
The ROAD from Sensor Data to Process
Instances via Interaction Mining

Arik Senderovich1(B), Andreas Rogge-Solti2, Avigdor Gal1,
Jan Mendling2, and Avishai Mandelbaum1

1 Technion – Israel Institute of Technology, Haifa, Israel
sariks@tx.technion.ac.il, {avigal,avim}@ie.technion.ac.il
2 Vienna University of Economics and Business, Vienna, Austria

{andreas.rogge-solti,jan.mendling}@wu.ac.at

Abstract. Process mining is a rapidly developing field that aims at
automated modeling of business processes based on data coming from
event logs. In recent years, advances in tracking technologies, e.g., Real-
Time Locating Systems (RTLS), put forward the ability to log business
process events as location sensor data. To apply process mining tech-
niques to such sensor data, one needs to overcome an abstraction gap,
because location data recordings do not relate to the process directly.
In this work, we solve the problem of mapping sensor data to event
logs based on process knowledge. Specifically, we propose interactions
as an intermediate knowledge layer between the sensor data and the
event log. We solve the mapping problem via optimal matching between
interactions and process instances. An empirical evaluation of our app-
roach shows its feasibility and provides insights into the relation between
ambiguities and deviations from process knowledge, and accuracy of the
resulting event log.

Keywords: RTLS data · Business processes · Optimal matching ·
Knowledge-driven

1 Introduction

Process mining is a rapidly developing field that aims at automated modeling of
business processes based on data coming from event logs [1]. Most process mining
techniques assume that the event logs are directly related to the underlying
process and contain information on activities, resources, and durations. In recent
years, advances in tracking technologies, using e.g., Real-Time Locating Systems
(RTLS), put forward the ability to track entities that are involved in process
executions such as customers, resources. Currently, these technologies are mainly
used for monitoring location of entities. For example, in hospitals, nurses use a
real-time map to track patients that are next to enter service. To apply process
mining techniques to location data, one needs to overcome an abstraction gap,
since sensor data recordings do not relate to the process directly.

c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 257–273, 2016.
DOI: 10.1007/978-3-319-39696-5 16



258 A. Senderovich et al.

In this paper, we propose a knowledge-driven approach that facilitates process
knowledge for accurately transforming raw sensor recordings that contain loca-
tions and timestamps of process entities into standardized event logs that com-
prise process instances. To this end, we define the notion of interactions as
an intermediate knowledge layer. These interactions are mined from the sensor
data as a set of recordings that contain entities that overlap in time and space.
Assuming that interactions correspond to an activity instance, we formulate an
optimal matching problem that maps interactions to activity labels. The prob-
lem is thus formulated as an Integer Linear Program with parameters encoded
from existing process knowledge. The resulting interaction-to-activity mapping
creates process instances, which completes the construction of an event log. We
test our technique with controlled experiments on simulated data, inspired by a
real-life healthcare process in an outpatient cancer hospital.

The remainder of the paper is structured as follows. Section 2 presents our
data models and defines the ROAD problem. We outline the solution through
interaction mining in Sect. 3. The optimal matching problem between interac-
tions and activities is detailed in Sect. 4. We empirically evaluate our approach
in Sect. 5. In Sect. 6, we discuss related work, followed by concluding remarks
and future work in Sect. 7.

2 Data Models and Problem Statement

In this section we introduce our data models, and present the ROAD problem
that leads from raw sensor data to business process instances. To motivate our
work, we start with a running example of a real-life healthcare process.

Example 1 (DayHospital). Figure 1 presents a treatment process in DayHospi-
tal, a large outpatient cancer hospital. DayHospital treats cancer patients on
an ambulatory basis. Specifically, approximately 1000 patients arrive every day
and typically go through three activities: a blood draw, an examination, and
a chemotherapy infusion. The hospital is equipped with nearly 900 Real-Time
Locating System (RTLS) receivers that track all business entities involved in the
process (e.g., patients, physicians, nurses) as well as some of the medical devices.
The emitted data is recorded in a 3-s resolution, and is currently used only for
real-time tracking of process entities and equipment. This example motivates
the following data model definitions.

H
os

pi
ta

l

Hospital

examination

infusion
interrupted

consulting

no

no
yes

examine
patient?

no

yes

perform
chemotherapy?

blood draw infusion
yes

infusion?

infusion
canceled

Fig. 1. The main process in an outpatient hospital.



The ROAD from Sensor Data to Process Instances via Interaction Mining 259

Definition 1 (rO log). Let B be a set of entity identifiers, R a set of receiver
identifiers, and TS a set of timestamps. The raw Observation (rO) log is a set
of triples Draw = {(b, r, t)} s.t. b ∈ B, r ∈ R, and t ∈ TS.

Definition 1 formalizes a raw observation log, as captured by an RTLS sys-
tem. Hereafter, we shall use the “dot” notation to represent elements of a tuple.
Therefore, for d = (b, r, t), we use d.b, d.r, and d.t to denote the tuple’s elements.
We assume that an entity can be tracked by a single receiver at a time. As back-
ground knowledge we assume the existence of a mapping θ : B → T that assigns
an entity type to an entity identifier. For example, badge identifier ‘Bob111’ is of
type nurse. Entity types may be put into a taxonomy, e.g., an infusion nurse is a
type of a nurse. Also, given a tuple (b, r, t) ∈ Draw, we define a spatial function
S : R → Λ, where R is a set of receiver identifiers as before and Λ is a set of
locations that maps receivers into named spatial locations, e.g. Infusion Room
705C.

