Skip to main content

Small Multidrug Resistance Efflux Pumps

  • Chapter
  • First Online:

Abstract

Small multidrug resistance (SMR) transporters confer resistance to a variety of quaternary cation compound antimicrobials. These secondary active transporters are the smallest known transporters and have been demonstrated to function within the membrane. The focus of this chapter explores and updates SMR family diversity and reviews current structural and functional knowledge of these members. This chapter also provides an update of known SMR pump-mediated resistance to antimicrobial substrates (including naturally synthesized quaternary cation compounds) and their clinical significance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA (1992) Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett 95:259–265. doi:10.1016/0378-1097(92)90439-U

    Article  CAS  Google Scholar 

  2. Grinius LL, Goldberg EB (1994) Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J Biol Chem 269:29998–30004

    CAS  PubMed  Google Scholar 

  3. Jack DL, Yang NM, Saier MH Jr (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639. doi:10.1046/j.1432-1327.2001.02265.x

    Article  CAS  PubMed  Google Scholar 

  4. Yerushalmi H, Schuldiner S (2000) An essential glutamyl residue in EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 275:5264–5269. doi:10.1074/jbc.275.8.5264

    Article  CAS  PubMed  Google Scholar 

  5. Muth TR, Schuldiner S (2000) A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE. EMBO J 19:234–240. doi:10.1093/emboj/19.2.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bay DC, Turner RJ (2009) Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 9:140. doi:10.1186/1471-2148-9-140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Paulsen IT, Littlejohn TG, Radstrom P, Sundstrom L, Skold O, Swedberg G, Skurray RA (1993) The 3′ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 37:761–768. doi:10.1128/AAC.37.4.761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104. doi:10.1089/mdr.2009.0120

    Article  CAS  PubMed  Google Scholar 

  9. Chung YJ, Saier MH Jr (2001) SMR-type multidrug resistance pumps. Curr Opin Drug Discov Dev 4:237–245

    CAS  Google Scholar 

  10. Saier MH Jr (2001) Evolution of transport proteins. Genet Eng (N Y) 23:1–10. doi:10.1007/0-306-47572-3_1

    Article  CAS  Google Scholar 

  11. Bjorland J, Sunde M, Waage S (2001) Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. J Clin Microbiol 39:3999–4004. doi:10.1128/JCM.39.11.3999-4004.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bay DC, Rommens KL, Turner RJ (2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778:1814–1838. doi:10.1016/j.bbamem.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  13. Morimyo M, Hongo E, Hama-Inaba H, Machida I (1992) Cloning and characterization of the mvrC gene of Escherichia coli K-12 which confers resistance against methyl viologen toxicity. Nucleic Acids Res 20:3159–3165. doi:10.1093/nar/20.12.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Purewal AS (1991) Nucleotide sequence of the ethidium efflux gene from Escherichia coli. FEMS Microbiol Lett 66:229–231. doi:10.1111/j.1574-6968.1991.tb04870.x

    Article  CAS  PubMed  Google Scholar 

  15. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812. doi:10.1128/JB.183.20.5803-5812.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270:6856–6863

    Article  CAS  PubMed  Google Scholar 

  17. Yerushalmi H, Lebendiker M, Schuldiner S (1996) Negative dominance studies demonstrate the oligomeric structure of EmrE, a multidrug antiporter from Escherichia coli. J Biol Chem 271:31044–31048. doi:10.1074/jbc.271.49.31044

    Article  CAS  PubMed  Google Scholar 

  18. Bay DC, Turner RJ (2012) Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J Bacteriol 194:5941–5948. doi:10.1128/JB.00666-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srinivasan VB, Rajamohan G, Gebreyes WA (2009) Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob Agents Chemother 53:5312–5316. doi:10.1128/AAC.00748-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lytvynenko I, Brill S, Oswald C, Pos KM (2016) Residues involved in substrate recognition of the small multidrug resistance efflux pump AbeS from Acinetobacter baumannii. J Mol Biol 428:644–657. doi:10.1016/j.jmb.2015.12.006

    Google Scholar 

  21. Ninio S, Rotem D, Schuldiner S (2001) Functional analysis of novel multidrug transporters from human pathogens. J Biol Chem 276:48250–48256. doi:10.1074/jbc.M108231200

    CAS  PubMed  Google Scholar 

  22. Chang LL, Chen HF, Chang CY, Lee TM, Wu WJ (2004) Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518–521. doi:10.1093/jac/dkh094

    Article  CAS  PubMed  Google Scholar 

  23. Kovacevic J, Ziegler J, Walecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW (2015) Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 82:939–953. doi:10.1128/AEM.03741-15

    Article  PubMed  CAS  Google Scholar 

  24. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O (1998) mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071

    PubMed  PubMed Central  Google Scholar 

  25. Ninio S, Schuldiner S (2003) Characterization of an archaeal multidrug transporter with a unique amino acid composition. J Biol Chem 278:12000–12005. doi:10.1074/jbc.M213119200

