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Abstract. Secure communications between mobile subscribers and
their associated operator networks require mutual authentication and
key deri-vation protocols. The 3GPP standard provides the AKA protocol
for just this purpose. Its structure is generic, to be instantiated with a set
of seven cryptographic algorithms. The currently-used proposal instanti-
ates these by means of a set of AES-based algorithms called MILENAGE;
as an alternative, the ETSI SAGE committee submitted the TUAK algo-
rithms, which rely on a truncation of the internal permutation of Keccak.

In this paper, we provide a formal security analysis of the AKA pro-
tocol in its complete three-party setting. We formulate requirements
with respect to both Man-in-the-Middle (MiM) adversaries, i.e. key-
indistinguishability and impersonation security, and to local untrusted
serving networks, denoted “servers”, namely state-confidentiality and
soundness. We prove that the unmodified AKA protocol attains these
properties as long as servers cannot be corrupted. Furthermore, adding
a unique server identifier suffices to guarantee all the security statements
even in in the presence of corrupted servers. We use a modular proof app-
roach: the first step is to prove the security of (modified and unmodified)
AKA with generic cryptographic algorithms that can be represented as
a unitary pseudorandom function —-PRF— keyed either with the client’s
secret key or with the operator key. A second step proceeds to show that
TUAK and MILENAGE guarantee this type of pseudorandomness, though
the guarantee for MILENAGE requires a stronger assumption. Our paper
provides (to our knowledge) the first complete, rigorous analysis of the
original AKA protocol and these two instantiations. We stress that such
an analysis is important for any protocol deployed in real-life scenarios.

Keywords: Security proof - AKA protocol + TUAK - MILENAGE

1 Introduction

Transmitting confidential and authenticated data between two parties across
an insecure channel is a fundamental goal in cryptography. Secure channels are
usually obtained by means of an authenticated key-exchange (AKE) protocol.
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AKE protocols generally consist of two phases. During the first phase, the
parties authenticate each other and exchange data that enables them to compute
a master key. The latter is then used to derive one or several secret keys, as well as
other useful values. In a second phase, the derived keys are used to construct the
secure channel between the parties, guaranteeing the confidentiality, integrity,
and authentication of the data they exchange.

In this paper, we focus on the Authentication and Key Agreement proto-
col (AKA) used in 3G and 4G networks, more specifically the 3G UMTS AKA
(Universal Mobile Telecommunications System) and 4G EPS AKA (Evolved
Packet System) protocol'. The AKA protocol is used in a greater context in
the 34 Generation Partnership Project (3GPP), which aims to develop the spec-
ifications for the next generation mobile systems. The security of the system is
covered by Technical Specifications 33 (TS 33) and 35 (TS 35)%, from both an
architectural and a security-algorithm standpoint.

The AKA Protocol. Initially developed in the 1990s, AKA uses symmetric keys
exclusively, in a mobile-network context which imposes a peculiar architecture.
In this setup, mobile clients subscribe to a single operator, which provides them
with mobile services (messaging, calls, Internet use, etc.). Services are provided
across a secure channel, not by the operator, but by an intermediate local network
operator (which we call server to avoid confusion). The server and operator are
affiliated together for domestic use. However, if the client is abroad, service is
provided by a server affiliated with a different operator. Thus, servers are only
trusted to provide services, but they must not learn the client’s long-term secrets
(known only to the client and the operator); by contrast, servers do learn short-
term secret values, such as session keys, which are necessary for the transmission
of the required service. Consequently, unlike the classical two-party AKE setting,
the AKA protocol requires three participants.

One specificity of the subscriber-operator architecture is that clients are asso-
ciated both with a unique client-key and with their operator’s key, which is
shared with all the other clients (a potentially very large number) of that oper-
ator. Clients minimize the risk of compromising the shared key by only storing
a (one-way) function of that, and the client key, never the operator key in clear.

The design of the AKA protocol is influenced by three important constraints.
One is that (current and older) SIM cards, cannot generate (pseudo)random
numbers. Thus, freshness has to be guaranteed without client randomness.
The second constraint is that the (necessary) communication® between servers
and operators in the roaming scenario is usually expensive. In the AKA pro-
tocol, operators generate batches of authentication vectors for the server, thus

! We stress that while AKA is an instance of authenticated key-exchange, AKE denotes
a larger class of protocols, including e.g. TLS/SSL, PACE/EAC, etc.

2 See http://www.3gpp.org/DynaReport/33-series.htm and http://www.3gpp.org/
DynaReport/35-series.htm.

3 Notably, since the server is not trusted, it needs information from the client’s oper-
ator to provide service to the client.
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minimizing costs. Finally, mobile channels are notoriously noisy, requiring the
protocol to be robust with respect to noise. As a result of these constraints, the
AKA protocol is stateful, with the authentication depending on an updatable
sequence number, which is accepted within a tolerance interval.

TUAK and MILENAGE. In this paper we focus on the provable security of
AKA. The latter is constructed using symmetric-key primitives, namely a set
of seven cryptographic functions, denoted Fi, ..., Fs, F{, F5. We closely follow
the design of these algorithms, as well as that of the protocol, in our analysis.
Originally, 3GPP put forward a proposal for an AES-encryption-based algo-
rithm set, called MILENAGE [1]. As an alternative to MILENAGE, the ETSI SAGE
committee proposed another set of algorithms called TUAK [2], which relies on
a truncation of Keccak’s internal permutation. The winner of the SHA-3 hash
function competition, Keccak offers both higher performance, in hardware and
software, than AES, and resistance to many generic attacks. While the TUAK
algorithms inherit Keccak’s superior performance, they do not use the Keccak
permutation in a usual, black-box way, but rather rely on something akin to a
Merkle-Damgard construction. Instead, the internal permutation is truncated,
then used in a cascade, which makes previous results harder to use. We cannot
simply use the same assumptions for the truncated version as we would for the
original permutation, either. Our analysis of the key indistinguishability, as well
as client- and respectively server-impersonation resistance of the protocol con-
cerns both the classical MILENAGE-based version, and the one using TUAK.

