
Foundations of Fully Dynamic Group Signatures

Jonathan Bootle, Andrea Cerulli(B), Pyrros Chaidos, Essam Ghadafi,
and Jens Groth

University College London, London, UK
{jonathan.bootle.14,andrea.cerulli.13,pyrros.chaidos.10,

e.ghadafi,j.groth}@ucl.ac.uk

Abstract. Group signatures are a central cryptographic primitive that
has received a considerable amount of attention from the cryptographic
community. They allow members of a group to anonymously sign on
behalf of the group. Membership is overseen by a designated group
manager. There is also a tracing authority that can revoke anonymity
by revealing the identity of the signer if and when needed, to enforce
accountability and deter abuse. For the primitive to be applicable in
practice, it needs to support fully dynamic groups, i.e. users can join and
leave at any time. In this work we take a close look at existing security
definitions for fully dynamic group signatures. We identify a number of
shortcomings in existing security definitions and fill the gap by providing
a formal rigorous security model for the primitive. Our model is general
and is not tailored towards a specific design paradigm and can therefore,
as we show, be used to argue about the security of different existing
constructions following different design paradigms. Our definitions are
stringent and when possible incorporate protection against maliciously
chosen keys. In the process, we identify a subtle issue inherent to one
design paradigm, where new members might try to implicate older ones
by means of back-dated signatures. This is not captured by existing mod-
els. We propose some inexpensive fixes for some existing constructions
to avoid the issue.

Keywords: Group signatures · Security definitions

1 Introduction

Group signatures, put forward by Chaum and van Heyst [CvH91], are a funda-
mental cryptographic primitive allowing a member of a group (administered by a
designated manager) to anonymously sign messages on behalf of the group. In the

The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 307937 and EPSRC grant
EP/J009520/1.
P. Chaidos—Was supported by an EPSRC scholarship (EP/G037264/1 – Security
Science DTC).

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 117–136, 2016.
DOI: 10.1007/978-3-319-39555-5 7

118 J. Bootle et al.

case of a dispute, a designated tracing manager can revoke anonymity by revealing
the signer. In many settings it is desirable to offer flexibility in joining and leaving
the group. In static group signatures [BMW03], the group population is fixed once
and for all at the setup phase. Partially dynamic group signatures [BSZ05,KY06]
allow the enrolment of members in the group at any time but members cannot
leave once they have joined. A challenging problem in group signatures is that of
revocation, i.e. allowing removal of members from the group.

Related Work. After their introduction, a long line of research on group signa-
tures has emerged. In the early years, security of group signatures was not well
understood and early constructions were proven secure via informal arguments
using various interpretations of their requirements.

Bellare et al. [BMW03] formalized the security definitions for static groups. In
their model, the group manager (which also acts as the tracing authority) needs
to be fully trusted. Later on, Bellare et al. [BSZ05] and Kiayias and Yung [KY06]
provided formal security definitions for the more practical partially dynamic case.
Also, [BSZ05] separated the tracing role from the group management. In both
[BSZ05,KY06] models, members cannot leave the group once they have joined.
More recently, Sakai et al. [SSE+12] strengthened the security definitions for
partially dynamic groups by defining opening soundness, ensuring that a valid
signature only traces to one user.

Group Signatures Without Revocation. Constructions of group signatures
in the random oracle model [BR93] include [CS97,CM98,ACJT00,BBS04,CL04,
CG04,NS04,FI05,FY04,KY05,DP06,BCN+10]. Constructions not relying on
random oracles include [ACHdM05,Gro06,BW06,Gro07,BW07,AHO10].

Group Signatures With Revocation. Since revocation is an essential feature
of group signatures, many researchers investigated the different approaches via
which such a feature can be realized. One approach is for the group manager to
change the group public key when members are removed and issue new group
signing keys to all remaining legitimate members or allow them to update their
old signing keys accordingly. This is the approach adopted by e.g. [TX03,CL02].

Bresson and Stern [BS01] realize revocation by requiring that the signer proves
at the time of signing that her group membership certificate is not among those
contained in a public revocation list. Another approach, which was adopted by
e.g. [CL02,TX03,DKNS04,Ngu05], uses accumulators, i.e. functions that map a
set of values into a fixed-length string and permit efficient proofs of membership.

Boneh et al. [BBS04] showed that their static group signature scheme sup-
ports revocation since it allows members to update their signing keys according
to the changes in the group without the involvement of the manager. Camenisch
and Groth [CG04] also gave a construction that supports revocation. Song
[Son01] gave a fully dynamic group signature with forward security.

A different approach for revocation known asVerifier Local Revocation (VLR),
which needs relaxation of some of the security requirements, considered by
Brickell [Bri04], was subsequently formalized by Boyen and Shacham [BS04] and
further used in e.g. [NF05,LV09,LLNW14]. In VLR, the revocation information

Foundations of Fully Dynamic Group Signatures 119

(i.e. revocation lists) is only sent to the verifiers (as opposed to both verifiers and
signers) who can check whether a particular signature was generated by a revoked
member. A similar approach is also used in Direct Anonymous Attestation (DAA)
protocols [BCC04]. Traceable Signatures [KTY04] extend this idea, as the group
manager can release a trapdoor for each member, enabling their signatures to be
traced back to the individual user.

More recently, Libert et al. [LPY12b,LPY12a] gave a number of efficient con-
structions of group signatures supporting revocation without requiring random
oracles by utilizing the subset cover framework [NNL01] that was originally used
in the context of broadcast encryption.