    Article  CAS  PubMed  Google Scholar 

  26. Rath A, Melnyk RA, Deber CM (2006) Evidence for assembly of small multidrug resistance proteins by a “two-faced” transmembrane helix. J Biol Chem 281:15546–15553. doi:10.1074/jbc.M600434200

    Article  CAS  PubMed  Google Scholar 

  27. Grinius L, Dreguniene G, Goldberg EB, Liao CH, Projan SJ (1992) A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 27:119–129. doi:10.1016/0147-619X(92)90012-Y

    Article  CAS  PubMed  Google Scholar 

  28. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA (1995) Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol 177:2827–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuentes DE, Navarro CA, Tantalean JC, Araya MA, Saavedra CP, Perez JM, Calderon IL, Youderian PA et al (2005) The product of the qacC gene of Staphylococcus epidermidis CH mediates resistance to β-lactam antibiotics in Gram-positive and Gram-negative bacteria. Res Microbiol 156:472–477. doi:10.1016/j.resmic.2005.01.002

    Google Scholar 

  30. Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101:59–66. doi:10.1016/0378-1119(91)90224-Y

    Article  CAS  PubMed  Google Scholar 

  31. Alam MM, Ishino M, Kobayashi N (2003) Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. Microb Drug Resist 9:S1–S7. doi:10.1089/107662903322541838

    Article  CAS  PubMed  Google Scholar 

  32. Heir E, Sundheim G, Holck AL (1999) Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J Food Microbiol 48:211–219. doi:10.1016/S0168-1605(99)00044-6

    Article  CAS  PubMed  Google Scholar 

  33. Marchi E, Furi L, Arioli S, Morrissey I, Di Lorenzo V, Mora D, Giovannetti L, Oggioni MR et al (2015) Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus. Microbiol Res 170:184–194. doi:10.1016/j.micres.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  34. Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR et al (2013) Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother 57:3488–3497. doi:10.1128/AAC.00498-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kazama H, Hamashima H, Sasatsu M, Arai T (1999) Characterization of the antiseptic-resistance gene qacEΔ1 isolated from clinical and environmental isolates of Vibrio parahaemolyticus and Vibrio cholerae non-O1. FEMS Microbiol Lett 174:379–384. doi:10.1111/j.1574-6968.1999.tb13593.x

    CAS  PubMed  Google Scholar 

  36. Kazama H, Hamashima H, Sasatsu M, Arai T (1998) Distribution of the antiseptic-resistance gene qacEΔ1 in Gram-positive bacteria. FEMS Microbiol Lett 165:295–299. doi:10.1111/j.1574-6968.1998.tb13160.x

    CAS  PubMed  Google Scholar 

  37. Chiou CS, Lin JM, Chiu CH, Chu CH, Chen SW, Chang YF, Weng BC, Tsay JG et al (2009) Clonal dissemination of the multi-drug resistant Salmonella enterica serovar Braenderup, but not the serovar Bareilly, of prevalent serogroup C1 Salmonella from Taiwan. BMC Microbiol 9:264. doi:10.1186/1471-2180-9-264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sandvang D, Aarestrup FM, Jensen LB (1998) Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol Lett 160:37–41. doi:10.1111/j.1574-6968.1998.tb12887.x

    Article  CAS  PubMed  Google Scholar 

  39. Ploy MC, Courvalin P, Lambert T (1998) Characterization of In40 of Enterobacter aerogenes BM2688, a class 1 integron with two new gene cassettes, cmlA2 and qacF. Antimicrob Agents Chemother 42:2557–2563

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schluter A, Heuer H, Szczepanowski R, Poler SM, Schneiker S, Puhler A, Top EM (2005) Plasmid pB8 is closely related to the prototype IncP-1β plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54:135–148. doi:10.1016/j.plasmid.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  41. Mazel D, Dychinco B, Webb VA, Davies J (2000) Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 44:1568–1574. doi:10.1128/AAC.44.6.1568-1574.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Correa JE, De Paulis A, Predari S, Sordelli DO, Jeric PE (2008) First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 62:956–960. doi:10.1093/jac/dkn327

    Article  CAS  PubMed  Google Scholar 

  43. Bjorland J, Steinum T, Sunde M, Waage S, Heir E (2003) Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother 47:3046–3052. doi:10.1128/AAC.47.10.3046-3052.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heir E, Sundheim G, Holck AL (1999) The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86:378–388. doi:10.1046/j.1365-2672.1999.00672.x

    Article  CAS  PubMed  Google Scholar 

  45. Heir E, Sundheim G, Holck AL (1998) The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163:49–56. doi:10.1111/j.1574-6968.1998.tb13025.x

    Article  CAS  PubMed  Google Scholar 

  46. Muller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M et al (2013) Tn6188 – a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8: e76835. doi:10.1371/journal.pone.0076835