Related Work. At its core, the AKA protocol provides authenticated key
exchange (AKE), a primitive first modelled by Bellare and Rogaway [8]. We
use the Bellare-Pointcheval-Rogaway (BPR) extension of this model [7]; how-
ever, the three-party setting and lack of randomness on the prover side do not
allow us to simply “import” their model, as we explain in more detail below.

Few papers give a security proof for AKA, especially when instantiated with
MILENAGE. Gilbert provides an out-of-context proof for MILENAGE [11], show-
ing it operates as a kind of counter mode for key derivation. It is unclear whether
this suffices to guarantee security for AKA at large; indeed, we show in this paper
that MILENAGE is not quite as versatile as TUAK. The closest results to a secu-
rity proof of AKA (see below) use automated (formal) verification.

In 2003, Zhang [15] described an important server-corruption attack against
AKA and advised against the use of sequence numbers as state. He also presented
a stateless modification of the protocol called AP-AKA and proved its security
in Shoup’s model. In the full version of this paper, we show that AP-AKA is
still vulnerable to a particular type of replay attack. Server corruptions are a
highly relevant threat in a post-Snowden cryptographic era, in which intelligence
agencies have been known to substitute and backdoor algorithms, and store
massive amounts of data. We take such attacks into account into our definitions.
We also extend a countermeasure from Zhang [15], which features the addition,
in the authentication string, of a unique server-specific identifier, and we show
how to incorporate it within the existent MILENAGE and TUAK specifications.
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The security proof of Lee et al. [13] is complementary to ours as they focus
on the LTE (Long-term Evolution) protocol in 4G networks (similar to AKA,
but using different identifiers and key-management), rather than the handshake
itself. Lee et al. analyse the privacy of LTE, rather than the security of AKA
(as we do). Their main result is that in the absence of server corruptions, LTE
attains a weak untraceability against an active MiM adversary. We discuss their
work in more detail in the full version. Though this is not made explicit, Lee
et al.’s result implies the impersonation resistance of LTE and some security of
the derived session keys; however, their proofs hold for an important modification
of AKA, as we discuss in more detail in the full version. A surprising problem
is that [13] cannot capture IMSI-catcher attacks (which directly impact privacy
without server corruptions); this is because, contrary to real-world scenarios,
they assume that once a TMSI is allocated, the IMSI will never again appear in
clear. Finally, their proofs reduce the privacy of AKA to some assumptions on the
functions which are akin to the unitary function G that we use; however, they
do not analyse TUAK and MILENAGE to verify whether these suites actually
guarantee those required properties.

Arapinis et al. [5] focus on the client privacy of the AKA protocol by auto-
mated verification in ProVerif [10]; however, they only assess a modified version,
which randomizes the sequence number. This fundamental modification makes
their results inapplicable to the original protocol. Our attempts to extend this
analysis to that of the true protocol by using a state-permissive tool called
StatVerif [6] were not fruitful, as discussed in the full paper.

Our Contributions. We present four main contributions: (a) fully-formalized
definitions for the security of AKA in the three party setting; (b) security proofs
indicating that the current AKA protocol does not attain full security in the
presence of server corruptions (due to the attack of Zhang [15]); (c¢) we show
how to attain full security by simply adding a unique server identifier in the
authentication; (d) we prove that our security statements hold for both protocol
instantiations (TUAK and MILENAGE). In particular, we analyse two somewhat-
similar versions of the protocol: the original AKA scheme and a slight variation
of it of our own design, which we also analyse. We detail our contributions below.

Security Model. We first define a threat model and five game-based security
notions for the 3-party AKA protocol, three with respect to a Man-in-the-Middle
~MiM- adversary (akin to BPR security, but with three parties, allowing server
corruptions for the strong, as opposed to the weak property), and two with
respect to malicious servers. These properties are:

1. Key-indistinguishability: the derived session keys are indistinguishable
from random by a MiM attacker placed between the client and a server with
black-box access to all operators.

2. Client- and server-impersonation: a MiM attacker cannot impersonate
honest servers (to the client), or clients (to an honest server). Due to the iden-
tification phase, AKA resists client impersonations better than server imper-
sonations.
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3. State-confidentiality: (malicious) servers cannot learn: the client’s secret
key, the operator’s secret key, nor their state. The malicious server may inter-
act with both operators and clients, but we only address the AKA handshake
(not the secure-channel primitives).

4. Soundness: (malicious) servers cannot authenticate to the client unless they
are explicitly given authenticating information by a legitimate operator.

Security Proofs. We analyse the security of two versions of AKA: the cur-
rent one, and our modification of it. In the full version, we also show that the
AP-AKA version of the protocol, due to Zhang, is vulnerable to a replay attack. We
prove that, under the assumption that the seven cryptographic functions behave
as a unitary function G that is pseudorandom when keyed with the client key,
the current AKA version guarantees: weak key-indistinguishability; weak server-
impersonation resistance; strong client-impersonation resistance; and soundness.
If furthermore the algorithms behave as a PRF called G*, when keyed with the oper-
ator key, AKA also guarantees state confidentiality. For our modification of the AKA
protocol, we prove, under the same assumptions: state-indistinguishabi-lity, sound-
ness, as well as strong key-indistinguishability, server- and client-impersonation
security. This first proof step, reducing protocol security to that of a unitary func-
tion, allows us to define a sufficient security requirement for the underlying sub-
algorithms.

