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Abstract. We present techniques and protocols for the preprocessing of
secure multiparty computation (MPC), focusing on the so-called SPDZ
MPC scheme [14] and its derivatives [1,11,13]. These MPC schemes con-
sist of a so-called preprocessing or offline phase where correlated ran-
domness is generated that is independent of the inputs and the evaluated
function, and an online phase where such correlated randomness is con-
sumed to securely and efficiently evaluate circuits. In the recent years,
it has been shown that such protocols (such as [5,17,18]) turn out to be
very efficient in practice.

While much research has been conducted towards optimizing the online
phase of the MPC protocols, there seems to have been less focus on the
offline phase of such protocols (except for [11]). With this work, we want
to close this gap and give a toolbox of techniques that aim at optimiz-
ing the preprocessing. We support both instantiations over small fields
and large rings using somewhat homomorphic encryption and the Pail-
lier cryptosystem [19], respectively. In the case of small fields, we show
how the preprocessing overhead can basically be made independent of the
field characteristic. In the case of large rings, we present a protocol based
on the Paillier cryptosystem which has a lower message complexity than
previous protocols and employs more efficient zero-knowledge proofs that,
to the best of our knowledge, were not presented in previous work.

Keywords: Efficient multiparty computation · Preprocessing · Paillier
encryption

1 Introduction

During the recent years, secure two- and multiparty computation ([16,21]) has
evolved from a merely academic research topic into a practical technique for
secure function evaluation (see e.g. [6]). Multiparty computation (MPC) aims
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at solving the following problem: How can a set of parties P1, ...,Pn, where each
party Pi has a secret input value xi, compute a function y = f(x1, ..., xn) on
their values while not revealing any other information than the output y? Such
function could e.g. compute a statistic on the inputs (to securely compute a
mean or median) or resemble an online auction or election. Ideally, all these
parties would give their secret to a trusted third party (which is incorruptible),
that evaluates the function f and reveals the result y to each participant. Such
a solution in particular guarantees two properties:

Privacy: Even if malicious parties collude, as long as they cannot corrupt the
trusted third party they cannot gain any information except y and what they
can derive from it using their inputs.

Correctness: After each party sent their input, there is no way how malicious
parties can interfere with the computation of the trusted third party in such
a way as to force it to output a specific result y′ to the parties that are
honest.

A secure multiparty computation protocol replaces such a trusted third party by
an interactive protocol among the n parties, while still guaranteeing the above
properties. In recent years, it has been shown that even if n − 1 of the n par-
ties can be corrupted, the efficiency of secure computation can be dramatically
improved by splitting the protocol into different phases: During a preprocessing
or offline phase, raw material or so-called correlated randomness is generated.
This computation is both independent of f and the inputs xi and can there-
fore be carried out any time before the actual function evaluation takes place.
This way, a lot of the heavy computation that relies e.g. on public-key primi-
tives (which we need to handle dishonest majority) will be done beforehand and
need not be performed in the later online phase, where one can rely on cheap
information-theoretic primitives.

This approach led to very efficient MPC protocols such as [11,13,14,17,18] to
just name a few. In this work, we will primarily focus on variants of the so-called
SPDZ protocol [11,14] and their preprocessing phases. They are secure against
up to n−1 static corruptions, which will also be our adversarial model. For the pre-
processing, they rely on very efficient lattice-based homomorphic cryptosystems
that allow to perform both additions and multiplications on the encrypted cipher-
texts and can pack a large vector of plaintexts into one ciphertext. Unfortunately,
the current implementations of the preprocessing has several (non-obvious) draw-
backs in terms of efficiency which we try to address in this work:

– The complexity of the preprocessing phase depends upon the size of the field
over which the function f will be evaluated: It is much less efficient for small
fields. The main reason behind it is that SHE schemes have no efficient reliable
distributed decryption algorithm, so since the output from the preprocessing
depends in part on decryption results, it must be checked for correctness. This
is done by sacrificing some part of the computed data to check the remainder,
but this approach only yields security inversely proportional to the field size.
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Hence, especially for small fields, one has to repeat that procedure multiple
times which introduces noticeable overhead.