Shortcomings in Existing Models & Motivation. While the security of
the static and partially dynamic group settings has been rigorously formulated
[BMW03,BSZ05,KY06,SSE+12] and is now well understood, unfortunately, the
security of their fully dynamic groups counterpart, which is more relevant to
practice, has received less attention and is still lacking. In particular, the dif-
ferent design paradigms assume different (sometimes informal) models which do
not necessarily generalize to other design approaches. This resulted in various
models, the majority of which lack rigour. As a consequence, it can be difficult
to compare the merits of the different constructions in terms of their security
guarantees. Moreover, existing models place a large amount of trust in the dif-
ferent authorities and assume that their keys are generated honestly. This does
not necessarily reflect scenarios arising in real applications. Furthermore, some
existing models, as we show, fail to take into account some attacks which might
be problematic for some applications of the primitive.

“He Who Controls the Present Controls the Past”, (George Orwell).
Consider a scenario where the new leadership of an organisation or country wants
to justify an unpopular policy (e.g. layoffs or removal of personal freedoms). A
way to do that would be to back-date documents justifying the policy: thus, any
animosity for the policy would be towards the old leadership. The new leadership
is only maintaining the status quo.

Re-framing this in technical terms, we show that the notion of traceability in
existing models following the revocation list approach, where the group manager
periodically publishes information (i.e. revocation lists) about members excluded
from the group, is too weak. In those models, the life of the scheme spans over
different intervals (epochs) at the start of which the manager updates the revo-
cation lists. Signatures in those models are bound to a specific epoch. It is vital
for functionality that old valid signatures (i.e. those produced at earlier epochs
by then-legitimate members) are accepted by the verification algorithm.

The issue we identify in those models is that they allow members who joined
at recent epochs to sign messages w.r.t earlier epochs during which they were
not members of the group. In a sense this may be considered as an attack against
traceability, as those members were not in the group at that interval. Technically
however, the scenario we describe is allowed by the model: the underlying issue
is a gap between one’s interpretation of group signatures and what the definition
implies. Our expectation is that a signature bound to epoch τ was produced by

120 J. Bootle et al.

a member of the group at that time. Current definitions however, allows for all
past, current, and future members, as long as they were not revoked at time τ .

One may dismiss this attack as theoretical, since the old leadership might
appeal to the opener. However, this might not always be possible: the opener
may be controlled by the new leadership, or in a business setting an outgoing
CEO or board member might be disinterested or disincentivized from pursuing
the issue. Another possible criticism might be that the weakness is trivial, and
would be silently fixed in any construction using the model.

We show that some state of the art constructions, as [NFHF09,LPY12b,
LPY12a], are susceptible to this attack. Specifically, their membership certifi-
cates are not bound to the epochs of their issuance. As a result, a member can
sign w.r.t. earlier epochs. We stress that neither the authors of those schemes
claimed their schemes were immune against such an issue nor that their models
were supposed to capture such an attack. Thus, such an issue might not be a
problem for the applications they originally had in mind, but only in a more
general case.

In order to have strong security guarantees from the different constructions,
a rigorous and unified security model is necessary. This is the aim of this work
as we believe this is a challenging problem that needs to be addressed, especially
given the relevance of the primitive.

Our Contribution. We take a close look at the security definitions of fully
dynamic group signatures. We provide a rigorous security model that generalizes
to the different design paradigms. In particular, our model covers both accumula-
tor based and revocation list based approaches. Our model offers stringent secu-
rity definitions and takes into account some attacks which were not considered
by existing models. We give different flavors of our security definitions which cap-
ture both cases when the authorities’ keys are adversarially generated and when
such keys are honestly generated. We also show that our security definitions imply
existing definitions for static and partially dynamic group signatures.

In the process, we identify a subtle difference between accumulator based and
revocation list based approaches. Specifically, we identify a simple attack against
traceability inherent to constructions following the latter approach and which is
not captured by existing models. The attack allows a group member of to sign
w.r.t. intervals prior to her joining the group. The security notion modelled by
current definitions prevents users from signing only if they are explicitly revoked.

To address this, our traceability definition models a stricter security notion:
users are not authorised to sign unless they are non-revoked and are active
(i.e. part of the group) at the time interval associated with the signature. We
note this is already implied in the accumulator based approach: the signer proves
membership in the current version of the group at the time of signing. We also
propose a number of possible fixes to this issue in some existing schemes.

Finally, we show that a fully dynamic group signature scheme obtained from
the generic construction of accountable ring signatures given in [BCC+15] is
secure w.r.t. the stronger variant of our security definitions.

Foundations of Fully Dynamic Group Signatures 121

Paper Organization. We present our model for fully dynamic group signatures
in Sect. 2 and show that it implies existing definitions for static and partially
dynamic group signatures. In Sect. 3 we analyse the security of three existing
fully dynamic group signature schemes in our model.

Notation. A function ν(·) : N → R
+ is negligible in the security parameter

λ if for every polynomial p(·) and all sufficiently large values of λ, it holds
that ν(λ) < 1

p(λ) . Given a probability distribution Y , we denote by x ← Y

the operation of selecting an element according to Y . If M is a probabilistic
machine, we denote by M(x1, . . . , xn) the output distribution of M on inputs
(x1, . . . , xn). By [n] we denote the set {1, . . . , n}. By PPT we mean running in
probabilistic polynomial time in the relevant security parameter. For algorithms
X and Y, (x, y) ← 〈X(a),Y(b)〉 denotes the the joint execution of X (with input
a) and Y (with input b) where at the end X outputs x, whereas Y outputs y. By
X〈·,Y(b)〉(a), we denote the invocation of Y (with input b) by X (with input a).
Note that X does not get the private output of Y.