TUAK and MILENAGE. The second step of the proof is to show that both
TUAK and MILENAGE behave as the required functions G' and G*. This can
be proved for TUAK under the standard assumption that the (un-)truncated
Keccak permutation is a good PRF [9,12]. By contrast, proving that MILENAGE
can be modelled as a unitary PRF when keyed with the operator key requires the
pseudorandomness of a keyed AES-version of a classic Davies-Meyer construc-
tion for MILENAGE, which seems a stronger assumption than just assuming the
pseudorandomness of the underlying AES permutation.

AKA Privacy. Several papers indicate privacy problems for AKA, e.g. [3-5,14].
The last of these is a recent result, indicating that privacy can be attacked at a
lower level than the protocol layer (by leakage at a physical layer). Since AKA
is known not to provide strong privacy, and it is moreover unclear whether it
can even hope to provide it considering such leaks at lower layers, we choose to
restrict ourselves to the subject of AKA security, rather than its privacy.

2 The AKA Protocol

Mobile 3G networks use the variant of AKA fully depicted in Fig.1, allowing
the client and the server to output session keys (CK, IK), which are then used
to secure future message-exchanges. The same protocol is the backbone of the
4G LTE protocol; however, for LTE the client is associated with an identifier
called GUTT (see 3GPP TS 23.003, release 13), as opposed to the tuple of per-
manent and temporary identifiers we describe below. The use of GUTIs make
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no difference for our analysis. More significantly, the session keys CK, IK from
the 3G protocol are only used as key material for a key derivation function KDF,
which outputs the true session key.* Our proofs work similarly for this new key
derivation, but we would need an additional reduction to KDF security.

This protocol features two main active actors: the client (in 3GPP terminol-
ogy ME/USIM) and the server (denoted VLR). The third, only selectively-active
party is the operator (denoted HLR). The tripartite setup of AKA was meant
for roaming, for which the server providing mobile coverage is not the client’s
operator, and may be subject to different legislation and vulnerabilities than the
latter. Thus, although the server is trusted to provide services across a secure
channel, it must not learn long-term sensitive information about either clients
or their home operators. Using the server as a mere proxy would ideal; however,
the server/operator communication is (financially) expensive.

Section 3 describes in detail the setup of the three parties. Clients C and
operators Op use both the client’s secret key sk¢ and the operator’s secret
key skop5. The client and operator also keep track of sequence numbers Sqnc
(resp. Sqnop,c), updated after each successful authentication (by a simple, pre-
dictable procedure, e.g. incrementing them by a fixed value). If the states are
too far apart, the client prompts a re-synchronization. The three parties: clients,
servers, and operators, also know the client’s permanent identifier IMSI. Clients
and servers must keep track of tuples (IMSI; TMSI, LAI), the last two values
forming a unique temporary identifier, which is updated at every session.

The AKA protocol, depicted in Fig. 1, proceeds in several subparts. The first
two protocol exchanges are between the client C and the server S over an inse-
cure channel and they make up the user identification step. At the end of this
phase, the server will associate C with an identifier, either the permanent Inter-
national Mobile Subscriber Identity IMSI or the tuple of a Temporary Mobile
Subscriber Identity TMSI and the Local Area Identifier LAl of the server issu-
ing the latest TMSI. The identification procedure is vital to the client’s privacy;
however, as we focus here only on the security of AKA, we just associate each
client with a unique user ID UID (as we explain at the end of this section). Once
the server associates the client with an identifier UID, it proceeds either to the
authentication vector generation step (detailed in the set (D of instructions in
Fig. 1), or to the authenticated key-exchange part (detailed in instruction sets
@2-®). The former of these is run by the server and the operator of the client
C over a secure channel, and it provides the server S with authentication and
key-exchange material for a batch of AKA sessions with C; whenever S runs out
of AKE material, it re-runs the vector generation step. For each session, Op
prepares an authentication vector AV consisting of: a fresh random value R; a
server-authentication string Macs (authenticating R and the value Sqnop c); a
client-authentication string Macc (authenticating R only); the session keys CK

* This key, denoted Kasme, is computed as: Kasme = KDF(CK||IK, IDsn, Sqn @ AK, const),
with IDsy the serving operator network identity.

5 Technically speaking, the client never stores this value in clear; instead it uses a
pseudorandom value Top, computed from the client and operator keys.
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Client Server
(ske, skop. Sanc)

Operator
(ske, skop, SAnop.c)

User identity request

@: Compute AK using R{/}.
Recover Sqn{® (from AK).
Check Macs value.
1f Sqn{} € (Sqnc, Sanc + A):

Compute:

CK — Fs(ske, skop, RU),

IK — Fi(skc, skop, R1}),

Set Res := Fa(skc, skop, R1"}).

Choose AV} one by one in
order.

Then it sends the related
challenge.

@: Res z Macc.

- @
User identity answer
-
Auth. vectors request
PR
Auth. vectors
{aviiyn
Auth challenge
RE} | Autn{?
-
Auth response
Res
@
Instructions:
Client Server Operator
77777 @: For each i = 1,...,n, compute:

Generate RU?. Compute: Sqnt} « inc(Sqnop,c)
Macl™ — Fi(ske, skop, RUF, Sqn 1}, AMF),
Macl™ — Fa(ske, skop, RT),

kY Fa(ske, skop, RU1),

KU — Fiy(ske, skop, R1),

AKLT 75 (ske, skop, R,

Autn{} — (Sqn{ @ AK), AMF, Mac{™.

