
Minimizing Overprocessing Waste in Business
Processes via Predictive Activity Ordering

Ilya Verenich1,2(B), Marlon Dumas1,2, Marcello La Rosa1,
Fabrizio Maria Maggi2, and Chiara Di Francescomarino3

1 Queensland University of Technology, Brisbane, Australia
{ilya.verenich,m.larosa}@qut.edu.au

2 University of Tartu, Tartu, Estonia
{marlon.dumas,f.m.maggi}@ut.ee

3 FBK-IRST, Trento, Italy
dfmchiara@fbk.eu

Abstract. Overprocessing waste occurs in a business process when
effort is spent in a way that does not add value to the customer nor to
the business. Previous studies have identified a recurrent overprocessing
pattern in business processes with so-called “knockout checks”, meaning
activities that classify a case into “accepted” or “rejected”, such that if
the case is accepted it proceeds forward, while if rejected, it is cancelled
and all work performed in the case is considered unnecessary. Thus, when
a knockout check rejects a case, the effort spent in other (previous) checks
becomes overprocessing waste. Traditional process redesign methods pro-
pose to order knockout checks according to their mean effort and rejec-
tion rate. This paper presents a more fine-grained approach where knock-
out checks are ordered at runtime based on predictive machine learning
models. Experiments on two real-life processes show that this predic-
tive approach outperforms traditional methods while incurring minimal
runtime overhead.

Keywords: Process mining · Process optimization · Overprocessing
waste

1 Introduction

Overprocessing is one of seven types of waste in lean manufacturing [1]. In a
business process, overprocessing occurs when effort is spent in the performance
of activities to an extent that does not add value to the customer nor to the
business. Overprocessing waste results for example from unnecessary detail or
accuracy in the performance of activities, inappropriate use of tools or methods
in a way that leads to excess effort, or unnecessary or excessive verifications [2].

Previous studies in the field of business process optimization have identified
a recurrent overprocessing pattern in business processes with so-called “knock-
out checks” [3,4]. A knockout check is an activity that classifies a case into
“accepted” or “rejected”, such that if the case is accepted it proceeds forward,
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while if rejected, all other checks are considered unnecessary and the case is
either terminated or moved to a later stage in the process. When a knockout
check rejects a case, the effort spent in previous checks becomes overprocess-
ing waste. This waste pattern is common in application-to-approval processes,
where an application goes through a number of checks aimed at classifying it into
admissible or not, such as eligibility checks in a University admission process, lia-
bility checks in an insurance claims handling process, or credit worthiness checks
in a loan origination process. Any of these checks may lead to an application or
claim being declared ineligible, effectively making other checks irrelevant for the
case in question.

A general strategy to minimize overprocessing due to the execution of unnec-
essary knockout checks is to first execute the check that is most likely to lead
to a negative (“reject”) outcome. If the outcome is indeed negative, there is no
overprocessing. If on the other hand we execute first the checks that lead to
positive outcomes and leave the one that leads to a negative outcome to the
end, the overprocessing is maximal – all the checks with positive outcome were
unnecessary. On the other hand, it also makes sense to execute the checks that
require less effort first, and leave those requiring higher effort last, so that the
latter are only executed when they are strictly necessary. These observations lead
to a strategy where knockout checks are ordered according to two parameters:
their likelihood of leading to a negative outcome and the required effort.

Existing process optimization heuristics [3,5] apply this strategy at design-
time. Specifically, checks are ordered at design-time based on their rejection rate
and mean effort. This approach achieves some overprocessing reduction, but
does not take into account the specificities of each case. This paper proposes
an approach that further reduces overprocessing by incorporating the above
strategy into a predictive process monitoring method. Specifically, the likelihood
of each check leading to a positive outcome and the effort required by each check
are estimated at runtime based on the available case data and machine learning
models built from historical execution data. The checks are then ordered at
runtime for the case at hand according to the estimated parameters.