We next aggregate consecutive reads of the same entity and location as
follows. Given an rO log Draw, a consecutive set of raw observations is a set
dcons ⊆ Draw such that the following three (badge, space and time) continuity
conditions hold:

C1: ∀d = (b, r, t), d′ = (b′, r′, t′) ∈ dcons : b = b′ ∧ S(r) = S(r′).
C2: ∀d = (b, r, t), d′ = (b′, r′, t′) ∈ dcons :

∃d′′ = (b′′, r′′, t′′) ∈ Draw(b = b′′, S(r) = S(r′′), t < t′ < t′′) → d′′ ∈ dcons.
C3: ∀d = (b, r, t), d′ = (b′, r′, t′) ∈ dcons :

�d′′ = (b′′, r′′, t′′) ∈ Draw(b = b′′, S(r) �= S(r′′), t < t′′ < t′.

Condition C1 ensures that every dcons consists of observations that share badge
id, dcons.b and location dcons.l. C2 states that if badge dcons.b was observed in
location dcons.l in the time between two consecutive observations in dcons, that
observation also belongs to dcons. Last, C3 ensures that badge dcons.b was not
observed in location other than dcons.l, in the time between two consecutive
observations in dcons. A consecutive set of raw observations dcons is maximal if
there is no d′

cons ⊆ Draw such that dcons ⊂ d′
cons. We denote by Dcons(Draw) (or

Dcons when Draw is clear from the context) the set of all maximal consecutive
sets of raw observations.

Definition 2 (RO log). Let Draw be an rO log. The aggRegated Observation
(RO) log over Dcons is a set of quadruples Dagg = {(b, l, s, c)} s.t. ∀dcons ∈
Dcons, ∃d = (b, l, s, c) : b = dcons.b ∧ l = dcons.l ∧ s = mind∈dcons

(d.t) ∧ c =
maxd∈dcons

(d.t).

The RO log creates a new log from the raw observations log, mapping a
receiver identifier to a location and aggregating continuous observations of an
entity in a location into intervals with start and end times being the minimum
and maximum times over the aggregated raw observations per entity and loca-
tion, respectively. For the hospital described in Example 1, the RO log is created
automatically from a given rO log as a service of the RTLS vendor company.



260 A. Senderovich et al.

Table 1. Aggregated hospital tracklog - Sample from Dec. 3rd, 2013.

b θ(b) l s c

Anna555 Patient Room 705C 10:00AM 10:30AM

Bob111 Nurse Room 705C 10:10AM 10:20AM

Anna555 Patient Room 907 11:50AM 12:17PM

Bob111 Nurse Room 907 11:40AM 12:15PM

Jenna333 Physician Room 907 12:00PM 12:20PM

Following Example 1, Table 1 provides a sample of the RO log (the second
column associates an entity identifier with an entity type). Patient Anna enters
an infusion room 705, chair C at 10:00AM to receive a chemotherapy treatment.
She is followed by nurse Bob at 10:10AM, who starts the infusion and leaves the
room at 10:20AM. Anna then continues to an examination room with nurse Bob
and physician Jenna.

Clearly, the RO log does not contain the necessary information to under-
stand high-level information such as activities, participating resources, and
start/end times. For example, we are interested in log entries such as
〈Anna555, Infusion, {Bob111}, InfusionRoom705C, 10:10AM, 10:20PM〉, consist-
ing of patient identifier, activity label, set of resource entities, location, and time
interval.

Definition 3 (AD log). Let B be a set of entity identifiers, A a set of activity
labels, Λ a set of locations, and TS a set of timestamps. The Activity Data (AD)
log is a set of tuples L = {(b, a, E, l, s, c)} that correspond to activity instances
s.t. b ∈ B is the case identifier, a ∈ A is the activity, E ⊆ B is the set of
participating resource entities, l ∈ Λ, and s, c ∈ TS.

Let L be the set of all possible AD logs. We define a similarity measure
Δ : L × L −→ [0][1] that quantifies the extent to which two AD logs differ.
Such a similarity measure combines several aspects of the log. For example,
when comparing activity labels between traces, we could use a string edit dis-
tance measure, while for comparing resource sets we may use Jaccard similarity.
The concrete formulation of Δ depends on the requirements of the domain. For
example, an organization might be most interested in resource accuracy, while
another one might prioritize activity orderings.

Let L be an AD log of a real process, and let α be a mapping such that
L̂ = α(Dagg) transforms an RO log into an AD log. Because we do not know the
real process, but only observe its RO log Dagg, the problem we aim at solving
can be states as follows:

Problem 1 (aggRegated Observations to Activity Data (ROAD)). The ROAD
problem aims at finding a mapping α of the RO log, Dagg to an AD log L̂ =
α(Dagg) such that Δ(L, L̂) is minimized.