Update Sqnc := Sqnti AV = R kU IKE Autn{? ) Macél}‘ with
E = . - o
Else re-synchronization Sqnop,c = Sqn**'.

End For.

Fig. 1. The AKA procedure.

and IK; and a one-time-pad encryption of Sqngp,c with a pseudorandom string
AK. The values Macs, Macc, CK, IK, AK are output by cryptographic algorithms
denoted Fi,...,Fs respectively. The AKA protocol also features the algorithms
Fi, Fg for re-synchronization. All algorithms take as input the client key skc, the
operator key skop, and the random value R; in addition, F; and F} also use the
operator’s and resp. the client’s sequence number. The server is given a batch of
vectors of the form: AV = (R, CK, IK, Macs, Macc, AMF, AK & Sqnop ¢ ), in which
AMF is a public authentication management field managed by the operator.
The authenticated-key-exchange step allows clients and servers to mutually
authenticate and compute session keys over an insecure channel. The server
chooses the next AV from the latest batch, using the random R and the string
Autn = (Sqnop ¢ ® AK)||AMF||Macs as a challenge. The client uses R to compute
AK and recover Sqnop,c. If the received Macs verifies and Sqnopp ¢ is within a
predefined distance A of Sqnc, then C computes (CK, IK) and the value Macc,
sending this last value to S. If the two sequence numbers are too far apart, then
C forces a re-synchronization, described below. Else, the client updates Sqnc to
Sqnop,c, and S verifies the received authentication value with respect to the Macc
sent by Op. If Macc verifies, then S sends an acknowledgement to Op and runs a
TMSI re-allocation. During the optional re-synchronization, the client uses Sqnc
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to compute values Macg and AK* @ Sqnc as Op did, using the session R, but
algorithms Fy and F7 (not F; and F5). If Macg verifies, Op resets Sqnop,c to
Sqgnc and sends to S another batch of AV as before. The protocol restarts.

Following successful key exchange, the client and server run the TMSI re-
allocation. The server sends an (unauthenticated) encryption of a new, randomly
chosen TMSI (which is unique per server) to the client C, using the agreed-upon
key CK. Encryption is done by means of the A5/3 algorithm (see 3GPP TS
43.020, release 12), run in cipher mode. The new TMSI value, called TMSl, ey, is
only permanently saved by S if acknowledged by the client; else, both TMSI e\
and TMSlI,q are retained and can be used in the next protocol run.

Identities and Reallocation. Though in this paper we stick close to the AKA
protocol, one simplification we make throughout is associating each client with a
single, unique UID, which we consider public. In practice, UID is the user’s IMSI,
which is used in case a TMSI value is not traceable to an IMSI. From the point of
view of security, any attack initiated by mismatching TMSI values (i.e. replacing
one value by another) is equivalent to doing the same with IMSI values.

Another important feature of AKA that we abstract in this analysis is the
TMSI reallocation. If the TMSI system were flawless (a newly-allocated TMSI is
reliable and non-modifiable by an active MiM), then we could prove a stronger
degree of server impersonation than we currently do. As discussed in Sect. 3, an
active MiM can inject false TMSI values, which make servers request an IMSI
value; if the MiM reuses this value, it can impersonate servers by offline relays.
The use of the TMSI in AKA is undone by using IMSIs as a backup for TMSIs;
also, insecurities in using TMSIs translate to the identification by IMSI.

3 Security Model

In this section, we propose a security model with respect to two types of adver-
saries: an active MiM with access to the insecure channel between the client and
the server; and a malicious server, which also has access to operators. Our secu-
rity notions are: key-indistinguishability for the session keys CK,IK, and client-
and server-impersonation resistance. With respect to servers, we also require
the key-confidentiality of the client’s long term data skc, skop, Sqnc, and sound-
ness. We use similar oracles for all the definitions. While we cannot use a basic
BPR syntax [7] in this three-party setting, we guarantee a same kind of secu-
rity with respect to MiM attackers. While our server-impersonation model is
slightly weaker than that for client-impersonation, this has no impact on the key-
indistinguishability for the session keys. For clarity, we include here only intuitive
description of the oracles, and leave the formalization for the full version.

Set Up and Participants. We consider a set P of participants, which are either
a server S; or a mobile client C;. Operators Op are not modelled as active parties;
in all security games with respect to MiM adversaries, operators are black-box
algorithms within each server S;. For security with respect servers, the operators
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are oracles which malicious servers may query. We assume there are nc¢ clients,
ns servers, and nop operators. For MiM models, servers contain “copies” of all
operators; the copies are assumed to be synchronized with respect to client state,
though their output might depend on which server queries them. We associate
each client with: a unique identifier UID, long-term static keys (skyip, skop), and
an ephemeral state sty)p which is a sequence number Sqnyp. Each of the ng servers
has black-box access to operator algorithms (or oracles for state-confidentiality
and soundness) Opy, ..., OpnOP7 initialised with long-term keys (skop,) and tuples
(UID, skc, Sanop,c), the last value dynamically updated. For simplicity, we assume
that the key space of all operators is identical.

Security Against MiM Adversaries. In our model, the clients and servers
may run concurrent executions of the protocol 1. We denote the j-th execution
of the protocol by party P as P;, associated with a session ID sid, a partner ID
pid (consisting either of one or of multiple elements), and an accept/reject bit
accept (explained in detail in Sect. 4). In this case P; is a handle, used by a MiM
adversary A to access the oracles below so as to schedule message deliveries,
send tampered messages, or interact arbitrarily with any party. We also use a
function GG, which we model as a PRF. For a more detailed description, see our
full version.