The rest of the paper is organized as follows. Section 2 gives a more detailed
definition of knockout checks and discusses related work. Section 3 presents the
proposed knockout check reordering approach. Next, Sect. 4 discusses an empiri-
cal evaluation of the proposed approach versus design-time alternatives based on
two datasets related to a loan origination process and an environmental permit
process. Finally, Sect. 5 draws conclusions and outlines future work.

2 Background and Related Work

This paper is concerned with optimizing the order in which a set of knock-
out checks are performed in order to minimize overprocessing. The starting
point for this optimization is a knockout section, defined as a set of indepen-
dent binary knockout checks. By independent we mean that the knockout checks
in the section can be performed in any order. By binary we mean that each check
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classifies the case into two classes, hereby called “accepted” and “rejected”. And
by knockout we mean that if the check classifies a case as “rejected”, the case
jumps to a designated point in the process (called an anchor) regardless of the
outcome of all other checks in the section. An anchor can be any point in the
process execution either before or after the knockout section. In the rest of the
paper, we assume that the anchor point is an end event of the process, meaning
that a case completes with a negative outcome as soon as one of the checks in
the knockout section fails.

For example, a loan application process in a peer-to-peer lending marketplace
typically includes several knockout checks. Later in this paper we will examine
one such process containing three checks: identity check; credit worthiness check;
and verification of submitted documents. Any of these checks can lead to rejec-
tion of the loan, thus the three checks constitute a knockout section.

The order of execution of checks in a knockout section can impact on over-
processing waste. For example, in the above knockout section, if the identity
check is completed first and succeeds and then the credit worthiness check is
completed and leads to a rejection, then the identity check constitutes over-
processing, as it did not contribute to the outcome of the case. Had the credit
worthiness check been completed first, the identity check would not have been
necessary.

Van der Aalst [3] outlines a set of heuristics to resequence the knockout checks
according to the average processing time, rejection rate and setup time of each
check. One heuristic is to execute the checks in descending order of rejection
rate, meaning that the checks that are more likely to reject a case are executed
first. A more refined heuristic is one where the checks are executed in descending
order of the product of their rejection rate times their required effort. In other
words, checks are ordered according to the principle of “least effort to reject” –
checks that require less effort and are more likely to reject the case come first.
This idea is identified as a redesign best practice by Reijers et al. [5] and called
the “knockout principle” by Lohrmann and Reichert [6].

Pourshahid et al. [7] study the impact of applying the knockout principle in a
healthcare case study. They find that the knockout pattern in combination with
two other process redesign patterns improve some of the process KPIs, such as
average approval turnaround time and average cost per application. Niedermann
et al. [8] in the context of their study on process optimization patterns introduce
the “early knockout” pattern. The idea of this latter pattern is moving the whole
knockout section to the earliest possible point.

All of the above optimization approaches resequence the knockout checks at
design time. In contrast, in this paper we investigate the idea of ordering the
checks at runtime based on the characteristics of the current case. Specifically,
we seek to exploit knowledge extracted from historical execution traces in order
to predict the outcome of the knockout checks and to order them based on these
predictions. In this respect, the present work can be seen as an application of
predictive process monitoring.
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Predictive process monitoring is a branch of process mining that seeks to
exploit event logs in order to predict how one or multiple ongoing cases of a
business process will unfold up to their completion [9]. A predictive monitoring
approach relies on machine learning models trained on historical traces in order
to make predictions at runtime for ongoing cases. Existing predictive process
monitoring approaches can be classified based on the predicted output or on the
type of information contained in the execution traces they take as input. In this
respect, some approaches focus on the time perspective [10], others on the risk
perspective [11]. Some of them take advantage only of a static snapshot of the
data manipulated by the traces [9], while in others [12,13], traces are encoded as
complex symbolic sequences, and hence the successive data values taken by each
data attribute throughout the execution of a case are taken into account. This
paper relies on the latter approach. The main difference between the present
work and existing predictive monitoring approaches is that the goal is not to
predict the outcome of the entire case, but rather to predict the outcome of
individual activities in the case in order to re-sequence them.