The ROAD from Sensor Data to Process Instances via Interaction Mining 261

3 The ROAD to Solution: Interaction Mining

Our solution to the ROAD problem is based on mining interactions between
business entities from the RO log and mapping these interactions to activity
instances. Figure 2 depicts our two-step solution to the ROAD problem, which
results in a transformation α that maps an RO log to an AD log. While our
proposed solution does not provide a formal guarantee of the minimality of
Δ, our empirical evaluation verifies that the solution yields accurate results
when comparing the AD log (α(Dagg)) with the ‘real’ event log. We first mine
interactions from the RO log (Sect. 3.1). The second step of our approach involves
creating an optimal matching between interactions and activities via process
knowledge (Sect. 4). This matching results in an AD log.

Fig. 2. The ROAD to solution.

To bridge the gap between the RO and the AD logs, we aim at using process
knowledge that is readily available in many real-life scenarios, e.g., in the form
of process models. However, it is unclear how to directly connect process knowl-
edge and the RO log. For example, observing that a patient is in a certain
location does not immediately indicate an ongoing activity. To resolve ambi-
guities, we create an intermediate knowledge layer, namely interactions. These
interactions correspond to involvements of business entities, such as patients,
nurses, and equipment in activities. To illustrate the notion of interactions, con-
sider Fig. 3 that corresponds to the DayHospital data example from Table 1.
Figure 3 depicts the hierarchy of data abstraction levels. Specifically, we assume
that activity instances result in interactions, which in turn can be observed in
the RO log. In our data example, nurse Bob and patient Anna share a location
over time, indicating an interaction that belongs to a certain activity instance,
e.g., a chemotherapy infusion.

3.1 Interaction Mining

In this section, we formally define the notion of interaction and propose a
methodology for mining interactions from the RO log. The terminology we use
follows the terminology of complex event processing (CEP) [2], where complex
events are detected from streams of events while our approach operates on his-
torical data logs.



262 A. Senderovich et al.

Fig. 3. Hierarchy of Instances: Activities, Interactions, and Raw Data.

Definition 4 (Interaction). An interaction is a tuple i = (E, l, s, c), where E
is a set of interacting entities (badges), l is a location, and s and c stand for the
interaction start and end times, respectively.

Mining a set of interactions {(E, l, s, c)} from an RO log requires four basic
functions over the RO log, Dagg, namely selection, grouping, filtering, and con-
struction. As a guiding example we consider the mining of co-location inter-
actions, which are interactions that involve two or more entities in the same
location over an overlapping timespan. In DayHospital, this a highly relevant
interaction, since the execution of medical activities requires the presence of a
patient and at least one of the resources.

We first define a selection function over the RO log, which enables us to con-
sider only relevant tuples for interactions. For DayHospital, we are not interested
in conference rooms, where doctors spend their time resting, as we are interested
in clinical activities.

Definition 5 (Selection). Let ψ(Σ) be a logical predicate over the RO log Dagg

with a set of external parameters, Σ. A selection function σ(Dagg, ψ(Σ)) returns
a subset of Dagg, s.t. {d ∈ Dagg | ψ(Σ) = True}.

For example, selection over the DayHospital log with location parameter
λ = Room705C would return all RO tuples in that location. We denote by Dsel

the outcome of a selection over Dagg, which contains individual tuples of the RO
log that satisfy the logical rule. However, interactions typically comprise several
tuples (e.g. two doctors entering a room correspond to two tuples in the RO
log). To this end, we group tuples of Dsel into sets by an operation that we refer
to as grouping.

Definition 6 (Grouping). Let m,M ∈ N be two natural numbers. A grouping
function over Dsel, γ, returns the set {D ⊆ Dsel | m ≤ |D| ≤ M}.

In other words, grouping returns the set of sets of Dsel having a minimal size
of m, and a maximal size of M . Setting a lower and upper bound on the size of the
sets reduces the number of tuple sets, since in the worst case of m = 1,M = ∞
one needs to consider all elements of 2Dsel as interaction candidates. Returning
to the co-location example, we are interested in interactions with two entities or



The ROAD from Sensor Data to Process Instances via Interaction Mining 263

more, thus we set m = 2, and M = ∞. Let Dgroup denote the grouped set of
Dsel.

Having gathered all relevant sets of tuples into Dgroup we are interested in
filtering out subsets of Dgroup that satisfy an interaction rule (e.g. co-location).
For example, if a set in Dgroup contains only tuples that do not share the location,
we shall not consider this set as an interaction candidate. To this end, we first
define the interaction condition η(D) over D ∈ Dgroup, which evaluates to true
if D satisfies the condition for an interaction. The filtering function that returns
only subsets of Dgroup that satisfy φ is defined as follows.

Definition 7 (Interaction Filter). Let η(D) be the interaction predicate over
D. An interactions filter, φ, is a function that returns all subsets of Dgroup that
satisfy the interaction condition, i.e., φ(Dgroup, η(D)) = {D ∈ Dgroup | η(D) =
True}.