— CreateCl(Op): creates a new user C associated with a unique identifier UID, a
key skyp drawn independently and uniformly at random from a key space
S, the key skop, of operator Op, and a sequence number Sqn stored in
stuip- The adversary is given UID and Sqnypp. The operator Op is given
(UID, skyip, Op, Sanuip), and initializes stop uip := Sqnuip, saving the entry
(UID, skyip, skop; Stop,uin) in its database.

— Newlnstance(P): instantiates a new instance of [1 for party P, thus creating
the handle P;, which is made available to the adversary.

— Execute(P, 4, P’, j): simulates an execution of 1 between the initiating instance
P; and the instance P; outputting the transcript 7.

— Send(P,i,m): sends message m to instance P;, which outputs a response m’.

— Reveal(P,7): outputs the session key(s) K of instance P;.

— Corrupt(P): If P is a client, return the key skc, but not sko,®. If P is a server,
return skop, giving the adversary access to oracle OpAccess. Corrupted parties
become adversarially controlled.

— OpAccess(S, C): gives the adversary access to the local copy of all the operators
stored “inside” a corrupted server S; the adversary receives as output the
message Op returns if S queries Op concerning a client C.

In this we keep faithful to the implementation of AKA, which protects skop from
the user by storing a 1-way function of skop and skc in the SIM card. Another
approach would be to reveal an intermediate, AKA-specific value denoted Top upon
corruption. In the interest of generality, we keep the model at a higher level of
abstraction than the peculiarities of AKA. We also note that in our proofs, a common
first step is to give the adversary access to a broader corruption oracle, which also
reveals skop, with no security loss.
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— StReveal(C, 7, bits): returns the state of a client C; if bits = 0 or the state of
an operator with respect to a client if bitg = 1.

We consider two classes of adversaries A, weak and strong, depending on
whether A may corrupt servers or not. We model three requirements with respect
to MiM adversaries.

The notion of key indistinguishability demands that the session keys for each
execution be indistinguishable from random bitstrings of equal length. The cor-
responding game is played as follows. The challenger generates the keys of all
the nop operators and the nc clients; then it gives the ng servers S; black-box
access to the operators. The adversary may query any of the oracles above, and
finally issue a single Test query on a fresh instance P;, which returns either the
real keys this instance computed, or random ones of the same length. Strong
adversaries can gain oracle access to the copies of the operators in that server.
We say that an instance is fresh if, and only if: neither the party, nor the partner
is corrupted, and no key-reveal was done either on this party, nor on the part-
ner. We define partner instances as having the same session ID sid, which will
consist of a random number R, the client key skc, the operator key skop, and
the sequence number used in the successful server authentication Sqnop,c”.

Finally, A determines whether the returned keys were real or random, and wins
if, and only if its response is correct. The adversary’s advantage is defined as:

Advi'™(A) := | Pr[A wins| — 1/2|.

Definition 1 [Weak/Strong Key-Indistinguishability]. A key-agreement
protocol Tl is (t, Gexec, Gres, 4G, €)-weakly key-indistinguishable (resp. (L, exec, Gress
ds; 4Op, 4G ; €) -strongly-key-indistinguishable) if no adversary running in time t,
creating at most Qexec party instances with at most qres resynchronizations per
instance, (corrupting at most gs servers and making at most go, OpAccess queries
per operator per corrupted server for strong security), and making at most qg
queries to function G, has an advantage Advi™(A) > e.

We also consider impersonation attacks, in which A aims to impersonate a
partner of a fresh instance. Again, the game begins by generating keys; then
A gains access to all the oracles (except server corruption/operator access for
weak adversaries). When A stops, she wins if, and only if, there exists an
instance (server-instance S; for client-impersonation, client-instance C; for the
server-impersonation) that ends in an accepting state and is fresh, subject to an
offline/online relay attack described below. The adversary’s advantage is:

Adv5'™(A) := Pr[A wins], and respectively Adv>™ (A) := Pr[A wins).

Definition 2 [Weak/Strong Impersonation security]. A key-agreement
protocol T is (¢, Gexec, Gres, 4G, €) -weak-impersonation-secure (resp. (t, Gexec, Gres, Gss

" This choice of pid and sid makes our security guarantee non-composable; however,
the design of AKA makes it hard to define pids based only on publicly-known values.
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qop, 4G, €) -strong-impersonation secure) if no adversary running in time t, creat-
ing at most Gexec PaTtY instances with at most gres Tesynchronizations per instance,
(corrupting at most gs servers and making at most gop OpAccess queries per oper-
ator per corrupted server for strong security), and making at most qc queries to
the function G, has an advantage Advg'™ (A) > € or Adv™(A) > e.

Though AKA is claimed to provide mutual authentication, its design intro-
duces a vulnerability, leading to a subtle difference between the client-impersona-
tion and server-impersonation guarantees. In fact, the protocol allows A to run
a MiM attack resembling a relay attack. Servers can be impersonated even if we
rule out online relays (an adversary just forwards messages from a server to a
client instance, and vice versa): A merely performs an out-of-order (offline) relay
as described in the third scenario of Fig. 2, as explained below. This is the gap
between the client- and the server-impersonation guarantees for the AKA pro-
tocol. Our server-impersonation model rules out both offline and online relays,
whereas client-impersonation only rules out online relays.

