Skip to main content

Antimicrobial Drug Efflux Pumps in Salmonella

  • Chapter
  • First Online:

Abstract

Salmonella species are causative organisms of salmonellosis, and the prevalence of multidrug-resistant Salmonella has increased dramatically. These multidrug-resistant isolates have been found in both humans and animals and thus pose a major public health concern. Drug resistance in Salmonella has been shown to be largely attributable to multiple target gene mutations and to active efflux by pumps. At least ten drug efflux system genes in the genome of this organism have been experimentally identified to date, and some efflux pump genes encoded in plasmids have been also identified. This chapter describes the drug resistance and virulence roles of efflux pumps and their regulation in Salmonella.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scherer CA, Miller SI (2001) Molecular pathogenesis of Salmonella. In: Groisman EA (ed) Principles of bacterial pathogenesis. Academic Press, New York, pp 266–333

    Google Scholar 

  2. Finlay BB, Falkow S (1988) Virulence factors associated with Salmonella species. Microbiol Sci 5:324–328

    CAS  PubMed  Google Scholar 

  3. Finlay BB, Falkow S (1989) Salmonella as an intracellular parasite. Mol Microbiol 3:1833–1841. doi:10.1111/j.1365-2958.1989.tb00170.x

    Article  CAS  PubMed  Google Scholar 

  4. Bager F, Helmuth R (2001) Epidemiology of resistance to quinolones in Salmonella. Vet Res 32:285–290. doi:10.1051/vetres:2001125

    Article  CAS  PubMed  Google Scholar 

  5. Baucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A (2002) The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb Drug Resist 8:281–289. doi:10.1089/10766290260469543

    Article  CAS  PubMed  Google Scholar 

  6. Baucheron S, Chaslus-Dancla E, Cloeckaert A (2004) Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J Antimicrob Chemother 53:657–659. doi:10.1093/jac/dkh122

    Article  CAS  PubMed  Google Scholar 

  7. Cloeckaert A, Chaslus-Dancla E (2001) Mechanisms of quinolone resistance in Salmonella. Vet Res 32:291–300. doi:10.1051/vetres:2001105

    Article  CAS  PubMed  Google Scholar 

  8. Piddock LJ (2002) Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 26:3–16. doi:10.1111/j.1574-6976.2002.tb00596.x

    Article  CAS  PubMed  Google Scholar 

  9. Nishino K (2005) Bacterial multidrug exporters: insights into acquisition of multidrug resistance. Science. Online publication http://www.sciencemag.org/site/feature/data/prizes/ge/2004/nishino.xhtml

  10. Ren Q, Paulsen IT (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 12:165–179. doi:10.1159/000099639

    Article  CAS  PubMed  Google Scholar 

  11. Lacroix FJ, Cloeckaert A, Grepinet O, Pinault C, Popoff MY, Waxin H, Pardon P (1996) Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 135:161–167. doi:10.1111/j.1574-6968.1996.tb07983.x

    Article  CAS  PubMed  Google Scholar 

  12. Nikaido H, Basina M, Nguyen V, Rosenberg EY (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol 180:4686–4692

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141. doi:10.1111/j.1365-2958.2005.04940.x

    Article  CAS  PubMed  Google Scholar 

  14. Villagra NA, Hidalgo AA, Santiviago CA, Saavedra CP, Mora GC (2008) SmvA, and not AcrB, is the major efflux pump for acriflavine and related compounds in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62:1273–1276. doi:10.1093/jac/dkn407

    Article  CAS  PubMed  Google Scholar 

  15. Nishino K, Nikaido E, Yamaguchi A (2009) Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta 1794:834–843. doi:10.1016/j.bbapap.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  16. Nordmann P, Poirel L (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 56:463–469. doi:10.1093/jac/dki245

    Article  CAS  PubMed  Google Scholar 

  17. Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629. doi:10.1016/S1473-3099(06)70599-0