For the co-location interactions we define the condition:

ηco-locate(D) = ∀d, d′ ∈ D {(d′.s < d.c ∧ d′.c > d.s) ∧ d.l = d′.l}. (1)

with which we operate the filtering function on Dgroup, and obtain Dfilter, fil-
tered subsets of Dgroup that corresponds to an interaction. As a last step, every
set Dfilter needs to be converted into a set of interactions that correspond to
Definition 4. For this last step we define an interaction constructor function.

Definition 8 (Interaction Constructor). An interaction constructor is a map-
ping, ξ, which receives D ∈ Dfilter, and returns a set of interaction tuples
{(E, l, s, c)}.

The set of interactions I that is mined from Dagg (through selection, group-
ing, and filtering) is defined as I = {

⋃
D∈Dfilter

ξ(D)}. Note that ξ is a set to
set mapping, since every set in Dfilter may correspond to several interactions.
For example, if D ∈ Dfilter contains co-location of doctor Bob, patient Anna
and nurse Jenna. When doctor Bob enters, he may start a new interaction with
the two entities (e.g., examination by physician and nurse). However, it may be
that the doctor’s entry is not related to the ongoing procedure. Since we need to
consider all possible options, a single co-location set D ∈ Dfilter may correspond
to several possible interactions.

To demonstrate the mining of the co-location interactions set Ico-locate we
return to Fig. 3 that corresponds to the RO log in Table 1, and focus on the
interaction of the Exam activity (the rightmost interaction). We observe three
time intervals in the RO log corresponding to nurse Bob, patient Anna and
doctor Jenna, interacting in an examination room. According to our definition,
while nurse Bob is alone in the room (at the beginning) and while doctor Jenna
is alone in the room (at the end), there are no ongoing interactions. When
patient Anna first enters the room, a possible interaction between nurse Bob
and patient Anna is recorded. When Jenna enters the room, an interaction may
start between either Bob and Jenna, or Anna and Jenna, or all three together; all



264 A. Senderovich et al.

three options are considered to be part of Ico-locate. Furthermore, the interaction
between nurse Bob and patient Anna may continue, as Jenna could be visiting
the room unrelated to the ongoing activity.

Formally, let Dfilter be a set of the filtered sets that correspond to the co-
location interaction. Then, the interaction set Ico-locate = {(E, l, s, c)} is mined
by applying an interaction condition ξco-location to every D ∈ Dfilter with the
condition being

ξco-location(D) = {(E =
⋃

d∈D′
d.b, l = D′.l, s = max

d∈D′
d.s, c = min

d∈D′
d.c) | D′ ⊆ D},

(2)
and D′.l being the shared location for every set D′ ∈ D.

In the remainder of this work, we focus only on co-location interactions, since
they are key indicators for service-oriented activities that require the presence
of cases and resources. However, considering only the co-location interaction has
the disadvantage of missing activities that do not require more than a single
entity, such as a nurse examining blood results. To capture the latter, com-
plementary interactions can be applied. For example, filtering interactions that
involve special locations (e.g. blood laboratory), and certain types of entities
(e.g. nurses).

4 Optimal Mapping of Interactions to Activities

In this part, we formulate an optimal matching problem (OMP) between the
interaction set I and the activity set A. Specifically, we consider the interaction
set Ico-locate, which we obtain by the mining technique proposed in Sect. 3.1.
First, we write the matching problem as an Integer Linear Program (ILP). Then,
we define process knowledge and demonstrate its encoding into the ILP. The
solution to the OMP as an ILP results in a mapping between the RO log and
the AD log, which is then easily transformed into an event log, hence solving the
ROAD problem.

4.1 The Optimal Matching Problem

Let I be the interaction set (e.g., Ico-locate) and A be the set of activity labels.
In this paper, we make a simplifying assumption that an interaction contains
exactly one case. To ground the notion of a case in the process log we assume
the existence of a case function τ : 2B → 2B that returns the case entities (e.g.,
patients) from a set of entities E. For the matching problem, we consider only
interactions with a single case:

Ic = {i ∈ I | ∃b ∈ i.E (τ(i.E) = {b}))}. (3)

Now, we turn to formulate the OMP problem as an Integer Linear Program,
which consists of binary decision variables, a score function, and the constraints
matrix [3].



The ROAD from Sensor Data to Process Instances via Interaction Mining 265

Let xi,a ∈ {0, 1}, i ∈ Ic, a ∈ A be binary decision variables that are assigned
with the value 1 if interaction i ∈ Ic is matched to activity label a ∈ A. Let x
denote the vector of xi,a, g(x) be a linear score function, and B denote the con-
straint matrix of size |Ic|×|A|. The ILP formulation of the matching problem is:

maximize
x

g(x) subject to Bᵀx ≤ 0 (4)

The derivation of the AD log from the solution to the ILP is done by creating
a tuple in the AD log for every xi,a = 1 such that (b, a, E, l, s, c) = (τ(i.E), a, i.E\
τ(i.E), i.l, i.s, i.c).