The idea of using predictive monitoring to alter (or customize) a process
at runtime is explored by Zeng et al. [14] in the specific context of an invoice-
to-cash process. The authors train a machine learning model with historical
payment behavior of customers, with the aim of predicting the outcome of a
given invoice. This prediction is then used to customize the payment collection
process in order to save time and maximize the chances of successfully cashing
in the payment. In comparison, the proposal outlined in this paper is generally
applicable to any knockout section and not tied to a specific application domain.

3 Approach

In this section we describe the proposed approach to resequencing knockout
checks in order to minimize overprocessing. We first give an overview of the
entire solution framework and then focus on the core parts of our approach.

3.1 Overview

Given a designated knockout section in a process, the goal of our approach is to
determine how the checks in this section should be ordered at runtime in order to
reduce overprocessing waste. Accordingly, our approach pre-supposes that any
preexisting design-time ordering of the checks be relaxed, so that instead the
checks can be ordered by a runtime component.

The runtime component responsible for ordering the checks in a knockout
section relies on a predictive monitoring approach outlined in Fig. 1. This app-
roach exploits historical execution traces in order to train two machine learning
models for each check in the knockout section: one to predict the probability of
the check to reject a given case, and the second to predict the expected process-
ing time of the check. The former is a classification model while the latter is a
regression model.
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Fig. 1. Overview of the proposed approach.

To train these models, the traces of completed cases are first encoded as fea-
ture vectors and fed into conventional machine learning algorithms. The resulting
models are then used at runtime by encoding the trace of an ongoing case as
a feature vector and giving it as input to the models in order to estimate the
expected processing effort of each allowed permutation of knockout checks and
to select the one with the lowest expected effort. To validate the models, once
the case has completed and the actual outcome of the checks is known, we com-
pute the actual processing effort and compare it with the minimum processing
effort required to either accept or knock out the case in question. The difference
between the actual and the minimum effort is the overprocessing waste.

3.2 Estimation of Expected Processing Effort

As mentioned in the introduction, overprocessing results from the activities that
add no value to the product or service. For example, if knockout activity rejects
a case, then the case is typically terminated and the effort spent on the previous
activities becomes overprocessing waste. Consequently, to minimize the over-
processing, we are interested in determining such a permutation σ of activities
that the case will be knocked out as early as possible. In the best case, the first
executed activity will knock out the case; in the worst case, none of them will
knock out the case. Furthermore, among all activities that could knockout the
case, the one with lowest effort represents the minimal possible processing effort
Wmin for a particular case to pass the knockout section. If none of the activities
knocks out the case, there is no overprocessing.

Since the minimal possible processing effort is constant for a particular
process case, minimizing overprocessing of a knockout section is essentially equiv-
alent to minimizing overall processing effort Wσ, which is dependent on the
actual number of performed activities M in the knockout section:
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Wσ =
M∑

i=1

wi =
M∑

i=1

TiRi, 1 ≤ M ≤ N (1)

where wi is the effort of an individual activity, Ti is its expected processing time
and Ri is the cost of a resource that performs the activity per unit of time, which
is assumed constant and known.

At least one activity needs to be performed, and if it gives a negative result,
we escape the knockout section. In the extreme case, if all activities are passed
normally, we cannot skip any activity; therefore M varies from 1 to N .

However, the actual processing effort can only be known once the case has
completed; therefore, we approximate it by estimating the expected processing
effort Ŵσ of a permutation σ of knockout checks. For that we introduce the
notion of reject probability. The reject probability P r

i of a check is the probability
that the given check will yield a negative outcome, i.e. knock out the case. In
other words, it is the percentage of cases that do not pass the check successfully.

Let us suppose we have a knockout section with three independent checks.
Table 1 lists possible scenarios during the execution of the section depending on
the outcome of the checks, as well as the probabilities of these scenarios and the
actually spent effort.

Table 1. Possible outcomes of checks during the execution of a knockout section with
three activities.