    Article  CAS  PubMed  Google Scholar 

  18. Wong MH, Chen S (2013) First detection of oqxAB in Salmonella spp. isolated from food. Antimicrob Agents Chemother 57:658–660. doi:10.1128/AAC.01144-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, Piddock LJ (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856. doi:10.1111/j.1462-5822.2005.00671.x

    Article  CAS  PubMed  Google Scholar 

  20. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  21. Nishino K, Nikaido E, Yamaguchi A (2007) Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189:9066–9075. doi:10.1128/JB.01045-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pontel LB, Audero ME, Espariz M, Checa SK, Soncini FC (2007) GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825. doi:10.1111/j.1365-2958.2007.05963.x

    Article  CAS  PubMed  Google Scholar 

  23. Baugh S, Ekanayaka AS, Piddock LJ, Webber MA (2012) Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 67:2409–2417. doi:10.1093/jac/dks228

    Article  CAS  PubMed  Google Scholar 

  24. Lacroix FJ, Avoyne C, Pinault C, Popoff MY, Pardon P (1995) Salmonella typhimurium TnphoA mutants with increased sensitivity to biological and chemical detergents. Res Microbiol 146:659–670. doi:10.1016/0923-2508(96)81063-1

    Article  CAS  PubMed  Google Scholar 

  25. Sukupolvi S, Vaara M, Helander IM, Viljanen P, Makela PH (1984) New Salmonella typhimurium mutants with altered outer membrane permeability. J Bacteriol 159:704–712

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rensch U, Nishino K, Klein G, Kehrenberg C (2014) Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents 44:179–180. doi:10.1016/j.ijantimicag.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  27. Horiyama T, Yamaguchi A, Nishino K (2010) TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 65:1372–1376. doi:10.1093/jac/dkq160

    Article  CAS  PubMed  Google Scholar 

  28. Conroy O, Kim EH, McEvoy MM, Rensing C (2010) Differing ability to transport nonmetal substrates by two RND-type metal exporters. FEMS Microbiol Lett 308:115–122. doi:10.1111/j.1574-6968.2010.02006.x

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Webber M, Buckley AM, Randall LP, Woodward MJ, Piddock LJ (2006) Overexpression of marA, soxS and acrB in veterinary isolates of Salmonella enterica rarely correlates with cyclohexane tolerance. J Antimicrob Chemother 57:673–679. doi:10.1093/jac/dkl025

    Article  CAS  PubMed  Google Scholar 

  30. Usui M, Nagai H, Hiki M, Tamura Y, Asai T (2013) Effect of antimicrobial exposure on AcrAB expression in Salmonella enterica subspecies enterica serovar Choleraesuis. Front Microbiol 4:53. doi:10.3389/fmicb.2013.00053

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ferrari RG, Galiana A, Cremades R, Rodriguez JC, Magnani M, Tognim MC, Oliveira TC, Royo G (2013) Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella enterica strains with and without quinolone resistance-determining regions gyrA gene mutations. Braz J Infect Dis 17:125–130. doi:10.1016/j.bjid.2012.09.011

    Article  PubMed  Google Scholar 

  32. Blair JM, Bavro VN, Ricci V, Modi N, Cacciotto P, Kleinekathfer U, Ruggerone P, Vargiu AV et al (2015) AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 112:3511–3516. doi:10.1073/pnas.1419939112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ, Piddock LJ (2015) Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother 70:2241–2248. doi:10.1093/jac/dkv109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagakubo S, Nishino K, Hirata T, Yamaguchi A (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 184:4161–4167. doi:10.1128/JB.184.15.4161-4167.2002

    Google Scholar 

  35. Santiviago CA, Fuentes JA, Bueno SM, Trombert AN, Hildago AA, Socias LT, Youderian P, Mora GC (2002) The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol Microbiol 46:687–698. doi:10.1046/j.1365-2958.2002.03204.x

    Article  CAS  PubMed  Google Scholar 

  36. Baucheron S, Mouline C, Praud K, Chaslus-Dancla E, Cloeckaert A (2005) TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 55:707–712. doi:10.1093/jac/dki091