S A C S A C S A C
Send(m) Send(m) Send(m)
— 7 —
m’ m m
_ _ _
Send(m’) Send(m™) Send (1)
—_— —_ —_
m” m” m
— — —_—
Send(m") m” Send(m)
— — —_—
online relay no relay offline relay
(pure relays) (different messages) (out of order)

Fig. 2. Examples of Online and Offline relays. For the AKA protocol, the message m
is the client’s UID, which the adversary can learn. The message m’ is a valid authenti-
cation challenge, and the message m” is the authentication response. The message 7
is the UID request message, whereas m™ is a random message.

Security Against Servers. We also formalize the notions of state-confidenti-
ality and soundness with respect to a malicious server S. The former requirement
demands that (malicious) servers cannot learn the values: skc, skop, and the
tuple (Sqnc, Sqnop,c). We use a similar model as for the MiM-adversary model,
except that now the adversary has oracle access to the operators. We preserve
the oracles UReg, Newlnstance, Execute, Send, Reveal, StReveal described above,
and add the following two oracles (with a modification of Corrupt):

— Corrupt(P) — S: if P is a client, behave as in the MiM model. If P is an
operator, return skop, and the tuples S = (UID, skyip, stc, stop,c) of all clients
C subscribing to Op.

— OpAccess(S,C) — m: simulates querying C’s operator on behalf of C for a
single session, returning the message m that Op outputs to a corrupted S.
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As opposed to key-indistinguishability, which guarantees the security of the
session keys, state confidentiality protects the client- and operator long-term
states against malicious servers. The state-confidentiality game begins by gener-
ating client- and operator material. The adversary can use her oracles arbitrarily,
finally outputting a tuple: (P;, sk{jip, skop, Stiip, st6p7U|D) for an uncorrupted client
with identifier UID such that no partner of any instance of P has ever been cor-
rupted. We say A and wins if at least one of the values: sk{jp, skop, St{jip: Stop uip
is equal to the client’s real skyip,skop,Stuip,stop,uip. The advantage of A is:
AdvEf(A) := Pr[A wins].

Definition 3 [State-confidentiality]. A key-agreement protocol I is (, Gexec,
Gress QOps 4G, €)-state-confidential if no adversary running in time t, creating at
Mot exec Party instances with at most qes resynchronizations per instance,
making at most qop OpAccess queries and qg queries to G, has an advantage
Advi o A) > e.

We also require the property of soundness, which demands that malicious
servers cannot make an uncorrupted client instance terminate in an accepting state
without help from the operator. This game resembles impersonation-security, but
the adversary is now a legitimate server with operator access, interacting with the
state-confidentiality oracles arbitrarily, making go, OpAccess queries per client.
The adversary wins if, and only if, there exist (gop + 1) uncorrupted client instances
that terminate in an accepted state. We also restrict this notion with respect to
offline replay attacks, as for server-impersonation. The advantage of A is defined
as: AdviP ™ (A) := Pr[A wins].

Definition 4 [Soundness]. A key-agreement protocol 1 is (¢, gexec, Gress 40p 4G »
€)-server-sound if no adversary running in time t, creating at most exec paTty
instances with at most qres resynchronizations per instance, making at most qop
queries to any operator Op and at most qg queries to the function G, has an
advantage Advi'"(A) > e.

4 Security of the AKA Protocol

In this section, we focus on the current, unmodified version of the AKA protocol
with respect to the five properties formalized in Sect. 3.

In particular, parties P (clients C and servers S) run sessions of the protocol,
thus creating party instances denoted P;. An instance is said to finish in an
accepting state if and only if it auhenticates its partner. Each instance keeps
track of a partner- and a session-ID.

The partner ID pid of an accepting client instance C; is S (this reflects the lack
of server identifiers); server instances S;, have a pid corresponding to a unique
UID. The session ID sid of each instance consists of: UID, R, and the value Sqgn
that is agreed upon during the session. In the absence of resynchronization, the
session ID is (UID, R Sqnop ¢). During re-synchronization, the operator updates
Sqnop,c to the client’s Sqnc; this update is taken into account in the sid. Any
two partners (same sid) with accepting states compute session keys (CK||IK).
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A Unitary Function G. We analyse the security of AKA in two steps. First,
we reduce it to the pseudorandomness of an intermediate, unitary function G.
This function models the suite of seven algorithms used in AKA; each algorithm
is a specific call to G. For the state-confidentiality property we must also assume
the pseudorandomness of the related unitary function G*, which is the same as
G, but we key it with the operator key skop rather than the client key sk. This
first step gives a sufficient condition to provide AKA security for any suite of
algorithms intended to be used within it. As a second step (showed in the full
version), we prove that both TUAK and MILENAGE, guarantee this property.

We note that the pseudorandomness of G implies the pseudorandomness of
each sub-algorithm, but is a strictly stronger property, which is necessary since
the session keys CK and IK, computed by two different algorithms on the same
input, must be independent.

4.1 Provable Security Guarantees

The existing AKA protocol only attains the weaker versions of key-indistinguisha-
bility, client-, and server-impersonation resistance. The protocol also guarantees
state-confidentiality and soundness with respect to malicious servers.

Denote by [T the AKA protocol described in Sect. 2, but in which the calls
to the internal cryptographic functions Fi,...,Fs, Fy, FZ are replaced by calls
to the function G : {0,1}" x {0,1}¢ x {0,1} x {0,1}* — {0,1}", in which &
is a security parameter, d is a positive integer strictly larger than the size of
the operator key, and ¢ indicates the block size of an underlying pseudo-random
permutation. As we detail in the full paper, the exact values of d, ¢, and n differ
for TUAK and MILENAGE; however, the construction of G is somewhat similar.