Outcome of checks Probability of outcome Actual effort spent

{failed} P r
1 w1

{passed; failed} (1 − P r
1 )P r

2 w1 + w2

{passed; passed; failed} (1 − P r
1 )(1 − P r

2 )P r
3 w1 + w2 + w3

{passed; passed; passed} (1 − P r
1 )(1 − P r

2 )(1 − P r
3 ) w1 + w2 + w3

Depending on the outcome of the last check, we are either leaving the knock-
out section proceeding with the case or terminating the case. In either situation,
the processing effort would be the same. Thus, joining the last two scenarios,
the expected effort to execute a knockout section of three checks would be:

Ŵσ = w1P
r
1 + (w1 + w2)(1 − P r

1 )P r
2 + (w1 + w2 + w3)(1 − P r

1 )(1 − P r
2 ) (2)

Generalizing, the expected processing effort of a knockout section with N
activities can be computed as follows:

Ŵσ =
N−1∑

i=1

⎛

⎝
i∑

j=1

wj · P r
i

i−1∏

k=1

(1 − P r
k )

⎞

⎠ +
N∑

j=1

wj ·
N−1∏

k=1

(1 − P r
k ). (3)

To estimate the expected processing effort we propose constructing predictive
models for reject probabilities P r

i and processing times Ti (see Sect. 3.4).
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Having found the expected processing effort for all possible permutations σ of
knockout activities, in our approach we select the one with the lowest expected
effort. To validate the results in terms of minimizing overprocessing, we need
to compare the actual processing effort Wσ taken after following the selected
ordering σ with Wmin.

3.3 Feature-Encoding of Execution Traces

Business process execution traces are naturally modeled as complex symbolic
sequences, i.e. sequences of events each carrying data payload consisting of event
attributes. However, to make estimations of the reject probabilities and process-
ing times of knockout checks, we first need to encode traces of completed process
cases in the form of feature vectors for corresponding predictive models.

As a running example, let us consider the log in Table 2, pertaining to an
environmental permit request process. Each case refers to a specific applica-
tion for the permit and includes activities executed for that application. For
example, the first case starts with the activity T02. Its data payload {2015-01-
10 9:13:00, R03} corresponds to the data associated with the Timestamp and
Resource attributes. These attributes are dynamic in the sense that they change
for different events. In contrast, attributes like Channel and Department are the
same for all the events in a case, i.e. they are static.

Table 2. Extract of an event log.

Case Case attributes Event attributes

ID Channel Department Task Timestamp Resource . . .

1 Email General T02 2015-01-10 9:13:00 R03 . . .

1 Email General T06 2015-01-10 9:14:20 R12 . . .

2 Fax Customer contact T02 2015-01-10 9:18:03 R03 . . .

1 Email General T10 2015-01-10 9:13:45 R12 . . .

2 Fax Customer contact T05 2015-01-10 9:13:57 R12 . . .

To encode traces as feature vectors, we include both static information,
coming from the case attributes and dynamic information, contained in the
event payload. In general, for a case i with U case attributes {s1, . . . , sU}
containing M events {e1, . . . , eM}, each of them having an associated payload
{d11, . . . , d

R
1 }, . . . {d1M , . . . , dR

M} of length R, the resulting feature vector would be:

Xi = (s1, . . . , sU , e1, . . . , eM , d11, . . . , d
R
1 , . . . d1M , . . . , dR

M ) (4)

As an example, the first case in the log in Table 2 will be encoded as such:

X1 = (Email,General,T02,T06,T10, 2015-01-10 9:13:00,R03,

2015-01-10 9:14:20,R12, 2015-01-10 9:13:45,R12)
(5)
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This kind of encoding, referred to as index-based encoding, is lossless since
all data from the original log are retained. It achieves a relatively high accuracy
and reliability when making early predictions of the process outcome [12,13].

3.4 Prediction of Reject Probability and Processing Time

To make online predictions on a running case, we apply pre-built (offline) models
using prefixes of historical cases before entering the knockout section. For exam-
ple, if a knockout section typically starts after the n-th event, as model features
we can use case attributes and event attributes of up to (n−1)-th event. For pre-
dicting reject probabilities of knockout activities we train classification models,
while for predicting processing times we need regression models. To train the
models, in addition to historical case prefixes, we need labels associated with
the outcome of a check (classification) and its processing time (regression). As
a learning algorithm, we primarily use support vector machines (SVM), since
they can handle unbalanced data in a robust way [15]. In addition, we fit deci-
sion trees and random forest models, for they have been used to address a wide
range of predictive process monitoring problems [9,11,12,16].