    Article  CAS  PubMed  Google Scholar 

  37. Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, Ismail A, Fun HK et al (2015) Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism. Sci Rep 5:16441. doi:10.1038/srep16441

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812. doi:10.1128/JB.183.20.5803-5812.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fralick JA (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178:5803–5805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishino K, Yamaguchi A (2002) EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 184:2319–2323. doi:10.1128/JB.184.8.2319-2323.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishino K, Yamada J, Hirakawa H, Hirata T, Yamaguchi A (2003) Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 47:3030–3033. doi:10.1128/AAC.47.9.3030-3033.2003

    Google Scholar 

  42. Nishino K, Yamaguchi A (2004) Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol 186:1423–1429. doi:10.1128/JB.186.5.1423-1429.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamasaki S, Nagasawa S, Hayashi-Nishino M, Yamaguchi A, Nishino K (2011) AcrA dependency of the AcrD efflux pump in Salmonella enterica serovar Typhimurium. J Antibiot (Tokyo) 64:433–437. doi:10.1038/ja.2011.28

    Article  CAS  Google Scholar 

  44. Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T et al (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360. doi:10.1128/AAC.00339-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lunn AD, Fabrega A, Sanchez-Cespedes J, Vila J (2010) Prevalence of mechanisms decreasing quinolone-susceptibility among Salmonella spp. clinical isolates. Int Microbiol 13:15–20. doi:10.2436/20.1501.01.107

    CAS  PubMed  Google Scholar 

  46. Al-Gallas N, Abbassi MS, Gharbi B, Manai M, Ben Fayala MN, Bichihi R, Al-Gallas A, Ben Aissa R (2013) Occurrence of plasmid-mediated quinolone resistance determinants and rmtB gene in Salmonella enterica serovar Enteritidis and Typhimurium isolated from food-animal products in Tunisia. Foodborne Pathog Dis 10:813–819. doi:10.1089/fpd.2012.1466

    Article  CAS  PubMed  Google Scholar 

  47. Colobatiu L, Tabaran A, Flonta M, Oniga O, Mirel S, Mihaiu M (2015) First description of plasmid-mediated quinolone resistance determinants and β-lactamase encoding genes in non-typhoidal Salmonella isolated from humans, one companion animal and food in Romania. Gut Pathog 7:16. doi:10.1186/s13099-015-0063-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Liao X, Yang Y, Sun J, Li L, Liu B, Yang S, Ma J et al (2013) Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother 68:2263–2268. doi:10.1093/jac/dkt209

    CAS  PubMed  Google Scholar 

  49. Li L, Liao XP, Liu ZZ, Huang T, Li X, Sun J, Liu BT, Zhang Q et al (2014) Co-spread of oqxAB and bla CTX-M-9G in non-Typhi Salmonella enterica isolates mediated by ST2-IncHI2 plasmids. Int J Antimicrob Agents 44:263–268. doi:10.1016/j.ijantimicag.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  50. Wong MH, Yan M, Chan EW, Biao K, Chen S (2014) Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob Agents Chemother 58:3752–3756. doi:10.1128/AAC.02770-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kao CY, Chen CA, Liu YF, Wu HM, Chiou CS, Yan JJ, Wu JJ (2015) Molecular characterization of antimicrobial susceptibility of Salmonella isolates: first identification of a plasmid carrying qnrD or oqxAB in Taiwan. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2015.03.004

    Google Scholar 

  52. Suter W, Rosselet A, Knusel F (1978) Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrob Agents Chemother 13:770–783. doi:10.1128/AAC.13.5.770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hansen LH, Johannesen E, Burmolle M, Sørensen AH, Sørensen SJ (2004) Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337. doi:10.1128/AAC.48.9.3332-3337.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ (2007) Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147. doi:10.1093/jac/dkm167

    Article  CAS  PubMed  Google Scholar 

  55. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC (2009) oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 53:3582–3584. doi:10.1128/AAC.01574-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wong MH, Chan EW, Liu LZ, Chen S (2014) PMQR genes oqxAB and aac(6′)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol 5:521. doi:10.3389/fmicb.2014.00521

