., the interactions with automations, and the
development of TiA. These interaction behaviors result from decisions made against a
background of current psychological state which has been shown to significantly affect
decision making.

Operational neuroscience studies in the context of driving automation might be
aimed at understanding the psychophysiological events that support these interaction
decisions, such as specific EEG and GSR features. Cognitive neuroscience research into
decision making has discovered some of the neural dynamics involved in decision
making. For example, fMRI studies have shown that the amygdala and the ventral
striatum act to assess the valence of stimuli and that these signals are compared in the
intraparietal region [17]. While operational studies necessarily use EEG rather than
fMRI, these findings provide a basis for hypotheses about the cortical sources, which
can be identified through localization algorithms. EEG studies aimed at understanding
the cortical dynamics of complex real world decisions have identified specific frequency
changes over the medial frontal regions [18]. Accompanying these neural correlates of
decision making are changes in peripheral physiological and eye movement behavior.
In particular, during difficult decisions, average tonic GSR magnitude increases more
than if the decision was easy [19]. Eye movement, specifically gaze fixation behavior
has also been associated with the cognitive processing of stimuli prior to a decision [20].
Clearly, results from cognitive neuroscience studies of decision making are fertile
ground from which to generate hypotheses for further analyses in well-conducted opera‐
tional experiments. We believe that our paradigm provides a research environment
capable of addressing such questions.

7 Conclusion

Poor human automation integration due to mis-calibrated levels of TiA motivated an
attempt to create an experimental paradigm suited to measure TiA in an operational
context so that it is applicable to the real world. Because trust is a psychological state,
we considered that the application of cognitive neuroscience methods rooted in psycho‐
physiology, would be an appropriate approach to developing indicators of TiA. Typi‐
cally, these methods are not used for operational neuroscience and therefore a new
experimental paradigm was required. We determined through literature review what
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constraints were needed for successful paradigm development. We found that if indi‐
cators of TiA were to be developed that (1) there needed to be a sense of risk or conse‐
quence, (2) that there needed to be different reliabilities of the presented automations in
order to manipulate TiA levels, and (3) that workload needed to be balanced across
conditions. Driving was considered to provide an optimal operational environment for
our research because most adults experience driving regularly and therefore would
require little training. In particular, as driving automations are becoming more common
driver TiA is critical, and in the driving environment, subjects would naturally interact
with automations they are familiar with. Our initial results suggest that we met these
goals and that our experimental paradigm provides a valid method of studying TiA and
human automation interaction in an operational setting.
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