To assess the predictive power of the classifiers, we use the area under receiver
operator characteristic curve (AUC) measure [17]. AUC represents the probabil-
ity that the binary classifier will score a randomly drawn positive sample higher
than a randomly drawn negative sample. A value of AUC equal to 1 indicates a
perfect ranking, where any positive sample is ranked higher than any negative
sample. A value of AUC equal to 0.5 indicates the worst possible classifier that
is not better than random guessing. Finally, a value of AUC equal to 0 indicates
a reserved perfect classifier, where all positive samples get the lowest ranks.

As a baseline, instead of predicting the reject probabilities, we use constant
values for them computed from the percentage of cases that do not pass the
particular knockout activity in the log. Similarly, for processing times of activi-
ties, we take the average processing time for each activity across all completed
cases. This roughly corresponds to the approach presented in [3]. Another, even
simpler baseline, assumes executing knockout activities in a random order for
each case, regardless of their reject probabilities and processing times.

4 Evaluation

We implemented the proposed overprocessing prediction approach as a set of
scripts for the statistical software R, and applied them to two publicly available
real-life logs. Below, we describe the characteristics of the datasets, we report on
the accuracy of predictive models trained on these datasets, and we compare our
approach against the two baselines discussed above in terms of overprocessing
reduction. A package containing the R scripts, the datasets and the evaluation
results is available at: http://apromore.org/platform/tools.

http://apromore.org/platform/tools
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4.1 Datasets and Features

We used two datasets derived from real-life event logs. The first log records
executions of the loan origination process of Bondora [18], an Estonian peer-
to-peer lending marketplace; the second one originates from an environmental
permit request process carried out by a Dutch municipality, available as part of
the CoSeLoG project [19]. Table 3 reports the size of these two logs in terms of
number of completed cases, and the rejection rate of each check. Each log has
three checks, the details of which are provided next.

Table 3. Summary of datasets.

Dataset Completed cases Knockout checks

Name Rejection rate

Bondora 40,062 IdCancellation 0.080

CreditDecision 0.029

PostFundingCancellation 0.045

Environmental permit 1,230 T02 0.005

T06 0.013

T10 0.646

Bondora Dataset. The Bondora dataset provides a snapshot of all loan data
in the Bondora marketplace that is not covered by data protection laws. These
data refers to two processes: the loan origination process and the loan repayment
process. Only the first process features a knockout section, hence we filtered out
the data related to the second process. When a customer applies for a loan, they
fill in a loan application form providing information such as their personal data,
income and liabilities, with supporting documents. The loan origination process
starts upon the receipt of the application and involves (among other activities)
three checks: the identity check (associated with event IdCancellation in the
log); the credit worthiness assessment (associated to event CreditDecision); and
the documentation verification (associated to event PostFundingCancellation).
A negative outcome of any of these checks leads to rejection of a loan application.

Bondora’s clerks perform these checks in various orders based on their expe-
rience and intuition of how to minimize work, but none of the checks requires
data produced by the others, so they can be reordered. Over time, the checks
have been performed in different orders. For example, during a period when
listing loans into the marketplace was a priority due to high investor demand,
loans were listed before all document verifications had been concluded, which
explains why the third check is called PostFundingCancellation, even though in
many cases this check is performed in parallel with the other checks.

In this log, the knockout section starts immediately after the case is lodged.
Thus, the only features we can use to build our predictive models are the case
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attributes, i.e. the information provided by the borrower at the time of lodging
the application. These features can be grouped into three categories. Demo-
graphical features include age of the loan borrower, their gender, country of
residence, language, educational background, employment and marital status.
Financial features describe the borrower’s financial well-being and include infor-
mation about their income, liabilities, debts, credit history, home ownership, etc.
Finally, the third group includes loan features, such as amount of the applied
loan, and its duration, maximum acceptable interest rate, purpose of the loan
and the application type (timed funding or urgent funding). A more detailed
description of each attribute is available from the Bondora Web site [18].