    Google Scholar 

  47. Braga TM, Marujo PE, Pomba C, Lopes MF (2011) Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother 66:283–286. doi:10.1093/jac/dkq460

    Article  CAS  PubMed  Google Scholar 

  48. Chung YJ, Saier MH Jr (2002) Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 184:2543–2545. doi:10.1128/JB.184.9.2543-2545.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Greener T, Govezensky D, Zamir A (1993) A novel multicopy suppressor of a groEL mutation includes two nested open reading frames transcribed from different promoters. EMBO J 12:889–896

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bay DC, Turner RJ (2011) Spectroscopic analysis of the intrinsic chromophores within small multidrug resistance protein SugE. Biochim Biophys Acta 1808:2233–2244. doi:10.1016/j.bbamem.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  51. Cruz A, Micaelo N, Felix V, Song JY, Kitamura S, Suzuki S, Mendo S (2013) sugE: a gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27. J Gen Appl Microbiol 59:39–47. doi:10.2323/jgam.59.47

    Article  CAS  PubMed  Google Scholar 

  52. Son MS, Del Castilho C, Duncalf KA, Carney D, Weiner JH, Turner RJ (2003) Mutagenesis of SugE, a small multidrug resistance protein. Biochem Biophys Res Commun 312:914–921. doi:10.1016/j.bbrc.2003.11.018

    Article  CAS  PubMed  Google Scholar 

  53. He GX, Zhang C, Crow RR, Thorpe C, Chen H, Kumar S, Tsuchiya T, Varela MF (2011) SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae. Antimicrob Agents Chemother 55:3954–3957. doi:10.1128/AAC.00094-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu SW, Dornbusch K, Kronvall G, Norgren M (1999) Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type β-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC β-lactamase. Antimicrob Agents Chemother 43:1350–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meunier D, Jouy E, Lazizzera C, Doublet B, Kobisch M, Cloeckaert A, Madec JY (2010) Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and bla CMY-2 genes in Escherichia coli isolates from diseased cattle in France. J Med Microbiol 59:467–471. doi:10.1099/jmm.0.016162-0

    Article  CAS  PubMed  Google Scholar 

  56. Vourli S, Tzouvelekis LS, Tzelepi E, Lebessi E, Legakis NJ, Miriagou V (2003) Characterization of In111, a class 1 integron that carries the extended-spectrum β-lactamase gene bla IBC-1 . FEMS Microbiol Lett 225:149–153. doi:10.1016/S0378-1097(03)00510-X

    Article  CAS  PubMed  Google Scholar 

  57. Masaoka Y, Ueno Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2000) A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J Bacteriol 182:2307–2310. doi:10.1128/JB.182.8.2307-2310.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kikukawa T, Nara T, Araiso T, Miyauchi S, Kamo N (2006) Two-component bacterial multidrug transporter, EbrAB: mutations making each component solely functional. Biochim Biophys Acta 1758:673–679. doi:10.1016/j.bbamem.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Z, Ma C, Pornillos O, Xiu X, Chang G, Saier MH Jr (2007) Functional characterization of the heterooligomeric EbrAB multidrug efflux transporter of Bacillus subtilis. Biochemistry 46:5218–5225. doi:10.1021/bi7001604

    Article  CAS  PubMed  Google Scholar 

  60. Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K (2008) Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 190:872–878. doi:10.1128/JB.01505-07

    Article  CAS  PubMed  Google Scholar 

  61. Ganas P, Mihasan M, Igloi GL, Brandsch R (2007) A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology 153:1546–1555. doi:10.1099/mic.0.2006/004234-0

    Article  CAS  PubMed  Google Scholar 

  62. Jiang J, Wang L, Zhang H, Wu H, Huang H, Yang L (2013) Putative paired small multidrug resistance family proteins PsmrAB, the homolog of YvdSR, actually function as a novel two-component Na+/H+ antiporter. FEMS Microbiol Lett 338:31–38. doi:10.1111/1574-6968.12008

    Article  CAS  PubMed  Google Scholar 

  63. Jack DL, Storms ML, Tchieu JH, Paulsen IT, Saier MH Jr (2000) A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J Bacteriol 182:2311–2313. doi:10.1128/JB.182.8.2311-2313.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M et al (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29:683–692. doi:10.1093/nar/29.3.683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schuldiner S, Granot D, Mordoch SS, Ninio S, Rotem D, Soskin M, Tate CG, Yerushalmi H (2001) Small is mighty: EmrE, a multidrug transporter as an experimental paradigm. News Physiol Sci 16:130–134

    CAS  PubMed  Google Scholar 

  66. Henzler-Wildman K (2011) Analyzing conformational changes in the transport cycle of EmrE. Curr Opin Struct Biol 22:38–43. doi:10.1016/j.sbi.2011.10.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tate CG, Ubarretxena-Belandia I, Baldwin JM (2003) Conformational changes in the multidrug transporter EmrE associated with substrate binding. J Mol Biol 332:229–242. doi:10.1016/S0022-2836(03)00895-7