4.2 Encoding Process Knowledge into the ILP

We are now ready to demonstrate the instantiation of the ILP problem via
an encoding of given process knowledge. We consider three types of process
knowledge: (1) interaction knowledge (e.g., a doctor cannot be involved in two
examinations simultaneously), (2) activity knowledge (e.g., the distributions
of the infusion activity) and (3) behavioral knowledge (e.g., precedence con-
straints among activities for patients). These knowledge types can be derived
from process-related documents, interviews with process experts, appointment
books, and process models.
Interaction Knowledge – Pruning Alternative Co-locations: Interaction
knowledge considers the activity dynamics of the underlying process. For exam-
ple, one may decide that hallway interactions between patients are not process
interactions and should not be considered as activity candidates. Such knowl-
edge may reduce the size of Ic, therefore improving the performance of the ILP
solver. To demonstrate how interaction knowledge may assist in pruning alter-
native interactions from Ic, we make the following assumptions:

A1 : An entity cannot be involved in two interactions at the same time.
A2 : An activity instance corresponds to at most a single interaction in Ic, and

every interaction stems from at most a single activity instance.

From A1 we get that interactions that overlap in time and intersect in the set of
involved entities cannot co-exist in the mapping. Clearly, this may not be the case
in every business process: sometimes resources may participate in interactions
with two case entities simultaneously. The second assumption, A2, prevents from
mapping interactions to more than a single activity. Here, we assume that two
interactions cannot stem from a single activity instance. This may not hold in
processes where activities have a complex life cycle with interrupts.

We start by encoding assumption A1 into the ILP. As a preprocessing step,
we mine an exclusion relation IX ⊆ Ic × Ic from Ic such that (i1, i2) ∈ IX ⇐⇒
i1.E ∩ i2.E �= ∅, and i1, i2 overlap in time. For every pair of these interactions
we add a constraint to the ILP allowing at most one interaction to be mapped
to an activity, otherwise their joint mapping would be inconsistent:

∀(i1, i2),∈ IX :
∑

a∈A

xi1,a +
∑

a∈A

xi2,a ≤ 1. (5)



266 A. Senderovich et al.

Next, we demonstrate the encoding of assumption A2 into B. The interaction
set Ic can be partitioned according to case entities, since every i ∈ Ic contains
exactly one case entity τ(i). Let Ijc be the set of interactions that corresponds
to case entity j ∈ J , with J being the set of case entities. Then, we write the
constraints for A2 in a way that allows an interaction to be mapped to at most
a single activity label:

∀i ∈ Ic :
∑

a∈A

xi,a ≤ 1; ∀j ∈ J,∀a ∈ A :
∑

i∈Ij
c

xi,a ≤ 1. (6)

Further pruning on the interaction level is possible. For example, one may
consider interactions with durations only above a certain threshold, and allow
for only a single interaction per each location at a time.
Activity Knowledge – Durations, Resources, and Locations: Here, we
consider specific types of activity knowledge, namely durations, possible resource
assignments, and possible locations of activity executions. Such knowledge is
often available in historical patient records, appointment books and models.
We take a stochastic perspective on activity knowledge, assuming components
to be random. Formally, we define the activity knowledge components as ran-
dom variables and specify their corresponding distribution functions. For every
activity a ∈ A, let Da, Ea, and La be the random durations, random sets of
assigned resources, and random locations, respectively. We denote by fDa

, fEa
,

and fLa
the probability distribution functions (PDFs) for these random vari-

ables, respectively. Therefore, fDa
(d) = Pr{Da = d}, fEa

(E) = Pr{Ea = E},
and fLa

(l) = Pr{La = l}.
We assume that activity knowledge is shared among all instances. However,

our model is general enough to consider instance-level knowledge (e.g., the dis-
tribution of patient Anna’s infusion duration from her past visits). Below, we
demonstrate the encoding of activity knowledge into the ILP score function
g(x). We attach a reward coefficient to each of the decision variable xi,a, which
is defined as:

wi,a = Pr{xi,a = 1 | i = (E, l, s, c)}. (7)

The coefficient wi,a can be interpreted as the posterior probability that inter-
action i is mapped to activity a given that i has values (E, l, s, c). By applying
Bayes theorem:

wi,a =
πaPr{i = (E, l, s, c) | xi,a = 1}

Pr{i = (E, l, s, c)} , (8)

with πa = Pr{xi,a = 1} being the prior that any interaction maps to activity a,
Pr{i = (E, l, s, c) | xi,a = 1} being the likelihood of interaction i = (E, l, s, c) if
it comes from activity a, and Pr{i = (E, l, s, c)} being the probability to get the
values (E, l, s, c) by randomly selecting an interaction from Ic. The denominator
in Eq. 8 is a scaling factor that does not depend on the xi,a and can therefore be
excluded from the score function. Further, we assume that the three knowledge
components, Da, Ea, and La are independent, which allows us to write the



The ROAD from Sensor Data to Process Instances via Interaction Mining 267

following multiplicative form for wi,a:

wi,a = πaPr{i.E, i.l, i.c− i.s | xi,a = 1} = πafDa
(i.c− i.s)fEa

(i.E)fLa
(i.l). (9)

Thus, the score function can be written as:

g(x) =
∑

i∈Ic

∑

a∈A

wi,axi,a =
∑

i∈Ic

∑

a∈A

πafDa
(i.c − i.s)fEa

(i.E)fLa
(i.l)xi,a. (10)

The assumption that we make in Eq. 10 is that the reward is additive for
matching i to a, and is linear in the likelihood of i to be an interaction coming
from activity a according to durations, resources and locations.