It should also be noted that in the Bondora log there is no information about
the start time and the end time of each activity. Thus, we can only use it to
estimate the reject probabilities, not the processing times.

Environmental Permit Dataset. The second dataset records the execution
of the receiving phase of an environmental permit application process in a Dutch
municipality [19]. The process discovered from the log has a knockout section
(see Fig. 2) consisting of three activities: T02, to check confirmation of receipt,
T06, to determine necessity of stop advice, and T10, to determine necessity to
stop indication. In this scenario, the checks are not completely independent.
Specifically, T10 can only be done after either T02 or T06 has been performed
– all permutations compatible with this constraint are possible.

Another special feature of this knockout section is that in a small num-
ber of cases some checks are repeated multiple times. If the first check in a
case is repeated multiple times, and then the second check is executed (and the
first check is not repeated anymore after that), we simply ignore the repetition,
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Fig. 2. Process map extracted from the environment permit log.
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meaning that we treat the first check as not having been repeated by discarding
all occurrences of this check except the last one. Similarly, we discarded incom-
plete cases as they did not allow us to assess the existence of overprocessing.

Each case in the log refers to a specific application for an environmental
permit. The log contains both case attributes and event payload along with the
standard XES attributes. Case attributes include channel by which the case has
been lodged, department that is responsible for the case, responsible resource
and its group. In addition to the case attributes, the predictive models can utilize
attributes of events that precede the knockout section. Generally, there is only
one such event, namely Confirmation of receipt, that includes attributes about
the resource who performed it and its assigned group.

This log contains event completion timestamps but not event start
timestamps. So also for this second log we do not have enough information
to predict the processing time of each check, and we can only work with reject
probabilities.

4.2 Predictive Accuracy

We split each dataset into a training set (80 % of cases) to train the models, and a
test set (20 %) to evaluate the predictive power of the models built. As a learning
algorithm we applied support vector machine (SVM) classification, trained using
the e1071 package in R. This choice allows us to build a probability model which
fits a logistic distribution using maximum likelihood to the decision values of all
binary classifiers, and computes the a-posteriori class probabilities for the multi-
class problem using quadratic optimization [20]. Therefore, it can output not
only the class label, but the probability of each class. The probability of a zero
class essentially gives us an estimation of the reject probability.

In both datasets the majority of cases pass all the checks successfully, thus the
datasets are highly imbalanced with respect to the class labels. A naive algorithm
that simply predicts all test examples as positive will have very low error, since
the negative examples are so infrequent. One solution to this problem is to use a
Poisson regression, which requires forming buckets of observations based on the
independent attributes and modeling the aggregate response in these buckets
as a Poisson random variable [21]. However, this requires discretization of all
continuous independent attributes, which is not desirable in our case. A simpler
and more robust solution would be to undersample positive cases. Weiss et al.
[22] showed that for binary classification the optimal class proportion in the
training set varies by domain and objective, but generally to produce probability
estimates, a 50:50 distribution is a good option. Thus, we leave roughly as many
positive examples as there are negative ones and discard the rest.

To ensure the consistency of the results we apply five-fold cross-validation.
Figure 3 shows the average ROC curves, across all ten runs. the AUC varies
from 0.812 (PostFundingCancellation) to 0.998 (CreditDecision) for the Bondora
dataset, and from 0.527 (T06 ) to 0.645 (T10 ) for the Environmental dataset.
The lower values in the latter dataset are due to the limited number of features
that can be extracted (see Sect. 4.1), as well as by the fact that the dataset has
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Fig. 3. ROC curves of predictive models for checks in Bondora (a) and Environmental
(b) datasets.

much less completed cases for training (Table 3), which is further exacerbated
by having to remove many positive samples after undersampling.

4.3 Overprocessing Reduction

As stated in Sect. 3.2, the actual processing effort is given by Formula 1. However,
since the necessary timestamps are absent from our datasets, it is impossible to
find the processing times Ti of the activities. Nor do we have data about the
resource costs Ri. Therefore, we assume TiRi = 1 for all activities. Then the
actual processing effort simply equals the number of performed activities in the
knockout section. It can be shown that in this case the optimal permutation σ
that minimizes the expected processing is equivalent to ordering the knockout
activities by decreasing reject probabilities.