2 Syntax and Security of Fully Dynamic Group
Signatures

The parties involved in a Fully Dynamic Group Signature (FDGS) are: a group
manager GM who authorizes who can join the group; a tracing manager T M who
can revoke anonymity by opening signatures; a set of users, each with a unique
identity uid ∈ N, who are potential group members. Users can join/leave the group
at any time at the discretion of the group manager. We assume the group manager
will regularly publish some information infoτ , associated with a distinct index τ
(hereafter referred to as epoch). We assume that τ can be recovered given infoτ and
vice versa (i.e. there is bijection between the epochs and associated information).
The information depicts changes to the group, for instance, it could include the
current members of the group (as in accumulator-based constructions) or those
who have been excluded from the group (as, e.g. required by constructions based
on revocation lists). As in existing models, we assume that anyone can verify the
well-formedness and authenticity of the published group information. By combin-
ing the group information for the current epoch with that of the preceding one,
any party can identify the list of members who have been revoked at the current
epoch. We assume that the epochs preserve the order in which their corresponding
information was published. More precisely, for all τ1, τ2 ∈ T (T being the space
of epochs) we require that τ1 < τ2 if infoτ1 preceded infoτ2 .

Unlike existing models, which assume honestly generated authorities’ keys,
we separate the generation of the authorities’ keys from that of the public para-
meters, which might need to be generated by a trusted party. This allows us
(where appropriate) to define stringent security that protects against adversar-
ial authorities who might generate their keys maliciously. Our definitions can be
adapted straight away to work for the weaker setting where authorities’ keys are
generated honestly as in existing models. For the sake of generality, we define

122 J. Bootle et al.

the group key generation as a joint protocol between the group and tracing man-
agers. Clearly, it is desirable in some cases to avoid such interaction and allow
authorities to generate their own keys independently. This is a special case of
our general definition where the protocol is regarded as two one-sided protocols.

An FDGS scheme consists of the following polynomial-time algorithms:

• GSetup(1λ) → param: is run by a trusted third party. On input a security
parameter λ, it outputs public parameters param. The algorithm also initializes
the registration table reg.

• 〈GKGenGM(param),GKGenT M(param)〉: is an interactive protocol between
algorithms GKGenGM and GKGenT M run by GM and T M, respectively, to
generate their respective private keys as well as the rest of the group pub-
lic key gpk. The input to both algorithms is the public parameters param. If
completed successfully, the private output of GKGenGM is a secret manager
key msk, whereas its public output is a public key mpk, and the initial group
information info. The private output of GKGenT M is the secret tracing key
tsk, whereas its public output is a public key tpk. The group public key is
then set to gpk := (param,mpk, tpk).

• UKGen(1λ) → (usk[uid],upk[uid]): outputs a secret/public key pair (usk[uid],
upk[uid]) for user uid. We assume the public key table upk to be publicly
available (possibly via PKI) so that anyone can get authentic copies of it.

• 〈Join(infoτcurrent , gpk, uid,usk[uid]), Issue(infoτcurrent ,msk, uid,upk[uid])〉: is an
interactive protocol between a user uid (who has already obtained a personal
key pair, i.e. ran the UKGen algorithm) and the group manager GM. Upon
successful completion, uid becomes a member of the group. The final state of
the Issue algorithm is stored in the registration table at index uid (i.e. reg[uid]),
whereas that of the Join algorithm is stored in gsk[uid]. The epoch τcurrent is
part of the output of both parties.
We assume that the protocol takes place over a secure (i.e. private and authen-
tic) channel. The protocol is initiated by calling Join. The manager may update
the group information after running this protocol. The registration table reg
stores additional information used by the group manager and the tracing man-
ager for updating and tracing, depending on the scheme specifics.

• UpdateGroup(gpk,msk, infoτcurrent ,S, reg) → infoτnew : is run by the group man-
ager to update the group information while also advancing the epoch. It takes
as input the group manager’s secret key msk, a (possibly empty) set S of
active members to be removed from the group and the registration table reg,
it outputs a new group information infoτnew and might also update the regis-
tration table reg. If there has been no changes to the group information, the
algorithm returns ⊥ to indicate that no new information has been issued. The
algorithm aborts if any uid ∈ S has not run the join protocol.

• Sign(gpk,gsk[uid], infoτ ,m) → Σ: on input the group public key gpk, a user’s
group signing key gsk[uid], the group information infoτ at epoch τ , and a
message m, outputs a group signature Σ on m by the group member uid. If
the user owning gsk[uid] is not an active member of the group at epoch τ , the
algorithm returns ⊥.

Foundations of Fully Dynamic Group Signatures 123

• Verify(gpk, infoτ ,m,Σ) → 1/0: is a deterministic algorithm checking whether
Σ is a valid group signature on m at epoch τ and outputs a bit accordingly.

• Trace(gpk, tsk, infoτ , reg,m,Σ) → (uid, πTrace): is a deterministic algorithm
which is run by the tracing manager. It returns an identity uid > 0 of the
group member who produced Σ plus a proof πTrace attesting to this fact. If
the algorithm is unable to trace the signature to a particular group member,
it returns (0, πTrace) to indicate that it could not attribute the signature.

• Judge(gpk, uid, infoτ , πTrace,upk[uid],m,Σ) → 1/0 : is a deterministic algo-
rithm which on input the group public key gpk, a user identity uid, the group
information at epoch τ , a tracing proof πTrace, the user’s public key upk[uid]
(which is ⊥ if it does not exist), a message m, and a signature Σ, outputs 1
if πTrace is a valid proof that uid produced Σ, and outputs 0 otherwise.

Additional Algorithm. We will also use the following polynomial-time algo-
rithm which is only used in the security games to ease composition.

IsActive(infoτ , reg, uid) → 1/0 : returns 1 if the user uid is an active member of
the group at epoch τ and 0 otherwise.

2.1 Security of Fully Dynamic Group Signatures

The security requirements of a fully dynamic group signature are: correctness,
anonymity, non-frameability, traceability and tracing soundness. To define those
requirements, we use a set of games in which the adversary has access to a set of
oracles. The following global lists are maintained: HUL is a list of honest users;
CUL is a list of corrupt users whose personal secret keys have been chosen by the
adversary; BUL is a list of bad users whose personal and group signing keys have
been revealed to the adversary; SL is a list of signatures obtained from the Sign
oracle; CL is a list of challenge signatures obtained from the challenge oracle.