Table 2. Left-hand side – soft encoding; right-hand side – hard encoding.

Soft encoding Hard encoding

∀(a, b) ∈≺P , ∀i ∈ Ic :

zi,a,b ≤ 1 − xi,b + yi,a

zi,a,b ≥ 1 − xi,b

zi,a,b ≥ yi,a

zi,a,b ∈ {0, 1}

∀(a, b) ∈≺P , ∀i ∈ Ic :

xi,b ≤ yi,a

Behavioral Knowledge – Precedence Order: Behavioral knowledge is a
relation between activities in A, which can be obtained from various sources, e.g.,
by computing behavioral profiles from a given process model [4]. In DayHospital,
one may use the schedule of patients to derive precedence constraints between
activities. Here, we demonstrate the encoding of a precedence order between
activities. Let ≺P⊆ A × A be the precedence relation, where a ≺P b if b’s
execution implies that ca ≤ sb, with ca being the completion time of a and sb
being the start time of b. Further, we assume that loops do not exist, and if an
activity a is repeated it corresponds to a new activity label, a′.

As a preliminary phase to encoding precedence knowledge, let P : Ic → 2Ic
be the precedence function for interactions in Ic such that P (i) returns the set all
interactions that precede i, and have the same case entity (e.g. the same patient
identifier): {j ∈ Ic | τ(i) = τ(j), i.c ≤ j.s}. Let yi,a =

∑
j∈P (i) xj,a denote the

sum of mappings between j ∈ Ic in precedence to i ∈ Ic that map to a. yi,a
indicates if an interaction that precedes i was mapped to a.

To encode ≺P into the ILP problem, we have the choice of adding hard con-
straints (into B), thus preventing violations in precedence order, or assigning
smaller rewards for mappings that violate ≺P . Table 2 summarizes the formula-
tion of the two options. For hard encoding of the precedence constraints we add
the constraints on the right-hand side of Table 2 into B. For soft encoding, we
add additional variables zi,a,b ∈ {0, 1} to the ILP and add constrains into B as
stated on the left-hand side of Table 2. These constraints are equivalent to the



268 A. Senderovich et al.

logical predicate xi,b → yi,a. Having defined zi,a,b, we add these variables and
their corresponding rewards into the score function of the ILP program. The size
of the reward for a matching that does not violate precedence constraints is user-
defined, and is set by default to the median of wi,a, as defined in Eq. 7. These
default values are used to scale precedence violation weights in correspondence
with activity knowledge weights.

5 Evaluation

In this section, we present the evaluation of our ROAD solution via controlled
experiments. Specifically, we introduce the experimental setting, present results,
and discuss the main factors that influence the accuracy of our approach.

Experimental Setting. We implemented our solution to the ROAD problem in
the ProM framework.1 The design of our experiment is depicted in Fig. 4 and
consists of five steps. In step 1, we generate a simulation ready stochastic Petri
net (SPN) model based on knowledge from the healthcare process described in
Example 1, and the process model in Fig. 1. Note that model parameters vary
across three different scenarios that we use to test the sensitivity of our solution.
In step 2, the SPN is simulated to create the ground truth AD log, denoted L.
In step 3, the AD log is converted (by label removals) into the RO log, which
contains time intervals involving sets of entities in different locations. In step 4,
we use process knowledge and apply the ROAD approach to the RO log, which
results in a reconstructed AD log, denoted L̂. Step 5 computes a similarity
measure that quantifies the difference between L and L̂.

Fig. 4. Evaluation setting to test accuracy of the ROAD approach.

We use a multi-dimensional similarity measure that consists of four quanti-
fiers. For reconstructing trace activity labels (including their order) we use the
complementary of average Levenshtein distance measure between two traces [5].
For duration similarity we consider the complementary of the symmetric mean
1 See StochasticNet package. http://www.promtools.org.

http://www.promtools.org


The ROAD from Sensor Data to Process Instances via Interaction Mining 269

absolute percentage error (sMAPE) [6]. For comparing two resource sets we use
the average Jaccard similarity, and for location similarity we use the average of
an indicator that is set to 1 if the location was reconstructed correctly (and 0
otherwise).

To test the accuracy and sensitivity of our ROAD solution, we consider the
following three scenarios. In scenario 1, we alter the level of entropy in process
knowledge for resource assignments and activity locations, namely Ea and La.
Specifically, we change the probability distributions, fEa

, fLa
, from deterministic

(no entropy), to uniform distributions (maximal entropy). We expect that deter-
ministic values will result in accurate discrimination between activities, while for
maximal entropy, the performance of our solution will deteriorate. For example,
it is more difficult to reconstruct activity instances for locations that are used
for multiple activities, as opposed to locations that support a single activity.

In scenario 2, we introduce noise in the form of deviations in the execution
of the process with respect to the existing process knowledge. For example,
we insert swaps between activity instances in the simulated AD log such that
precedence constraints are violated. Further, we allow for changes in location
and assigned resource sets. We hypothesize that an increase in noise will cause
a reduction in similarity measures.