    Article  CAS  PubMed  Google Scholar 

  68. Ubarretxena-Belandia I, Baldwin JM, Schuldiner S, Tate CG (2003) Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J 22:6175–6181. doi:10.1093/emboj/cdg611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben-Tal N (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364:54–67. doi:10.1016/j.jmb.2006.08.072

    Article  CAS  PubMed  Google Scholar 

  70. Korkhov VM, Tate CG (2009) An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 65:186–192. doi:10.1107/S0907444908036640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104:18999–19004. doi:10.1073/pnas.0709387104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morrison EA, DeKoster GT, Dutta S, Vafabakhsh R, Clarkson MW, Bahl A, Kern D, Ha T et al (2011) Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481:45–50. doi:10.1038/nature10703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dutta S, Morrison EA, Henzler-Wildman KA (2014) EmrE dimerization depends on membrane environment. Biochim Biophys Acta 1838:1817–1822. doi:10.1016/j.bbamem.2014.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morrison EA, Henzler-Wildman KA (2014) Transported substrate determines exchange rate in the multidrug resistance transporter EmrE. J Biol Chem 289:6825–6836. doi:10.1074/jbc.M113.535328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Banigan JR, Gayen A, Cho MK, Traaseth NJ (2015) A structured loop modulates coupling between the substrate-binding and dimerization domains in the multidrug resistance transporter EmrE. J Biol Chem 290:805–814. doi:10.1074/jbc.M114.601963

    Article  CAS  PubMed  Google Scholar 

  76. Cho MK, Gayen A, Banigan JR, Leninger M, Traaseth NJ (2014) Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J Am Chem Soc 136:8072–8080. doi:10.1021/ja503145x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33. doi:10.1128/AAC.47.1.27-33.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poget SF, Harris R, Cahill SM, Girvin ME (2010) 1H, 13C, 15N backbone NMR assignments of the Staphylococcus aureus small multidrug-resistance pump (Smr) in a functionally active conformation. Biomol NMR Assign 4:139–142. doi:10.1007/s12104-010-9228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Basting D, Lorch M, Lehner I, Glaubitz C (2008) Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence. FASEB J 22:365–373. doi:10.1096/fj.07-9162com

    Article  CAS  PubMed  Google Scholar 

  80. Charalambous K, Miller D, Curnow P, Booth PJ (2008) Lipid bilayer composition influences small multidrug transporters. BMC Biochem 9:31. doi:10.1186/1471-2091-9-31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mors K, Hellmich UA, Basting D, Marchand P, Wurm JP, Haase W, Glaubitz C (2013) A lipid-dependent link between activity and oligomerization state of the M. tuberculosis SMR protein TBsmr. Biochim Biophys Acta 1828:561–567. doi:10.1016/j.bbamem.2012.10.020

    Article  PubMed  CAS  Google Scholar 

  82. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500. doi:10.1093/nar/gkg500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kucken D, Feucht H, Kaulfers P (2000) Association of qacE and qacEΔ1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol Lett 183:95–98. doi:10.1111/j.1574-6968.2000.tb08939.x

    Article  CAS  PubMed  Google Scholar 

  84. Zou L, Meng J, McDermott PF, Wang F, Yang Q, Cao G, Hoffmann M, Zhao S (2014) Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. J Antimicrob Chemother 69:2644–2649. doi:10.1093/jac/dku197

    Article  CAS  PubMed  Google Scholar 

  85. Bishop RE, Penfold SS, Frost LS, Holtje JV, Weiner JH (1995) Stationary phase expression of a novel Escherichia coli outer membrane lipoprotein and its relationship with mammalian apolipoprotein D. Implications for the origin of lipocalins. J Biol Chem 270:23097–23103. doi:10.1074/jbc.270.39.23097

    Article  CAS  PubMed  Google Scholar 

  86. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–1175. doi:10.1111/j.1365-2958.1996.tb02462.x

    Article  CAS  PubMed  Google Scholar 

  87. Saier MH Jr, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213. doi:10.1006/scdb.2000.0246

    Article  CAS  PubMed  Google Scholar 

  88. Sikora CW, Turner RJ (2005) SMR proteins SugE and EmrE bind ligand with similar affinity and stoichiometry. Biochem Biophys Res Commun 335:105–111. doi:10.1016/j.bbrc.2005.07.051

    Article  CAS  PubMed  Google Scholar 

  89. Klammt C, Lohr F, Schafer B, Haase W, Dotsch V, Ruterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580. doi:10.1111/j.1432-1033.2003.03959.x