The details of the following oracles are given in Fig. 1.

AddU(uid) adds an honest user uid to the group at the current epoch.
CrptU(uid, pk) creates a new corrupt user whose public key upk[uid] is chosen

by the adversary. This is called in preparation for calling the SndToM oracle.
SndToM(uid,Min) used to engage in the Join-Issue protocol with the honest,

Issue-executing group manager.
SndToU(uid,Min) used to engage in the Join-Issue protocol with an honest, Join-

executing user uid on behalf of the corrupt group manager.
ReadReg(uid) returns the registration information reg[uid] of user uid.
ModifyReg(uid, val) modifies the entry reg[uid], setting reg[uid] := val. For

brevity we will assume ModifyReg also provides the functionality of ReadReg.
RevealU(uid) returns the personal secret key usk[uid] and group signing key

gsk[uid] of group member uid.
Sign(uid,m, τ) returns a signature on the message m by the group member uid

for epoch τ assuming the corresponding group information infoτ is defined.

124 J. Bootle et al.

AddU(uid)
� If uid ∈ HUL ∪ CUL Then Return ⊥.
� (usk[uid],upk[uid]) ← UKGen(1λ).
� HUL := HUL ∪ {uid}, gsk[uid] :=⊥, decuidIssue := cont.
� stuidJoin := (τcurrent, gpk, uid,usk[uid]).
� stuidIssue := (τcurrent,msk, uid,upk[uid]).
� (stuidJoin, MIssue, dec

uid
Join) ← Join(stuidJoin, ⊥).

� While (decuidIssue = cont and decuidJoin = cont) Do
◦ (stuidIssue, MJoin, dec

uid
Issue) ← Issue(stuidIssue, MIssue).

◦ (stuidJoin, MIssue, dec
uid
Join) ← Join(stuidJoin, MJoin).

� If decuidIssue = accept Then reg[uid] := stuidIssue.
� If decuidJoin = accept Then gsk[uid] := stuidJoin.
� Return upk[uid].

SndToU(uid, Min)
� If uid ∈ CUL ∪ BUL Then Return ⊥.
� If uid /∈ HUL Then

◦ HUL := HUL ∪ {uid}.
◦ (usk[uid],upk[uid]) ← UKGen(1λ).
◦ gsk[uid] :=⊥, Min :=⊥.

� If decuidJoin
= cont Then Return ⊥.
� If stuidJoin is undefined

◦ stuidJoin := (τcurrent, gpk, uid,usk[uid]).
� (stuidJoin, Mout, dec

uid
Join) ← Join(stuidJoin, Min)

� If decuidJoin = accept Then gsk[uid] := stuidJoin.
� Return (Mout, dec

uid
Join).

Trace(m, Σ, infoτ)
� Return (⊥,⊥) if Verify(gpk, infoτ , m, Σ) = 0.
� Return (⊥,⊥) if (m, Σ, τ) ∈ CL.
� Return Trace(gpk, tsk, infoτ , reg, m, Σ).

ReadReg(uid)
� Return reg[uid].

RevealU(uid)
� Return ⊥ if uid /∈ HUL \ (CUL ∪ BUL).
� BUL := BUL ∪ {uid}.
� Return (usk[uid],gsk[uid]).

CrptU(uid, pk)
� Return ⊥ if uid ∈ HUL ∪ CUL.
� CUL := CUL ∪ {uid}.
� upk[uid] := pk, decuidIssue := cont.
� Return accept.

SndToM(uid, Min)
� Return ⊥ if uid
∈ CUL.
� Return ⊥ if decuidIssue
= cont.
� stuidIssue := (τcurrent,msk, uid,upk[uid]).
� (stuidIssue, Mout, dec

uid
Issue) ← Issue(stuidIssue, Min).

� If decuidIssue = accept Then reg[uid] := stuidIssue.
� Return (Mout, dec

uid
Issue).

Sign(uid, m, τ)
� Return ⊥ if uid /∈ HUL or gsk[uid] =⊥ or infoτ =⊥.
� Return ⊥ if IsActive(infoτ , reg, uid) = 0.
� Σ ← Sign(gpk,gsk[uid], infoτ , m).
� SL := SL ∪ {(uid, m, Σ, τ)}.
� Return Σ.

Chalb(infoτ , uid0, uid1, m)
� Return ⊥ if uid0 /∈ HUL or uid1 /∈ HUL.
� Return ⊥ if ∃b ∈ {0, 1} s.t. gsk[uidb] =⊥.
� Return ⊥ if ∃b ∈ {0, 1} s.t. IsActive(infoτ , reg, uidb) = 0.
� Σ ← Sign(gpk,gsk[uidb], infoτ , m).
� CL := CL ∪ {(m, Σ, τ)}.
� Return Σ.

ModifyReg(uid, val)
� reg[uid] := val.
UpdateGroup(S)
� Return UpdateGroup(gpk,msk, infoτcurrent ,S, reg).

Fig. 1. Details of the oracles used in the security games

Chalb(infoτ , uid0, uid1,m) is a left-right oracle for defining anonymity. The
adversary chooses an epoch τ , the group information infoτ , two identities
(uid0, uid1), and a message m and receives a group signature by member uidb

for b ← {0, 1} for the chosen epoch. It is required that both challenge users
are active members at epoch τ . The adversary can only call this oracle once.

Trace(m,Σ, infoτ) returns the identity of the signer of the signature Σ on m
w.r.t. infoτ if the signature was not obtained from the Chalb oracle.

UpdateGroup(S) allows the adversary to update the group. S here is the set of
the active members to be removed from the group.