Last, in scenario 3, we increase the number of activities that can occur in the
same time and place. This, by definition of the co-location interactions, results in
an exponential increase in the size the interaction set Ico-locate. We hypothesize
that this exponential increase will result in an accuracy reduction, as well as in
run-time deterioration. Note that in scenarios 2 and 3, the entropy level in the
process knowledge corresponds to the realistic values coming from the real-life
process described in Example 1.

Results. The results of our evaluation for the three scenarios are presented in
Fig. 5a, b, and c, respectively. The vertical axes in these figures correspond to the
four aforementioned similarity measures, and to the run-time performance of our
approach (in seconds). The horizontal axes for the three scenarios correspond
to the level of entropy in the process knowledge (Fig. 5a), the noise percent-
age (Fig. 5b), and the maximal number of overlapping activities per location
(Fig. 5c). We omit the formal definition of entropy level and noise percentage
due to space limitations. Figure 5a shows a steep decline in all four similarity
measures as the level of entropy approaches its maximal value; the run-time
shows a negligible increase across entropy levels. As for scenario 2 (Fig. 5b) we
observe a linear decline in accuracy, i.e., the error is proportional to the noise
inserted. For scenario 3 (Fig. 5c) a mild decrease in accuracy is evident, while we
observe an exponential growth in run-time. It is worth noting that for scenarios
1 & 2, all similarity measures display an almost identical behavior, which means
that any aggregated similarity measure would demonstrate the same pattern.
For scenario 3, while we see a mild decrease for all measures, the shape of the
decrease vary slightly.



270 A. Senderovich et al.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
entropy level

tr
ac

e 
ed

it 
si

m
ila

rit
y

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
entropy level

du
ra

tio
n 

si
m

ila
rit

y

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
entropy level

re
so

ur
ce

 s
im

ila
rit

y

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
entropy level

lo
ca

tio
n 

si
m

ila
rit

y

0.000

0.005

0.010

0.015

0.020

0.025

0.0 0.5 1.0
entropy level

av
g.

 d
ur

at
io

n 
(s

)

(a) Similarity with respect to increasing entropyin the mapping to activities.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
noise percentage

tr
ac

e 
ed

it 
si

m
ila

rit
y

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
noise percentage

du
ra

tio
n 

si
m

ila
rit

y

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
noise percentage

re
so

ur
ce

 s
im

ila
rit

y
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
noise percentage

lo
ca

tio
n 

si
m

ila
rit

y

0.000

0.005

0.010

0.015

0.020

0.00 0.25 0.50 0.75
noise percentage

av
g.

 d
ur

at
io

n 
(s

)

(b) Similarity with respect to increasing noisereflecting deviations from the process knowledge.

0.00

0.25

0.50

0.75

1.00

2 4 6
# overlapping activities

tr
ac

e 
ed

it 
si

m
ila

rit
y

0.00

0.25

0.50

0.75

1.00

2 4 6
# overlapping activities

du
ra

tio
n 

si
m

ila
rit

y

0.00

0.25

0.50

0.75

1.00

2 4 6
# overlapping activities

re
so

ur
ce

 s
im

ila
rit

y

0.00

0.25

0.50

0.75

1.00

2 4 6
# overlapping activities

lo
ca

tio
n 

si
m

ila
rit

y

0

5

10

15

20

2 4 6
# overlapping activities

av
g.

 d
ur

at
io

n 
(s

)

(c) Similarity with respect to increasing overlap in activities per location.

Fig. 5. Accuracy results assessing the ROAD solution.

Discussion. Our evaluation shows that the quality of process knowledge has most
influence on the accuracy of the ROAD solution. Specifically, process knowledge
becomes less informative as entropy increases, and cannot be applied to recon-
struct the AD log. The second most relevant source for inaccuracies stems from
deviations in process knowledge (i.e., the noise factor). Further, our definition
for co-locating interactions leads to an exponential growth in the size of the
considered interaction set, and may pose computational limitations. However, in
real-life processes, we seldom observe multiple overlapping activities in a single
location.

To conclude, the ability to go from RO to AD using our approach depends
on both the informativeness of the process knowledge (for higher accuracy), and
the definition of interactions (for lower run-time complexity).

6 Related Work

Our research is most closely related to automatic process discovery, process align-
ment, and activity recognition. Bridging the abstraction gap between raw events
and activity data has been a subject of several recent works in process min-
ing, c.f. [7] and the references within. In [7,8], a semi-automated approach was



The ROAD from Sensor Data to Process Instances via Interaction Mining 271

proposed where process knowledge is used to match raw events to process activ-
ities; the approach is extended to use constraint programming in [9]. Our work
generalizes these approaches by optimally mapping raw data to activities, and
by considering further dimensions (e.g. time, resources). In [10], classification
and regression techniques are used to create process views from low-level multi-
dimensional data, without assuming the existence of pre-defined activity labels.
Their approach uses logs with process related raw events. Other approaches
in process mining for connecting low-level events with activities include clus-
tering [11], Expectation-Maximization based sequence mining [12]. These tech-
niques focus on structural and behavioral aspects of the control-flow perspective,
which our work extends towards a multi-perspective approach. None of the afore-
mentioned works in process mining consider tracking data, but rather event logs
that come from information systems executing the processes.