We denote by Sc := {0,1}" the key-space for the client keys and by
Sop = {0,1}¢, the key space for operator keys, for some specified e < d (in
practice e = 256). Our system features nc clients, ns servers and no, operators.

Security Statements. We group the five security statements that we prove for
the AKA protocol into two theorems. The first groups the properties of: weak
key-indistinguishability, strong client- and weak server-impersonation resistance,
and soundness with respect to servers. The second theorem is that for state-
confidentiality, which requires an additional assumption. We defer the proofs for
the full version.

Our security statements are phrased with respect to an adversary A try-
ing to break (in some way) the security of I, which runs in time ¢, creates
at most Qexec party instances with at most q.es resynchronizations per instance,
and makes at most gg queries to the function G. Furthermore, in the case of
strong MiM adversary, it can also corrupt at most ¢s servers and make at most
gop OpAccess queries per operator per corrupted server. For the legitimate-and-
malicious adversary, we quantify A in terms of the maximal number go, of
queries to the oracle OpAccess, and the similar geyec, gres and ga queries.

The function G is defined as above.
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Theorem 1 [W.K.Ind, S.C.Imp, W.S.Imp, Sound)]. For the protocol Tl using
the unitary function G described above, the following properties hold:

W.K.Ind. For any (t, Gexec, Gres; 4 ) -adversary A against the W.K.Ind-security of

M winning with advantage Advyy"""™(A) there exists a (t' ~ O(t),q' = qc +

Gexec(2 + Gres))-adversary A’ against the pseudorandomness of G with:

2
Adviy M (A) < nc - (q2R + Adv"G'f(A’)>.

S.C.lmp. For any (t, Gexec; Gres, Gs, 4op, 4G )-adversary A against the S.C.Imp-
security of M, winning with advantage Adv%’c'lmp(A), there exists a (t' =
O(t),d =5-¢s- qop + GG + Gexec(Gres + 2))-adversary A’ against the pseudo-

randomness of G such that:

(Qexec —;‘?;‘ : qu)2 + Gexec * Qres I 1 )

AdVIS_I‘C.Imp(A) < nc- <2 . Advgf(Al) + 9|Res| b

W.S.Imp. For any (t, Gexec, Gres, 4G )-adversary A against the W.S.Imp-security of
N, winning with advantage Adv\lflv's'lmp(A), there exists a (t' ~ t,q¢ = Qexec *

(Gres + 2) + qg )-adversary A’ against the pseudorandomness of G such that:

W.S.Imp prf s a7 Gexec * Qres 1
Advl'l (.A) S nc- (AdVG (.A ) + W + 2“) .

Sound. For any (t, qexec; Gres, q0p- 4G, €)-adversary A against the soundness of I,
winning with advantage Advi*'"™(A), there exists a (' ~ t,¢ =5 - gop +
4G + nc * Gexec(2 + Gres))-adversary A’ against the pseudorandomness of G
such that:

AdvEM(A) < nc - (2 - AdvET(A) + 7%2*?;,3'6365 + ;ﬁ)
Theorem 2 [St.Conf-resistance]. For the protocol M using the unitary func-
tions G, G*, for any (t, Gexec, Gres, G0p, 4G , 4G+ ) -adversary A against the St.Conf-
security of T, winning with advantage AdviF " (A), there exist: a (' =~
O(t),q = 9 + Gexec(5 + Gres))-prf-adversary Ay on G and (t' = O(t),q" = qa+)-
prf-adversary As on G* such that:

1 1 2
Slskel T olskopl T 2lSan]

Adv " (A) < nc - ( + AdVE (Ay) + Advi! (Ag)) :
MILENAGE and TUAK. Our second step is to prove that TUAK and MILENAGE
both behave as the generic function GG. Due to space constraints, we only propose
two theorems of the pseudorandomness of these functions and leave all the details
to the full paper. Notably, as opposed to TUAK (whose symmetric design allows
a lot more leeway), the MILENAGE algorithms require a stronger assumption to
prove the PRF property for G* (which is keyed with skop).
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Theorem 3 [prf-security for TUAK algorithms]. For the generalization of

the TUAK algorithms Gruak (Tesp. Gy, ) keyed with the subscriber key (resp. the

operator key) and the functions f and f* two different truncated keyed internal per-

mutation of Keccak, for any (t, q)-adversary A against the pseudorandomness of the

function f (resp. f*), then there exists a (t' = t,q' = q)-adversary A’ such that:
AdVED (A) = AdVIT(A)  AdVEL (A) = AdviT(A)).

tuak

Theorem 4 [prf-security for MILENAGE algorithms]. For the generalization
of the MILENAGE algorithms Gmin and Gmi (resp. Gy and Gp) keyed with
the subscriber key (resp. the operator key) and the function f (resp. f*) the
AES algorithm (resp. a keyed version of a classic Davies-Meyer), for any (t,q)-
adversary A against the pseudorandomness of the function f (resp. f*), then
there exists a (' = 3-t,q' = 3 q)-adversary A’ such that:

Adve (A) = AdviT(A) (= AVl (A)), Advi (A) = AdVPT(A')(= AdvEL (A)).

mill mil2

4.2 Vulnerabilities of the AKA Protocol

In the three-party mobile setting, the server is authenticated by the client if it
presents credentials (authentication vectors) generated by the client’s operator.
The properties of state-confidentiality and soundness, which the AKA protocol
guarantees, indicate that servers cannot learn the client’s long-term data, and
that they cannot authenticate without the operator-generated data.