The following security requirements are defined by the games in Fig. 2.

Correctness. This requirement guarantees that signatures produced by honest,
non-revoked users are accepted by the Verify algorithm and that the honest
tracing manager can identify the signer of such signatures. In addition, the Judge
algorithm accepts the tracing manager’s decision.

Foundations of Fully Dynamic Group Signatures 125

Fig. 2. Security games for fully dynamic group signatures

126 J. Bootle et al.

Formally, an FDGS scheme is (perfectly) correct if for all λ ∈ N, the advan-
tage

AdvCorr
FDGS,A(λ) := Pr[ExpCorr

FDGS,A(λ) = 1]

is negligible (in λ) for all adversaries A.
Note that the above definition of (perfect) correctness protects against even

unbounded adversaries. If computational correctness suffices, i.e. when we con-
sider correctness only against computationally-bounded adversaries, we can drop
the last three lines from the correctness game in Fig. 2. Computational correct-
ness of the Trace and Judge algorithms is implied by the other requirements.

(Full) Anonymity. This requires that signatures do not reveal the identity
of the group member who produced them. In the game, the adversary, A, can
corrupt any user and fully corrupt the group manager by choosing her key. We
require that both challenge users are active members of the group at the chosen
epoch. Also, note that a Trace query on the challenge signature will fail.

As A can learn the personal secret and group signing keys of any user, includ-
ing the challenge users, our definition captures full key exposure attacks.

The adversary chooses an epoch, the group information for that epoch, a
message and two group members and gets a signature by either member and
wins if she correctly guesses the member. Without loss in generality, we allow
the adversary a single call to the challenge oracle. A hybrid argument (similar
to that used in [BSZ05]) can be used to prove that this is sufficient.

Formally, an FDGS scheme is (fully) anonymous if for all λ ∈ N, the advan-
tage AdvAnon

FDGS,A(λ) is negligible (in λ) for all PPT adversaries A, where

AdvAnon
FDGS,A(λ) :=

∣∣∣Pr[ExpAnon-0
FDGS,A(λ) = 1] − Pr[ExpAnon-1

FDGS,A(λ) = 1]
∣∣∣ .

Non-Frameability. This ensures that even if the rest of the group as well as the
tracing and group managers are fully corrupt, they cannot produce a signature
that can be attributed to an honest member who did not produce it.

In the game, the adversary can fully corrupt both the group and tracing man-
agers. She even chooses the keys of both managers. Thus, our definition is stronger
than existing models. We just require that the framed member is honest.

Formally, an FDGS scheme is non-frameable if for all λ ∈ N, the advantage

AdvNon-Frame
FDGS,A (λ) := Pr[ExpNon-Frame

FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 1. In the game variant we give in Fig. 2, we allow the adversary to
generate the tracing manager’s key herself. While, as we show later, there are
schemes which satisfy this strong variant of the definition, such definition might
be too strong to be satisfied by some existing schemes. A weaker variant of the
definition is where the tracing key is generated by the challenger rather than the
adversary. This requires replacing lines 2–4 in the game in Fig. 2 by the following:

Foundations of Fully Dynamic Group Signatures 127

− (stinit, info,msk,mpk) ← A〈·,GKGenT M(param)〉(init : param)
− Return 0 if A’s output is not well-formed or GKGenT M did not accept
− Let (tsk, tpk) be the output of GKGenT M. Set gpk := (param,mpk, tpk)

−
(
m, Σ, uid, πTrace, infoτ

)
← ACrptU,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk, tsk

)
.

Traceability. This ensures that the adversary cannot produce a signature that
cannot be traced to an active member of the group at the chosen epoch. In the
game, the adversary can corrupt any user and even chooses the tracing key of
the tracing manager. The adversary is not given the group manager’s secret key
as this would allow her to create dummy users which are thus untraceable. Note
that unlike [LPY12b,LPY12a,NFHF09], our definition captures that a member
of the group should not be able to sign w.r.t. epochs prior to her joining the
group since we do not restrict the adversary’s forgery to be w.r.t. to the current
epoch (i.e. the current version of the group information). The adversary wins
if she produces a signature whose signer cannot be identified or is an inactive
member at the chosen epoch. The adversary also wins if the Judge algorithm
does not accept the tracing decision on the forgery.

Formally, an FDGS scheme is traceable if for all λ ∈ N, the advantage

AdvTraceFDGS,A(λ) := Pr[ExpTrace
FDGS,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 2. To get an honestly-generated tracing key variant of the game in
Fig. 2, we replace lines 2–5 in the game in Fig. 2 by the following lines:

−
(
(msk,mpk, info), (tsk, tpk)

)
← 〈GKGenGM(param),GKGenT M(param)〉

− Set gpk := (param,mpk, tpk)

−
(
m, Σ, τ

)
← AAddU,CrptU,SndToM,RevealU,Sign,ReadReg,UpdateGroup

(
play : stinit, gpk, info, tsk

)
.

Tracing Soundness. As recently defined by [SSE+12] in the context of partially
dynamic group signatures, this requirement ensures that even if both the group
and the tracing managers as well as all members of the group collude, they
cannot produce a valid signature that traces to two different members. Such
a requirement is vital for many applications. For example, applications where
signers get rewarded or where we need to stop abusers shifting blame to others.

In the definition, the adversary can fully corrupt all parties involved and
wins if she produces a valid signature and valid tracing proofs that the signature
traces to different (possibly corrupt) users. We may also consider a stronger
variant where the adversary wins by producing a signature that traces to different
epochs.