Our approach is also related to a multi-perspective conformance checking and
alignment of event logs to process models, c.f. [13] and the references within. We
propose an optimal matching between interactions and activities while consider-
ing event logs that are not semantically related to activities. In order to reduce
the search space, we adopt techniques from process matching, where processes
are matched according to structural and behavioral similarities [14]. Our app-
roach includes behavioral matching according to precedence constraints, in the
spirit of [4].

In our solution, we are also inspired by techniques for sensor-based activity
and event recognition. The former is a well-established task in Artificial Intelli-
gence [15]. Methods for activity recognition include two main approaches: data-
driven and knowledge-driven activity recognition. Event recognition, a related
task, is a well-studied problem in the field of complex event processing [16]. Sim-
ilarly to our interaction mining technique, the idea behind these works is to use
logical predicates to filter events. However, state-of-the-art event and activity
recognition techniques do not assume a process perspective. In our work we take
the knowledge-driven approach to activity recognition, based on logical predi-
cates, in the spirit of [16,17], while introducing the context of processes, which in
turn creates dependencies between activities. To conclude related work, we nar-
row the scope to literature on mining location data. A methodology for clustering
RFID trajectories to reconstruct entity paths was proposed in [18]. Moreover, a
probabilistic model for workflow discovery from RTLS data was applied in [19].
In contrast to our solution, the former work disregards the process perspective,
while the latter assumes that locations correspond to activities in a one-to-one
fashion.

7 Conclusion

In this work, we provided a transformation of sensor data (e.g. Real-Time Locat-
ing System data) into standard event logs, to enable the application of process
mining techniques to raw location recordings. The transformation was based on
the notion of interactions, which is an intermediate knowledge layer that bridges



272 A. Senderovich et al.

between raw sensor data, and process instances. After mining interactions from
the raw data, we solved a matching problem that is based on process knowl-
edge. The solution to the problem finds optimal correspondences between the
interactions and activity labels, and creates activity instances, which comprise
the target event log. We evaluated the approach with controlled experiments by
using simulated event logs. The experiments show that the accuracy of our tech-
nique depends on the informativeness of process knowledge, while the complexity
of the technique depends on the number of possible interactions.

In future work, we aim at a feature complete encoding of process models into
the optimal matching setting. This requires a process model at hand, which can
be obtained via process discovery. Such encoding would enable further automa-
tion of our ROAD solution. Moreover, we would like to test our solution on real-
world processes that emit sensor data by cross-validating the resulting event log
against information that comes from process-aware systems that accompany and
execute the process.

Acknowledgment. This work was supported by the EU project SERAMIS (612052).

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Heidelberg (2011)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich (2010)

3. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
4. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,

H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer,
Heidelberg (2012)

5. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974)

6. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int.
J. Forecast. 22(4), 679–688 (2006)

7. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining.
Inf. Syst. 46, 123–139 (2014)

8. Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated
matching of events and activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM
2013. LNCS, vol. 8094, pp. 17–32. Springer, Heidelberg (2013)

9. Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of events and activi-
ties - an approach based on constraint satisfaction. In: Frank, U., Loucopoulos, P.,
Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 58–72. Springer,
Heidelberg (2014)

10. Folino, F., Guarascio, M., Pontieri, L.: Mining predictive process models out of
low-level multidimensional logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 533–547. Springer, Heidelberg (2014)



The ROAD from Sensor Data to Process Instances via Interaction Mining 273

11. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)

12. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Mining the low-level behaviour of agents
in high-level business processes. Int. J. Bus. Process Integr. Manag. 6(2), 146–166
(2013)

13. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

14. Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

15. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recog-
nition. IEEE Trans. Syst. Man Cybern. B Cybern. 42(6), 790–808 (2012)

16. Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition.
Knowl. Eng. Rev. 27(04), 469–506 (2012)

17. Azkune, G., Almeida, A., López-de Ipiña, D., Chen, L.: Extending knowledge-
driven activity models through data-driven learning techniques. Expert Syst. Appl.
42(6), 3115–3128 (2015)

18. Han, Y., Tucker, C.S., Simpson, T.W., Davidson, E.: A data mining trajectory
clustering methodology for modeling indoor design space utilization. In: ASME
2013 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, American Society of Mechanical Engineers
V03BT03A017–V03BT03A028 (2013)

19. Liu, C., Ge, Y., Xiong, H., Xiao, K., Geng, W., Perkins, M.: Proactive workflow
modeling by stochastic processes with application to healthcare operation and
management. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2014, pp. 1593–1602. ACM,
New York (2014)


	The ROAD from Sensor Data to Process Instances via Interaction Mining
	1 Introduction
	2 Data Models and Problem Statement
	3 The ROAD to Solution: Interaction Mining
	3.1 Interaction Mining

	4 Optimal Mapping of Interactions to Activities
	4.1 The Optimal Matching Problem
	4.2 Encoding Process Knowledge into the ILP

	5 Evaluation
	6 Related Work
	7 Conclusion
	References