However, Zhang [15] and Zhang and Fang [16] pointed out that once a server
is corrupted, it can obtain legitimate authentication data from the client’s oper-
ator, and then use this data to set up a False Base Station (FBS), which can
lead to a malicious, unauthorised server authenticating to the client. As a result,
the AKA protocol does not guarantee strong key-indistinguishability, nor strong
server-impersonation resistance.

The main attack strategy is also depicted in Fig. 3. In a first step, the client
C is assumed to be in the LAI corresponding to a server S*, which will later be
corrupted. The server receives a batch of authentication vectors (AVy,...,AV,,),
using some of them (vectors AVy,...,AVy) to provide service to that client (and
learn what services this client has provided, etc.). Subsequently, the client moves
to a different LAI, outside the corrupted network’s area. The adversary A has
corrupted the server S* and learned the remaining vectors AVi1,...,AV,; this
adversary then uses this authentication data to authenticate to the client, in
its new location. This immediately breaks the server-impersonation guarantee.
Moreover, since authentication vectors also contain the short-term session keys,
key-indistinguishability is breached, too. This attack is particularly dangerous
since a single server corruption can affect a very large number of clients. More-
over, server corruption is easily practiced in totalitarian regimes, in which mobile
providers are subject to the state, and partial data is furthermore likely to be
leaked upon using backdoored algorithms.

Such attack do not, however, affect client-impersonation resistance, since
the server cannot use an authentication vector from the server to respond to a
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Use k auth. vectors (k < n).

User Identity request

User Identity answer

ot TR TR
Auth. vector Request

AVig1, ..., AV,

Use AVii
= kil

Respr+1

Fig. 3. The attack of Zhang and Fang. On the right hand side, the client is in the
vulnerable network, interacting with the server S*. The server uses up authentication
vectors AV1,...AKg. Then, the server S* is corrupted, and the adversary A learns
AVit1,...,AVy, which it uses in a second attack phase (on the left).

freshly-generated authentication challenge (the random value for the two authen-
tication vectors is different).

5 Additional Security with Few Modifications

The main reason server-corruption attacks are effective is that servers associated
with a specific geographic area (like a country, a region, etc.) can re-use authenti-
cation vectors given by the operator in a different geographic area, impersonating
the legitimate server associated with that area. This vulnerability, however, is
easily fixed as long as the client’s device is aware of its geographical location.
Our solution is to add a unique server identifier, denoted Ids, to the input of each
of the cryptographic functions, thus making any leftover authentication tokens
un-replayable in the wrong area. We stress that this is a minor modification to
the protocol, as servers are already associated with a unique LAl identifier.

We also show in the full version how to include Ids in the computation of
each of the cryptographic algorithms. We present our modified protocol in Fig. 4.

Security of the Modified AKA Protocol. This modification still (trivially)
preserves the properties of strong client-impersonation resistance, soundness,
and state confidentiality. However, the modification yields in addition strong
key-indistinguishability and server-impersonation resistance, as we detail below.
The proofs are given in the full version.

Theorem 5 [S.K.Ind, S.S.Imp].  For the modified protocol I using the unitary
function G described in Sect. 4, the following properties also hold:

S.K.nd. For any (t,gexec,Gress 4s; Q0p, 4 )-adversary A against the S.K.Ind-
security of T winning with advantage Advy*'"™(A) there exists a (' ~
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Instructions:
Client Server Operator
@: For eachi=1,..., n, compute:
®: Compute AK using R, Generate RU. Compute: Sqn{™ — inc(Sqnop.c)
Recover Sqnt™ (from AK). @): store {AViT}L,. Mac{™ « Upd_Fi (skc, skop, R, San ™}, AMF, 1ds) ,
Check Macs value. {i} (i}
1f Sqn#) € (Sqne, Sanc + A): Choose AV!¥} one by one in || Macc” < Upd-Fa(ske, skop, R™, 1ds) ,
Compute: order. CK1} — Upd_Fs(skc, skop, R17, Ids) ,
CK — Upd_Fs(ske, skog, RU, Ids) |, Then, it forges and sends ; ;
= Upd.Fa(ske, skop o s) s the related challenge. IKE — Upd.Fi(ske, skop, R, Ids) ,
IK «— Upd_Fu(skc, skop, Rt Ids) , @ " AK'H — Upd_Fs(sk, skop, RT, Ids) ,
Set Res := Upd_Fa (skc, skop, RU}, Ids) . : Res = Macc. Autn) — (Sqn' & AK), AMF, Macs.
Update Sqnc := Sqn{'. AV = (RUT ki IKEY Autntid, Macé”, with
Else re-synchronization Sqnop.c = Sqnih.
End For.

Fig. 4. The modified instructions of our variant.

O(t),q" =5 Gs - qop + 4G + Gexec(Gres + 2))-adversary A’ against the pseudo-
randomness of G with:

. 2
AdVERI(4) < - ((qexec -;I%SI qop) 19, Advgf(.A’))

S.S.mp. For any (t,qexec, Gres: 4ss qop, 4G )-adversary A against the S.S.Imp-

security of M, winning with advantage Adv?,’s'lmp(A), there exists a (t' =

O(t),d =5-¢s-qop + 4G + Gexec(2 + qres))-adversary A’ against the pseudo-
randomness of G such that:

S.S.Im Qexec * Gr 1 rf
Aan p(.A(G,O) S nc- <€:2e’(\:/|acses + 27 2- AdeG' (A/)> .

Each of the two bounds above depend linearly on the number of clients nc;
while this number can be as large as, potentially, six billion, the size of the
secret keys (128 or 256 bits) and of the random value (128 bits) can still make
the bound negligible. The linear factor nc, however, highlights the importance
of using authentication strings longer than 128 bits for authentication.
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