In Table 4 we report the average number of checks and percentage of over-
processing of our approach over the ten runs, against the two baselines (constant
probabilities for each check and random ordering – see Sect. 3.4). We found that
the actual number of performed checks in case of following our suggested order-
ing is less than the number of checks performed in either baseline. Specifically,
for the Bondora dataset we are doing only 1.22 % more checks than minimally
needed, which represents a 2.62 % points (pp) improvement over the baseline
with constant probabilities and 4.51 pp improvement over the baseline with ran-
dom ordering. However, for the environmental permit dataset the advantage of
our approach over the constant probabilities baseline is very marginal. This can
be explained by the skewed distribution of the knockout frequencies for the three
checks in this dataset (the lowest knockout frequency being 0.5 % and the highest
being 64.6 %). Thus, it is clear that the check with the lowest knockout frequency
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Table 4. Average number of performed checks and overprocessing for test cases.

Average # of checks Average overprocessing, %

Bondora Environmental Bondora Environmental

Optimal 21,563 416 0 0

Our approach 21,828 576 1.22 38.49

Constant P r
i ’s 22,393 577 3.85 38.89

Random 22,800 657 5.74 58.16

Table 5. Distribution of number of checks across the test cases.

Ordering by Bondora Environmental

1 2 3 1 2 3

Optimal 1237 0 6775 163 0 83

Our approach 974 261 6777 2 158 86

Constant P r
i ’s 642 359 7011 3 155 88

Random 413 410 7189 1 78 167

has to be executed at the end. Additionally, as mentioned in the Sect. 4.1, not
all checks are independent in the second dataset. Therefore, the solution space
for the optimal permutation is rather limited.

In addition, in Table 5 we report the number of cases with one, two or three
knockout checks performed. As shown before, for a dataset with three checks the
optimal number of checks is either one (if at least one check yields a negative
outcome) or three (if all checks are passed). Therefore, in the cases with two
checks, the second one should have been done first. In the Bondora dataset,
such suboptimal choices are minimized; for the environmental dataset, again,
our approach is just as good as the one that relies on constant probabilities.

4.4 Execution Times

Our approach involves some runtime overhead to find the optimal permutation as
compared to the baseline scenario in which checks are performed in a predefined
order. For real-time prediction it is crucial to output the results faster than
the mean arrival rate of cases. Thus, we also measured the average runtime
overhead of our approach. All experiments were conducted using R version 3.2.2
on a laptop with a 2.4 GHz Intel Core i5 quad core processor and 8 Gb of
RAM. The runtime overhead generally depends on the length of the process
cases and the number of possible permutations of the checks. For the Bondora
dataset, it took around 70 s to construct the SVM classifiers (offline) for all the
checks, using default training parameters. In contrast, for the Environmental
dataset with much shorter feature vectors it took less than a second to train the
classifier (see Table 6). At runtime, it takes less than 2 ms on average to find the
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Table 6. Execution times of various components of our approach in milliseconds.

Component Bondora Environmental

Mean St dev Mean St dev

Offline, overall Learn classifier 75,000 9,000 150 20

Online, per case Preprocess data 0.45 0.03 0.67 0.03

Apply classifier 1.37 0.15 0.12 0.02

Find optimal permutation 0.12 0 0.02 0

optimal permutation of knockout activities for an ongoing case for both datasets
(including preprocessing of the data and application of the classifier). This shows
that our approach performs within reasonable bounds for online applications.

4.5 Threats to Validity

Threats to external validity are the limited number and type of logs we used for
the evaluation and the use of a single classifier. While we chose only two datasets
from two distinct domains (financial and government), these two datasets rep-
resent real-life logs well. They exhibit substantial differences in the number of
events, event classes and total number of traces, with one log being relatively
large (over 40,000 cases) and the other relatively small (around 1,200 cases).