128 J. Bootle et al.

Formally, an FDGS scheme has tracing soundness if for all λ ∈ N,

AdvTrace-SoundFDGS,A (λ) := Pr[ExpTrace-Sound
FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 3. To get an honestly-generated tracing key variant of the game in
Fig. 2, we replace lines 2–4 in the game in Fig. 2 by the following lines:

−
(
stinit,msk,mpk, info

)
← A〈·,GKGenT M(param)〉(init : param)

− Return 0 if GKGenT M did not accept or A’s output is not well-formed
− Parse the output of GKGenT M as (tsk, tpk) and set gpk := (param,mpk, tpk)

−
(
m, Σ, {uidi, πTracei}2

i=1, infoτ

)
← ACrptU,ModifyReg

(
play : stinit, gpk, tsk

)
.

2.2 Comparison with Existing Models

Models used by accumulator-based constructions, e.g. [BS01,CL02,TX03,
AST01,Ngu05,NFHF09], the vast majority of which are stated informally, are
specific to that particular design paradigm and do not generalize to other con-
struction approaches. Moreover, most of the them do not take into account
some of the attacks that arise in a more formal setting. For instance, some mod-
els only protect against partially but not fully corrupt tracing managers and
do not capture the tracing soundness requirement. On the other hand, mod-
els used by other design approaches, e.g. [NFHF09,LPY12b,LPY12a] are also
specific to those approaches and have their own shortcomings. For instance, as
discussed earlier, the models used by the state-of-the-art constructions by Libert
et al. [LPY12b,LPY12a] and Nakanishi et al. [NFHF09] do not prevent a group
member from being able to sign w.r.t. time intervals before she joined the group.
This is an attack that can be problematic in some applications of the primitive.
In the traceability game used in [NFHF09] as well as the misidentification game
used in [LPY12b,LPY12a], the adversary is required to output a signature that
is valid w.r.t. the current interval (epoch) and therefore the definitions do not
capture the attack we highlight. We stress that the authors of the concerned
models never claimed that their models cover such an attack as it might not be
a problem for their intended applications.

The traceability issue we shed light on does not apply to accumulator based
models. In these settings, when the group changes, an update is published con-
taining a list of the currently active group members and most constructions work
by having the signer prove membership in such a list. Therefore, even if a mali-
cious member tries to sign w.r.t. an earlier version of the group information, she
still has to prove she is a member of the group at the concerned interval.

Foundations of Fully Dynamic Group Signatures 129

In addition [NFHF09,LPY12b,LPY12a] only consider a partially but not
fully corrupt tracing manager in the non-frameability game. Moreover, they do
not capture the requirement that a signature should only trace to one member
(i.e. tracing soundness). The latter is vital for many applications of the primitive.

Another distinction from existing models is that our model allows maliciously
generated authorities’ keys when applicable. Therefore, it offers more stringent
security than existing models which rely on such keys being generated honestly.

2.3 Recovering Other Models

We give security reductions which relate our model to other well-known models
for group signatures. All these models assume honest key generation, for both
group and tracing managers, which is a special case of our model. We consider
three models. First, the model for static group signatures given in [BMW03].
We then consider two models for partially dynamic groups from [BSZ05] and
[KY06]. Due to lack of space, we present the technical details in the full paper
[BCC+16].

Static Group Signatures [BMW03]. We note that we can recover static group
signatures [BMW03] from our group signatures. We fix the group manager as the
designated opener and include tsk in the group master secret key. In the setup,
group members generate their key pairs and interact with the group manager
to join the group. Their Open algorithm does not output proofs, as their model
does not use a Judge algorithm, so we define a variant of our non-frameability
game from Fig. 2 where we replace the last 4 lines in the game in Fig. 2 by the
ones in Fig. 3.

−
(
m, Σ, infoτ

)
← ACrptU,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk

)
.

− If Verify(gpk, infoτ , m, Σ) = 0 Then Return 0.
− (uid, πTrace) ← Trace(gpk, tsk, infoτ , reg,m, σ)
− If uid /∈ HUL \ BUL or (uid, m, Σ, τ) ∈ SL Then Return 0 Else Return 1.

Fig. 3. Modified non-frameability game.

This gives a sensible and compatible definition which allows us to recover the
model from the fully dynamic scheme.

Static group signatures are just fully dynamic group signatures with no join-
ing, issuing, or group updates. Correctness follows trivially from the correctness of
the fully dynamic group signature scheme. [BMW03]-full-anonymity follows from
(full) anonymity of the fully dynamic group signature scheme, while [BMW03]-
full-traceability follows from our traceability and non-frameability requirements.

Partially Dynamic Group Signatures [BSZ05]. Fully dynamic group sig-
natures also imply the partially dynamic group signatures of [BSZ05] in the

130 J. Bootle et al.

case where nobody is removed from the group. Anonymity, non-frameability
and traceability all follow from our corresponding definitions. Correctness fol-
lows trivially from the correctness of the fully dynamic group signature scheme.

Partially Dynamic Group Signatures [KY06]. Finally, we consider the
partially-dynamic model of [KY06]. We fix the group manager as the designated
opener and set (msk, tsk) to be the group master secret key. Our group info and
registration table generalize their public state string. Their Join algorithm runs
our user key-generation and Join/Issue algorithms. The membership certificate
is then the user’s public key along with the group information, and the mem-
bership secret is the user’s private key. Again, their Open algorithm does not
output proofs, and the model does not have a judge algorithm. Therefore, as in
the case of [BMW03] we modify our non-frameability game from Fig. 2 where
we replace the last 4 lines in the game in Fig. 2 with those in Fig. 3.

Correctness follows trivially from the correctness of the fully dynamic group
signature scheme. Security against misidentification-attacks follows from trace-
ability, security against framing-attacks follows from non-frameability, and
anonymity follows from the (full) anonymity of the fully dynamic group sig-
nature.

3 On the Security of Some Existing Schemes

Here we take a closer look at some of the existing fully dynamic schemes and
investigate whether or not they are secure using our proposed model.