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lin D, Chen K, Wai-Chi Chan E, Chen S (2015) Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci Rep 5:14754. doi:10.1038/srep14754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saier MH Jr, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 12:265–274

    CAS  PubMed  Google Scholar 

  59. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9:1165–1177. doi:10.2217/fmb.14.66

    Article  CAS  PubMed  Google Scholar 

  60. Prouty AM, Brodsky IE, Falkow S, Gunn JS (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella Typhimurium. Microbiology 150:775–783. doi:10.1099/mic.0.26769-0

    Article  CAS  PubMed  Google Scholar 

  61. Stone BJ, Miller VL (1995) Salmonella enteritidis has a homologue of tolC that is required for virulence in BALB/c mice. Mol Microbiol 17:701–712. doi:10.1111/j.1365-2958.1995.mmi_17040701.x

    Article  CAS  PubMed  Google Scholar 

  62. Lee JJ, Hsuan SL, Kuo CJ, Wu YC, Chen TH (2015) MarA and ramA regulate virulence in Salmonella enterica serovar Choleraesuis. Vet Microbiol 181:323–327. doi:10.1016/j.vetmic.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  63. Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-Torres A, Andrews-Polymenis H (2013) The ABC-type efflux pump MacAB protects Salmonella enterica serovar Typhimurium from oxidative stress. mBio 4:e00630–13. doi:10.1128/mBio.00630-13

  64. Yamanaka H, Kobayashi H, Takahashi E, Okamoto K (2008) MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 190:7693–7698. doi:10.1128/JB.00853-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu S, Zgurskaya HI (2013) MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity. J Bacteriol 195:4865–4872. doi:10.1128/JB.00756-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turlin E, Heuck G, Simoes Brandao MI, Szili N, Mellin JR, Lange N, Wandersman C (2014) Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiol Open 3:849–859. doi:10.1002/mbo3.203

    Article  CAS  Google Scholar 

  67. Kochevar IE (1987) Mechanisms of drug photosensitization. Photochem Photobiol 45:891–895. doi:10.1111/j.1751-1097.1987.tb07899.x

    Article  CAS  PubMed  Google Scholar 

  68. Appia-Ayme C, Patrick E, Sullivan MJ, Alston MJ, Field SJ, AbuOun M, Anjum MF, Rowley G (2011) Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal. PLoS One 6:e23713. doi:10.1371/journal.pone.0023713

    Google Scholar 

  69. Baugh S, Phillips CR, Ekanayaka AS, Piddock LJ, Webber MA (2014) Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 69:673–681. doi:10.1093/jac/dkt420

    Article  CAS  PubMed  Google Scholar 

  70. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253. doi:10.1074/jbc.M804544200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baucheron S, Nishino K, Monchaux I, Canepa S, Maurel MC, Coste F, Roussel A, Cloeckaert A et al (2014) Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 69:2400–2406. doi:10.1093/jac/dku140

    Article  CAS  PubMed  Google Scholar 

  72. Yamasaki S, Nikaido E, Nakashima R, Sakurai K, Fujiwara D, Fujii I, Nishino K (2013) The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nat Commun 4:2078. doi:10.1038/ncomms3078

    Article  CAS  PubMed  Google Scholar 

  73. Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A (2004) Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238:267–272. doi:10.1111/j.1574-6968.2004.tb09766.x

    Google Scholar 

  74. Eaves DJ, Ricci V, Piddock LJ (2004) Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother 48:1145–1150. doi:10.1128/AAC.48.4.1145-1150.2004

    Google Scholar 

  75. Nikaido E, Shirosaka I, Yamaguchi A, Nishino K (2011) Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 157:648–655. doi:10.1099/mic.0.045757-0