    Article  CAS  PubMed  Google Scholar 

  90. Banigan JR, Gayen A, Traaseth NJ (2014) Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. Biochim Biophys Acta 1848:334–341. doi:10.1016/j.bbamem.2014.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Roos C, Zocher M, Muller D, Munch D, Schneider T, Sahl HG, Scholz F, Wachtveitl J et al (2012) Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim Biophys Acta 1818:3098–3106. doi:10.1016/j.bbamem.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  92. Su LH, Chen HL, Chia JH, Liu SY, Chu C, Wu TL, Chiu CH (2006) Distribution of a transposon-like element carrying bla CMY-2 among Salmonella and other Enterobacteriaceae. J Antimicrob Chemother 57:424–429. doi:10.1093/jac/dki478

    Article  CAS  PubMed  Google Scholar 

  93. Fernandez-Fuentes MA, Abriouel H, Ortega Morente E, Perez Pulido R, Galvez A (2014) Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Int J Food Microbiol 172:49–56. doi:10.1016/j.ijfoodmicro.2013.11.032

    Google Scholar 

  94. Kikukawa T, Miyauchi S, Araiso T, Kamo N, Nara T (2007) Anti-parallel membrane topology of two components of EbrAB, a multidrug transporter. Biochem Biophys Res Commun 358:1071–1075. doi:10.1016/j.bbrc.2007.05.032

    Article  CAS  PubMed  Google Scholar 

  95. Nasie I, Steiner-Mordoch S, Gold A, Schuldiner S (2010) Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J Biol Chem 285:15234–15244. doi:10.1074/jbc.M110.108746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A (2006) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188:5693–5703. doi:10.1128/JB.00217-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Drew D, Sjostrand D, Nilsson J, Urbig T, Chin CN, de Gier JW, von Heijne G (2002) Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695. doi:10.1073/pnas.052018199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rapp M, Granseth E, Seppala S, von Heijne G (2006) Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13:112–116. doi:10.1038/nsmb1057

    Article  CAS  PubMed  Google Scholar 

  99. Tate CG, Kunji ER, Lebendiker M, Schuldiner S (2001) The projection structure of EmrE, a proton-linked multidrug transporter from Escherichia coli, at 7 Å resolution. EMBO J 20:77–81. doi:10.1093/emboj/20.1.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schuldiner S (2007) When biochemistry meets structural biology: the cautionary tale of EmrE. Trends Biochem Sci 32:252–258. doi:10.1016/j.tibs.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  101. Schuldiner S (2007) Controversy over EmrE structure. Science 317:748–751. doi:10.1126/science.317.5839.748d

    Article  CAS  PubMed  Google Scholar 

  102. Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, Chen AP (2006) Retraction. Science 314:1875. doi:10.1126/science.314.5807.1875b

    Article  CAS  PubMed  Google Scholar 

  103. Miller G (2006) A scientist’s nightmare: software problem leads to five retractions. Science 314:1856–1857. doi:10.1126/science.314.5807.1856

    Article  CAS  PubMed  Google Scholar 

  104. Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886. doi:10.1093/bioinformatics/btt607

    Article  CAS  PubMed  Google Scholar 

  105. Amadi ST, Koteiche HA, Mishra S, McHaourab HS (2010) Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes. J Biol Chem 285:26710–26718. doi:10.1074/jbc.M110.132621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morrison EA, Henzler-Wildman KA (2012) Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. Biochim Biophys Acta 1818:814–820. doi:10.1016/j.bbamem.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  107. Dutta S, Morrison EA, Henzler-Wildman KA (2014) Blocking dynamics of the SMR transporter EmrE impairs efflux activity. Biophys J 107:613–620. doi:10.1016/j.bpj.2014.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Poolman B, Geertsma ER, Slotboom DJ (2007) A missing link in membrane protein evolution. Science 315:1229–1231. doi:10.1126/science.1140073

    Article  CAS  PubMed  Google Scholar 

  109. Schuldiner S (2010) Parallel or antiparallel, who cares? Science 328 (E-letter June 24, 2010). http://science.sciencemag.org/content/328/5986/1698.e-letters

  110. Schuldiner S (2012) Undecided membrane proteins insert in random topologies. Up, down and sideways: it does not really matter. Trends Biochem Sci 37:215–219. doi:10.1016/j.tibs.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  112. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494. doi:10.1016/0022-2836(92)90934-C

    Article  Google Scholar 

  113. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918. doi:10.1038/nrm2063

    Article  CAS  Google Scholar 

  114. Rapp M, Drew D, Daley DO, Nilsson J, Carvalho T, Melen K, De Gier JW, Von Heijne G (2004) Experimentally based topology models for E. coli inner membrane proteins. Protein Sci 13:937–945. doi:10.1110/ps.03553804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323. doi:10.1126/science.1109730

    Article  CAS  PubMed  Google Scholar 

  116. Kolbusz MA, Slotboom DJ, Lolkema JS (2013) Genomic distribution of the small multidrug resistance protein EmrE over 29 Escherichia coli strains reveals two forms of the protein. FEBS J 280:244–255. doi:10.1111/febs.12065