We show that the state-of-the-art certificate-based schemes in [LPY12b,
LPY12a,NFHF09] are all susceptible to an attack against traceability which
allows any user to sign w.r.t. an epoch predating her joining. In our model this
directly breaks traceability, as the signature is w.r.t. an epoch in which the signer
was not active. We note that our attack does not contradict the original security
proofs of the schemes, but instead highlights that our definition is stronger. We
also show that it is easy to repair the schemes at a reasonable cost.

At first glance, our attack is the dual of a well known issue with many revoca-
tion systems. If a user is revoked and anonymity is maintained, the revoked user
is able to produce back-dated signatures that still verify. The difference here is
that while the revoked user was authorized to be part of the group for the epoch
in question, in our attack the signing user was in fact not authorized to sign for
the group. If the adversary is able to block the opening of this signature (e.g. via
legal action), its existence would implicitly frame the group’s past membership.

3.1 Libert et al. Schemes [LPY12b,LPY12a]

In [LPY12a], users are assigned leaves of a complete binary tree and given a
membership certificate containing a unique tag identifying the user, and a com-
mitment to the path from the root to the user’s leaf in the tree. Note that the
certificate is not bound to the epoch at which the user joined the group. In fact,
users joining does not change infoτ or the epoch τ itself.

Foundations of Fully Dynamic Group Signatures 131

Revocation is based on the subset difference method [NNL01], using disjoint
sets Ski,ui

for i = 1, . . . , m which cover non-revoked users. Sets are represented
by two nodes, a node ki and one of its descendants node ui, and cover all leaves
of the sub-tree rooted at node ki which are not leaves of the sub-tree rooted at
ui. Revocations trigger epoch changes with infoτ updated with a new cover.

To sign, the group member anonymously proves that she holds a membership
certificate, and that the node indicated by the certificate belongs to one of those
sets. More precisely, the user proves that her leaf is a descendant of node ki but
not a descendant of node ui for some i ∈ [m].

Since user certificates are not bound to epochs and leaves are covered until
their corresponding users are revoked, it is simple to break traceability: a user
can join and then produce a signature for an epoch that predates her joining. A
similar argument also applies to the variant of the scheme given in [LPY12b].

Theorem 1. The fully dynamic scheme of Libert et al. [LPY12a] does not satisfy
our traceability definition even w.r.t. honestly generated tracing manager’s keys.

Proof. Consider the following strategy in the traceability experiment: the adver-
sary asks to join as a user uid1 at epoch τ1. User uid1 gets assigned the leaf
l1. Then at a later epoch, τ2, the adversary asks to join as a second user uid2.
Finally, the adversary signs using the credentials of uid2 but for epoch τ1.

We can check by inspection that all subproofs in the back-dated signature go
through. The crucial observation is that at epoch τ1, the leaf l2 is not revoked and
thus must be covered by one of the Ski,ui

sets. As the proof verifies and uid2 used
a legitimate certificate, opening the signature will be successful and indicate uid2
as the signer. The adversary wins, as uid2 was not active at epoch τ1. �

A possible countermeasure against the above attack is to regard unassigned
leaves as revoked until they are assigned. This is simple to do as the scheme does
not bound the number of revoked users. We do however need to re-examine the
number of subsets required to express this, as the 2|R|−1 bound for |R| revoked
users may now seem impractical. If we assume leaves are allocated sequentially to
users, we can bound the number of subsets by 2|R1|+ log(|N \R2|) where R2 is
the set of leaves pending allocation and R1 is the set of leaves allocated to users
who were later revoked. Thus, our fix is only marginally more expensive than
the base system and much more efficient than a naive analysis would indicate.

If proving set membership/intervals can be done efficiently (and depending
on how the epoch counter is implemented), another possible fix is to bind mem-
bership certificates to the join epoch and then get the signer to prove that their
join epoch is not later than the signing epoch.

3.2 Nakanishi et al. Scheme [NFHF09]

The scheme of Nakanishi et al. [NFHF09] is another certificate-based scheme in
the random oracle model. It achieves constant time for both signing and signature
verification, relative to the size of the group and the number of revoked users.

132 J. Bootle et al.

A user’s group membership certificate consists of a signature on (x, ID) pro-
duced by the group manager, where x is a secret owned by the user and ID is
a unique integer the manager assigned to her. The group manager can revoke
users by issuing revocation lists infoτ . Each list consists of a sequence of open
integer intervals (Ri, Ri+1) signed by the manager, whose endpoints are all the
revoked ID’s. At each epoch τ , a signer fetches the current infoτ and proves, as
part of the signature, that her ID is contained in one interval of the revocation
list. If the ID lies between two revoked users’ identities, it means it is not an
endpoint and so she has not been revoked.

As in other certificate-based constructions, verifiers only know of revoked
members, not active ones and, similarly to [LPY12a], the time of joining is not
taken into account. This allows users to sign with respect to any epoch prior to
joining the group, which represents an attack against our traceability definition.

Theorem 2. The Nakanishi et al. [NFHF09] fully dynamic group signature
scheme does not satisfy our traceability definition.

Proof. Let A be an adversary against the traceability game. The adversary adds
user uid to the group at epoch τ . Since the user is not revoked, her ID is not an
endpoint in any interval of the revocation list infoτ , as for all previous epochs.
Therefore, A could easily produce valid signatures for uid to any epoch τ̄ < τ .
Since these signatures trace back to a user which was inactive at the interval
with which the signature is associated, A succeeds in the traceability game. �

The scheme could be easily immunized against the above attack. A first
solution, as for [LPY12a], is to initialize the revocation list with all ID’s of users
that have not joined the group yet. When the manager assigns an ID to a new
user, he updates reg and the revocation list infoτ . This way, the signature size
is not affected. On the other hand, revocation lists are now proportional to the
size of the maximum number of users, instead of the number of revoked users.