Both datasets used in this evaluation did not have the required start and end
event timestamps to estimate the processing times of the knockout checks. Thus,
we assigned a constant time to all checks. The inability to estimate processing
time does not invalidate our approach. In fact, our approach would tend to
further reduce the amount of overprocessing if processing times were known.

In the Bondora dataset, the three checks have been performed in different
orders for different cases. When one of the checks leads to a negative outcome
for a given case, the checks that were not yet completed at that stage of the case
sometimes remain marked as negative, even if it might be the case that these
checks would have led to positive outcomes should they have been completed.
This issue may have an effect on the reported results, but we note that it affects
both the reported performance of our approach and that of the baselines.

We reported the results with a single classified (SVM). With decision trees
and random forests, we obtained qualitatively the same results, i.e. they all
improved over the baselines. However, we decided to only retain SVM in the
paper because this classifier yielded the highest classification accuracy among all
classifiers we tested. However, our approach is independent of the classifier used.
Thus, using a different classifier does not in principle invalidate the results. That
said, we acknowledge that the goodness of the prediction, as in any classification
problem, depends on the particular classifier employed. Hence, it is important to
test multiple classifiers for a given dataset, and to apply hyperparameter tuning,
in order to choose the most adequate classifier with the best configuration.



200 I. Verenich et al.

5 Conclusion and Future Work

We have presented an approach to reduce overprocessing by ordering knock-
out checks at runtime based on their reject probabilities and processing times
determined via predictive models. Experimental results show that the proposed
runtime ordering approach outperforms a design-time ordering approach when
the reject probabilities of the knockout checks are close to each other. In the
dataset where one check had a considerably higher rejection rate than the other,
the design-time and the runtime ordering approach yielded similar results.

The proposed approach is not without limitations. One limitation of scope
is that the approach is applicable when the checks are independent (i.e. can
be reordered) and every check is performed once within one execution of the
knockout section. In particular, the approach is not applicable when some of
the knockout checks can be repeated in case of a negative outcome. This is the
case for example in a university admission process, where an eligibility check
may initially lead to a rejection, but the applicant can ask the application to be
re-considered (and thus the check to be repeated) after providing clarifications
or additional information. In other words, the current approach is applicable
when a negative outcome (“reject”) is definite and cannot be revoked. Similarly,
we assume that a check leading to a positive outcome is definite and cannot be
reconsidered. Designing heuristics for cases where the outcomes of checks are
revocable is a direction for future work.

Another limitation is that the approach is designed to minimize overprocess-
ing only, without considering other performance dimensions such as cycle time
(i.e. mean case duration). If we add cycle time into the equation, it becomes desir-
able to parallelize the checks rather than sequentializing them. In other words,
rather than performing the checks in a knockout section in strict sequence, some
or all of checks could be started in parallel, such that whenever the first check
fails, the other parallel checks are cancelled. On the one hand this parallelization
leads to higher overprocessing effort, since effort is spent in partially completed
checks that are later cancelled. On the other hand, it reduces overall cycle time,
particularly when some of the checks involve idle time during their execution.
For example, in a university admission process when some documents are found
to be missing, the checks involving these documents need to be put on hold until
the missing documents arrive. If the goal is to minimize both overprocessing and
cycle time, this waiting time can be effectively used to perform other checks.

The proposed approach relies on the accuracy of the reject probability esti-
mates provided by the classification model. It is known however that the likeli-
hood probabilities produced by classification methods (including random forests)
are not always reliable. Methods for estimating the reliability of such likelihood
probabilities have been proposed in the machine learning literature [23]. A possi-
ble enhancement of the proposed approach would be to integrate heuristics that
take into account such reliability estimates.

Another avenue for future work is to apply predictive methods to reduce
other types of waste, such as defect waste induced when a defective execution
of an activity subsequently leads to part of the process having to be repeated in
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order to correct the defect (i.e. rework). The idea is that if a defective activity
execution can be detected earlier, the effects of this defect can be minimized
and corrected more efficiently. Predictive process monitoring can thus help us to
detect defects earlier and to trigger corrective actions as soon as possible.
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