    Article  CAS  PubMed  Google Scholar 

  117. Seppala S, Slusky JS, Lloris-Garcera P, Rapp M, von Heijne G (2010) Control of membrane protein topology by a single C-terminal residue. Science 328:1698–1700. doi:10.1126/science.1188950

    Article  PubMed  CAS  Google Scholar 

  118. Kolbusz MA, Slotboom DJ, Lolkema JS (2012) Role of individual positive charges in the membrane orientation and activity of transporters of the small multidrug resistance family. Biochemistry 51:8867–8876. doi:10.1021/bi300854c

    Article  CAS  PubMed  Google Scholar 

  119. Nara T, Kouyama T, Kurata Y, Kikukawa T, Miyauchi S, Kamo N (2007) Anti-parallel membrane topology of a homo-dimeric multidrug transporter, EmrE. J Biochem (Tokyo) 142:621–625. doi:10.1093/jb/mvm169

    Article  CAS  Google Scholar 

  120. Lloris-Garcera P, Bianchi F, Slusky JS, Seppala S, Daley DO, von Heijne G (2012) Antiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers. J Biol Chem 287:26052–26059. doi:10.1074/jbc.M112.357590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lloris-Garcera P, Seppala S, Slusky JS, Rapp M, von Heijne G (2014) Why have small multidrug resistance proteins not evolved into fused, internally duplicated structures? J Mol Biol 426:2246–2254. doi:10.1016/j.jmb.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  122. Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C (2007) The key residue for substrate transport (E14) in the EmrE dimer is asymmetric. J Biol Chem 283:3281–3288. doi:10.1074/jbc.M707899200

    Google Scholar 

  123. Poget SF, Cahill SM, Girvin ME (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 129:2432–2433. doi:10.1021/ja0679836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Soskine M, Mark S, Tayer N, Mizrachi R, Schuldiner S (2006) On parallel and antiparallel topology of a homodimeric multidrug transporter. J Biol Chem 281:36205–36212. doi:10.1074/jbc.M607186200

    Article  CAS  PubMed  Google Scholar 

  125. Steiner-Mordoch S, Soskine M, Solomon D, Rotem D, Gold A, Yechieli M, Adam Y, Schuldiner S (2008) Parallel topology of genetically fused EmrE homodimers. EMBO J 27:17–26. doi:10.1038/sj.emboj.7601951

    Article  CAS  PubMed  Google Scholar 

  126. Federkeil SL, Winstone TL, Jickling G, Turner RJ (2003) Examination of EmrE conformational differences in various membrane mimetic environments. Biochem Cell Biol 81:61–70. doi:10.1139/o03-031

    Article  CAS  PubMed  Google Scholar 

  127. Winstone TL, Jidenko M, le Maire M, Ebel C, Duncalf KA, Turner RJ (2005) Organic solvent extracted EmrE solubilized in dodecyl maltoside is monomeric and binds drug ligand. Biochem Biophys Res Commun 327:437–445. doi:10.1016/j.bbrc.2004.11.164

    Article  CAS  PubMed  Google Scholar 

  128. Bay DC, Turner RJ (2012) Spectroscopic analysis of small multidrug resistance protein EmrE in the presence of various quaternary cation compounds. Biochim Biophys Acta 1818:1318–1331. doi:10.1016/j.bbamem.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  129. Sikora CW, Turner RJ (2005) Investigation of ligand binding to the multidrug resistance protein EmrE by isothermal titration calorimetry. Biophys J 88:475–482. doi:10.1529/biophysj.104.049247

    Article  CAS  PubMed  Google Scholar 

  130. Soskine M, Steiner-Mordoch S, Schuldiner S (2002) Crosslinking of membrane-embedded cysteines reveals contact points in the EmrE oligomer. Proc Natl Acad Sci U S A 99:12043–12048. doi:10.1073/pnas.192392899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Butler PJ, Ubarretxena-Belandia I, Warne T, Tate CG (2004) The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J Mol Biol 340:797–808. doi:10.1016/j.jmb.2004.05.014

    Article  CAS  PubMed  Google Scholar 

  132. Rotem D, Sal-man N, Schuldiner S (2001) In vitro monomer swapping in EmrE, a multidrug transporter from Escherichia coli, reveals that the oligomer is the functional unit. J Biol Chem 276:48243–48249. doi:10.1074/jbc.M108229200

    Google Scholar 

  133. Torres J, Arkin IT (2000) Recursive use of evolutionary conservation data in molecular modeling of membrane proteins a model of the multidrug H+ antiporter EmrE. Eur J Biochem 267:3422–3431. doi:10.1046/j.1432-1327.2000.01324.x

    Article  CAS  PubMed  Google Scholar 

  134. Ubarretxena-Belandia I, Tate CG (2004) New insights into the structure and oligomeric state of the bacterial multidrug transporter EmrE: an unusual asymmetric homo-dimer. FEBS Lett 564:234–238. doi:10.1016/S0014-5793(04)00228-5