An alternative countermeasure requires the group manager to include the
joining epochs in the certificates by signing (x, ID, τjoin), where x is a secret
owned by user ID and τjoin is the joining epoch. A signer then needs to include
in the signature a proof that τjoin is not greater than the signing epoch. To realize
the latter, one can use membership proof techniques from [TS06,CCS08] which
are already used in the original scheme. This would increase the cost of signing
and verifying by only a constant factor. The new membership proof would require
the group manager to provide signatures for every elapsed epoch, which could be
appended, for instance, to the revocation list. This makes revocation lists grow
linearly with the number of revoked users as well as the number of epochs.

3.3 Bootle et al. Scheme [BCC+15]

Recently, Bootle et al. [BCC+15] gave a generic construction of accountable ring
signatures, where every signature can be traced back to a user in the ring. They
also showed how one can obtain fully dynamic group signatures from accountable

Foundations of Fully Dynamic Group Signatures 133

ring signatures. In addition, they gave an efficient instantiation in the random
oracle model that is based on the DDH assumption. Their instantiation yields
signatures of logarithmic size (w.r.t. the size of the ring), while signing is quasi-
linear, and signature verification requires a linear number of operations. Bootle
et al. claimed that their instantiation is more efficient than existing group sig-
nature schemes based on standard assumptions.

Each user has a secret key and an associated verification key. To sign, users
first encrypt their verification key. Then, via a membership proof, they provide
a signature of knowledge showing that the verification key belongs to the ring,
and that they know the corresponding secret key. In the full version [BCC+16],
we prove their construction is secure w.r.t. the stronger variant of our model.

References

[ACHdM05] Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practi-
cal group signatures without random oracles, IACR Cryptology ePrint
Archive (2005)

[ACJT00] Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg
(2000)

[AHO10] Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear
groups for modular protocol design. IACR Cryptology ePrint Archive
(2010)

[AST01] Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group
signatures. IACR Cryptology ePrint Archive 2001:101 (2001)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCC04] Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
Conference on Computer and Communications Security, CCS (2004)

[BCC+15] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short
accountable ring signatures based on DDH. In: Pernul, G., Y A Ryan, P.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24174-6 13

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of
fully dynamic group signatures. IACR Cryptology ePrint Archive (2016)

[BCN+10] Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get
shorty via group signatures without encryption. In: Garay, J.A., De
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer,
Heidelberg (2010)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group sig-
natures: formal definitions, simplified requirements, and a construction
based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656. Springer, Heidelberg (2003)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Conference on Computer and Communi-
cations Security - CCS (1993)

http://dx.doi.org/10.1007/978-3-319-24174-6_13

134 J. Bootle et al.

[Bri04] Brickell, E.: An efficient protocol for anonymously providing assurance
of the container of a private key. Submitted to the Trusted Computing
Group (2004)

[BS01] Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg
(2001)

[BS04] Boneh, D., Shacham, H.: Group signatures with verifier-local revocation.
In: Conference on Computer and Communications Security, CCS (2004)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CCS08] Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set
membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008.
LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)

[CG04] Camenisch, J.L., Groth, J.: Group signatures: better efficiency and new
theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

[CL02] Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[CL04] Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

[CM98] Camenisch, J.L., Michels, M.: A group signature scheme with improved
efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol.
1514, pp. 160–174. Springer, Heidelberg (1998)

[CS97] Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large
groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[DKNS04] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification
in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

[DP06] Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group
signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341,
pp. 193–210. Springer, Heidelberg (2006)

[FI05] Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear
maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol.
3574, pp. 455–467. Springer, Heidelberg (2005)

[FY04] Furukawa, J., Yonezawa, S.: Group signatures with separate and distrib-
uted authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 77–90. Springer, Heidelberg (2005)

Foundations of Fully Dynamic Group Signatures 135

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[KTY04] Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–
589. Springer, Heidelberg (2004)

[KY05] Kiayias, A., Yung, M.: Group signatures with efficient concurrent join.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214.
Springer, Heidelberg (2005)

[KY06] Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins
and separable authorities. IJSN 1(1/2), 24 (2006)

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signa-
ture scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

[LPY12a] Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free
revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 571–589. Springer, Heidelberg (2012)

[LPY12b] Libert, B., Peters, T., Yung, M.: Scalable group signatures with revoca-
tion. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 609–627. Springer, Heidelberg (2012)

[LV09] Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation
and backward unlinkability in the standard model. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer,
Heidelberg (2009)

[NF05] Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature
schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg
(2005)

[NFHF09] Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: A revocable group
signature scheme from identity-based revocation techniques: achieving
constant-size revocation list. In: Boureanu, I., Owesarski, P., Vaudenay,
S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 419–437. Springer, Heidelberg
(2014)

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005)

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001)

[NS04] Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-
free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg
(2004)

[Son01] Song, D.X.: Practical forward secure group signature schemes. In: Con-
ference on Computer and Communications Security, CCS (2001)

136 J. Bootle et al.

[SSE+12] Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the
security of dynamic group signatures: preventing signature hijacking. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 715–732. Springer, Heidelberg (2012)

[TS06] Teranishi, I., Sako, K.: k -times anonymous authentication with a constant
proving cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006)

[TX03] Tsudik, G., Xu, S.: Accumulating composites and improved group signing.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286.
Springer, Heidelberg (2003)

	Foundations of Fully Dynamic Group Signatures
	1 Introduction
	2 Syntax and Security of Fully Dynamic Group Signatures
	2.1 Security of Fully Dynamic Group Signatures
	2.2 Comparison with Existing Models
	2.3 Recovering Other Models

	3 On the Security of Some Existing Schemes
	3.1 Libert et al. Schemes
	3.2 Nakanishi et al. Scheme
	3.3 Bootle et al. Scheme

	References