    Article  CAS  PubMed  Google Scholar 

  76. Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A (2005) Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar Typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother 49:289–301. doi:10.1128/AAC.49.1.289-301.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishino K, Hayashi-Nishino M, Yamaguchi A (2009) H-NS modulates multidrug resistance of Salmonella enterica serovar Typhimurium by repressing multidrug efflux genes acrEF. Antimicrob Agents Chemother 53:3541–3543. doi:10.1128/AAC.00371-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H et al (2005) Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A 102:2862–2867. doi:10.1073/pnas.0408238102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Komatsu T, Ohta M, Kido N, Arakawa Y, Ito H, Mizuno T, Kato N (1990) Molecular characterization of an Enterobacter cloacae gene (romA) which pleiotropically inhibits the expression of Escherichia coli outer membrane proteins. J Bacteriol 172:4082–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van der Straaten T, Zulianello L, van Diepen A, Granger DL, Janssen R, van Dissel JT (2004) Salmonella enterica serovar Typhimurium RamA, intracellular oxidative stress response, and bacterial virulence. Infect Immun 72:996–1003. doi:10.1128/IAI.72.2.996-1003.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chollet R, Chevalier J, Bollet C, Pagès JM, Davin-Regli A (2004) RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48:2518–2523. doi:10.1128/AAC.48.7.2518-2523.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619. doi:10.1046/j.1365-2958.2003.03531.x

    Article  CAS  PubMed  Google Scholar 

  83. Abouzeed YM, Baucheron S, Cloeckaert A (2008) ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52:2428–2434. doi:10.1128/AAC.00084-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van der Straaten T, Janssen R, Mevius DJ, van Dissel JT (2004) Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar typhimurium. Antimicrob Agents Chemother 48:2292–2294. doi:10.1128/AAC.48.6.2292-2294.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yassien MA, Ewis HE, Lu CD, Abdelal AT (2002) Molecular cloning and characterization of the Salmonella enterica serovar Paratyphi B rma gene, which confers multiple drug resistance in Escherichia coli. Antimicrob Agents Chemother 46:360–366. doi:10.1128/AAC.46.2.360-366.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 775:153–161. doi:10.1016/S1570-0232(02)00289-1

    Article  CAS  Google Scholar 

  87. Sonnenwirth AC (1980) The enteric bacteria and bacteroides. In: Davis BD, Dulbecco R, Eisen HN, Ginsberg HS (eds) Microbiology, 3rd edn. Harper & Row, Publishers, Philadephia, pp 645–672

    Google Scholar 

  88. Fàbrega A, Balleste-Delpierre C, Vila J (2016) Differential impact of ramRA mutations on both ramA transcription and decreased antimicrobial susceptibility in Salmonella Typhimurium. J Antimicrob Chemother 71:617–624. doi:10.1093/jac/dkv410

    Article  CAS  PubMed  Google Scholar 

  89. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG (2001) Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163. doi:10.1126/science.1066020

    Article  CAS  PubMed  Google Scholar 

  90. Alguel Y, Meng C, Teran W, Krell T, Ramos JL, Gallegos MT, Zhang X (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369:829–840. doi:10.1016/j.jmb.2007.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW (2011) Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Protein Sci 20:712–723. doi:10.1002/pro.602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bailey AM, Ivens A, Kingsley R, Cottell JL, Wain J, Piddock LJ (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 192:1607–1616. doi:10.1128/JB.01517-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S (2009) Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: detection of novel mutations involved in modulated expression of ramA and soxS. J Antimicrob Chemother 64:1175–1180. doi:10.1093/jac/dkp347

    Article  CAS  PubMed  Google Scholar 

  94. Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneiders T (2011) Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents 38:39–45. doi:10.1016/j.ijantimicag.2011.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author acknowledges funding from the Japan Agency for Medical Research and Development; the Japan Science and Technology Agency; the Japan Society for the Promotion of Science; the Ministry of Education, Culture, Sports, Science and Technology, Japan; and the Cabinet Office, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nishino, K. (2016). Antimicrobial Drug Efflux Pumps in Salmonella . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_10

Download citation

Publish with us

Policies and ethics