    Article  CAS  PubMed  Google Scholar 

  135. Schuldiner S (2009) EmrE, a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 1794:748–762. doi:10.1016/j.bbapap.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  136. Bellmann-Sickert K, Stone TA, Poulsen BE, Deber CM (2015) Efflux by small multidrug resistance proteins is inhibited by membrane-interactive helix-stapled peptides. J Biol Chem 290:1752–1759. doi:10.1074/jbc.M114.616185

    Article  PubMed  CAS  Google Scholar 

  137. Elbaz Y, Salomon T, Schuldiner S (2008) Identification of a glycine motif required for packing in EmrE, a multidrug transporter from Escherichia coli. J Biol Chem 283:12276–12283. doi:10.1074/jbc.M710338200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Miller D, Charalambous K, Rotem D, Schuldiner S, Curnow P, Booth PJ (2009) In vitro unfolding and refolding of the small multidrug transporter EmrE. J Mol Biol 393:815–832. doi:10.1016/j.jmb.2009.08.039

    Google Scholar 

  139. Winstone TL, Duncalf KA, Turner RJ (2002) Optimization of expression and the purification by organic extraction of the integral membrane protein EmrE. Protein Expr Purif 26:111–121. doi:10.1016/S1046-5928(02)00525-9

    Article  CAS  PubMed  Google Scholar 

  140. Curnow P, Lorch M, Charalambous K, Booth PJ (2004) The reconstitution and activity of the small multidrug transporter EmrE is modulated by non-bilayer lipid composition. J Mol Biol 343:213–222. doi:10.1016/j.jmb.2004.08.032

    Article  CAS  PubMed  Google Scholar 

  141. Elbaz Y, Steiner-Mordoch S, Danieli T, Schuldiner S (2004) In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc Natl Acad Sci U S A 101:1519–1524. doi:10.1073/pnas.0306533101

    Google Scholar 

  142. Miller D, Booth PJ (2009) The use of isothermal titration calorimetry to study multidrug transport proteins in liposomes. Methods Mol Biol 606:233–245. doi:10.1007/978-1-60761-447-0_17

    Article  CAS  Google Scholar 

  143. Rotem D, Schuldiner S (2004) EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. J Biol Chem 279:48787–48793. doi:10.1074/jbc.M408187200

    Article  CAS  PubMed  Google Scholar 

  144. Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci U S A 110:9338–9343. doi:10.1073/pnas.1304375110

    Google Scholar 

  145. Dowhan W, Mileykovskaya E, Bogdanov M (2004) Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 1666:19–39. doi:10.1016/j.bbamem.2004.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bogdanov M, Mileykovskaya E, Dowhan W (2008) Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem 49:197–239. doi:10.1007/978-1-4020-8831-5_8

    Article  PubMed  PubMed Central  Google Scholar 

  147. Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788:289–294. doi:10.1016/j.bbamem.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  148. Bay DC, Booth SC, Turner RJ (2015) Respiration and ecological niche influence bacterial membrane lipid compositions. Environ Microbiol 17:1777–1793. doi:10.1111/1462-2920.12637

    Article  CAS  PubMed  Google Scholar 

  149. Nathoo S, Litzenberger JK, Bay DC, Turner RJ, Prenner EJ (2013) Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chem Phys Lipids 167–168:33–42. doi:10.1016/j.chemphyslip.2013.01.007

    Article  PubMed  CAS  Google Scholar 

  150. Groger T, Nathoo S, Ku T, Sikora C, Turner RJ, Prenner EJ (2012) Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. Chem Phys Lipids 165:216–224. doi:10.1016/j.chemphyslip.2011.12.012

    Article  PubMed  CAS  Google Scholar 

  151. Bay DC, Turner RJ (2013) Membrane composition influences the topology bias of bacterial integral membrane proteins. Biochim Biophys Acta 1828:260–270. doi:10.1016/j.bbamem.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  152. Gutman N, Steiner-Mordoch S, Schuldiner S (2003) An amino acid cluster around the essential Glu-14 is part of the substrate- and proton-binding domain of EmrE, a multidrug transporter from Escherichia coli. J Biol Chem 278:16082–16087. doi:10.1074/jbc.M213120200

    Article  CAS  PubMed  Google Scholar 

  153. Elbaz Y, Tayer N, Steinfels E, Steiner-Mordoch S, Schuldiner S (2005) Substrate-induced tryptophan fluorescence changes in EmrE, the smallest ion-coupled multidrug transporter. Biochemistry 44:7369–7377. doi:10.1021/bi050356t

    Article  CAS  PubMed  Google Scholar 

  154. Rotem D, Steiner-Mordoch S, Schuldiner S (2006) Identification of tyrosine residues critical for the function of an ion-coupled multidrug transporter. J Biol Chem 281:18715–18722. doi:10.1074/jbc.M602088200

    Article  CAS  PubMed  Google Scholar 

  155. Sharoni M, Steiner-Mordoch S, Schuldiner S (2005) Exploring the binding domain of EmrE, the smallest multidrug transporter. J Biol Chem 280:32849–32855. doi:10.1074/jbc.M504910200

    Article  CAS  PubMed  Google Scholar 

  156. Mordoch SS, Granot D, Lebendiker M, Schuldiner S (1999) Scanning cysteine accessibility of EmrE, an H+-coupled multidrug transporter from Escherichia coli, reveals a hydrophobic pathway for solutes. J Biol Chem 274:19480–19486. doi:10.1074/jbc.274.27.19480

    Article  CAS  PubMed  Google Scholar 

  157. Wang J, Rath A, Deber CM (2014) Functional response of the small multidrug resistance protein EmrE to mutations in transmembrane helix 2. FEBS Lett 588:3720–3725. doi:10.1016/j.febslet.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  158. Brill S, Sade-Falk O, Elbaz-Alon Y, Schuldiner S (2015) Specificity determinants in small multidrug transporters. J Mol Biol 427:468–477. doi:10.1016/j.jmb.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  159. Soskine M, Adam Y, Schuldiner S (2004) Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J Biol Chem 279:9951–9955. doi:10.1074/jbc.M312853200

    Article  CAS  PubMed  Google Scholar 

  160. Yerushalmi H, Schuldiner S (2000) A model for coupling of H+ and substrate fluxes based on “time-sharing” of a common binding site. Biochemistry 39:14711–14719. doi:10.1021/bi001892i

    Article  CAS  PubMed  Google Scholar 

  161. Yerushalmi H, Mordoch SS, Schuldiner S (2001) A single carboxyl mutant of the multidrug transporter EmrE is fully functional. J Biol Chem 276:12744–12748. doi:10.1074/jbc.M010979200

    Article  CAS  PubMed  Google Scholar 

  162. Bay DC, Budiman RA, Nieh MP, Turner RJ (2010) Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent. Biochim Biophys Acta 1798:526–535. doi:10.1016/j.bbamem.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  163. Weinglass AB, Soskine M, Vazquez-Ibar JL, Whitelegge JP, Faull KF, Kaback HR, Schuldiner S (2005) Exploring the role of a unique carboxyl residue in EmrE by mass spectrometry. J Biol Chem 280:7487–7492. doi:10.1074/jbc.M413555200

    Article  CAS  PubMed  Google Scholar 

  164. Morrison EA, Robinson AE, Liu Y, Henzler-Wildman KA (2015) Asymmetric protonation of EmrE. J Gen Physiol 146:445–461. doi:10.1085/jgp.201511404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gayen A, Leninger M, Traaseth NJ (2016) Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 12:141–145. doi:10.1038/nchembio.1999

    Google Scholar 

  166. Dastvan R, Fischer AW, Mishra S, Meiler J, McHaourab HS (2016) Protonation-dependent conformational dynamics of the multidrug transporter EmrE. Proc Natl Acad Sci U S A 113:1220–1225. doi:10.1073/pnas.1520431113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Melchior DL, Brill S, Wright GE, Schuldiner S (2015) A liposomal method for evaluation of inhibitors of H+-coupled multidrug transporters. J Pharmacol Toxicol Methods 77:53–57. doi:10.1016/j.vascn.2015.09.007

    Article  PubMed  CAS  Google Scholar 

  168. Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781. doi:10.1016/j.bbapap.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  169. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159. doi:10.1016/j.tibs.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  170. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ et al (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi:10.1128/AAC.45.4.1126-1136.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tal N, Schuldiner S (2009) A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 106:9051–9056. doi:10.1073/pnas.0902400106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Brill S, Falk OS, Schuldiner S (2012) Transforming a drug/H+ antiporter into a polyamine importer by a single mutation. Proc Natl Acad Sci U S A 109:16894–16899. doi:10.1073/pnas.1211831109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gaze WH, Abdouslam N, Hawkey PM, Wellington EM (2005) Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob Agents Chemother 49:1802–1807. doi:10.1128/AAC.49.5.1802-1807.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wright MS, Baker-Austin C, Lindell AH, Stepanauskas R, Stokes HW, McArthur JV (2008) Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. ISME J 2:417–428. doi:10.1038/ismej.2008.8

    Article  CAS  PubMed  Google Scholar 

  176. Nandi S, Maurer JJ, Hofacre C, Summers AO (2004) Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A 101:7118–7122. doi:10.1073/pnas.0306466101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rosser SJ, Young HK (1999) Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 44:11–18. doi:10.1093/jac/44.1.11

    Article  CAS  PubMed  Google Scholar 

  178. Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72. doi:10.4265/bio.16.69

    Article  CAS  PubMed  Google Scholar 

  179. Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382. doi:10.1128/AEM.01310-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bay, D.C., Turner, R.J. (2016). Small Multidrug Resistance Efflux Pumps. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_3

Download citation

Publish with us

Policies and ethics