– If the goal in the end is to do secure computation over the integers, one needs
to use large fields or rings to avoid overflow. Unfortunately, the parameter
sizes of SHE schemes grow very quickly if one increases the size of the under-
lying field, rendering them very slow in practice. This makes it interesting
to investigate a preprocessing scheme using Paillier encryption, which comes
with a very large ring as plaintext space.

1.1 Contributions and Technical Overview

In this work, we address the aforementioned problems and show the following
results:

(1) We present a novel way of checking the correctness of shared multiplication
triples for SHE schemes. In particular, we need to sacrifice only a constant
fraction of the data to do the checking, where existing methods need to
sacrifice a fraction Θ(1 − 1/κ) for error probability 2−κ.

(2) We show how the linearly homomorphic encryption scheme of Paillier and
Damg̊ard-Jurik [10,19] can be used more efficiently to produce multiplication
triples by representing the data as polynomials and thereby reducing the
amount of complex zero-knowledge proofs. Moreover, we also present zero-
knowledge proofs for, e.g., plaintext knowledge that only require players to
work modulo N even if the ciphertexts are defined modulo N2. Though the
technique may already be known, this did not appear in previous published
work.

In the full version of this work [2] we also show a technique that improves the
efficiency of the zero-knowledge proofs as used in [11,14]. Moreover, we present
an optimized distributed decryption routine as it is required for our Paillier-
based preprocessing. We will explain our contributions and techniques in more
detail now.

Verifying Multiplicative Relations. Our goal is (somewhat simplified) to
produce encrypted vectors x,y,z such that x � y = z, where � denotes the
coordinate-wise product, or Schur product. The SPDZ protocol for creating such
data uses distributed decryption during which errors may be introduced. To
counter this, we encode the plaintexts in such a way that we can check the result
later: We will let x,y be codewords of a linear code. Those vectors can be put
into SIMD ciphertexts of the SPDZ preprocessing scheme. Note that multiplying
x and y coordinate-wise yields a codeword in a related code (namely its so-called
Schur transform). Now we do a protocol to obtain an encryption of z, which,
however, uses unreliable decryption1 underway. The next step is then to check

1 With unreliable decryption, we mean that the result is only correct if no party acts
maliciously during the decryption procedure.
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if z is indeed codeword as expected, This can be done almost only by linear
operations - which are basically free in the SPDZ MPC scheme, because they
can all be done as local operations and do not involve sending messages.

Checking whether the result is a codeword is not sufficient, but if z is in the
code and not equal to the codeword x�y, then an adversary would have to have
cheated in a large number of positions (the minimum distance of the code). Thus,
given the resulting vector z is a codeword, one checks a small number of random
positions of the vector to see if it contains the product of corresponding positions
in x and y. During each check we have a constant probability of catching the
adversary, and this quickly amplifies to our desired security levels.

Note that the only assumption that we have to make on the underlying field
is that appropriate codes with good distance can be defined.

Paillier-Based Preprocessing for SPDZ. Paillier’s encryption scheme is
linearly homomorphic, so does not allow to perform multiplications of the plain-
texts of two or more ciphertexts directly. On the other hand, it has a reliable
decryption routine which is what we will make use of. Computing products
of encryptions using linearly homomorphic encryption schemes is a well-known
technique and works as follows: Assume P1 published some encryption [[a1]], [[b1]],
P2 published [[a2]], [[b2]] and they want to compute values c1, c2 where P1 holds
c1 and P2 c2 such that (a1 + a2) · (b1 + b2) = c1 + c2.

In a protocol, P2 would send an encryption [[c′
2]] := b′

2 · [[a1 + a2]] + [[−x2]]
to P1 and prove (among other things) that this b′

2 is the same as the plaintext
inside [[b2]] (where [[x2]] is an auxiliary value). P1 similarly sends [[c′

1]] := b′
1 · [[a1 +

a2]] + [[−x1]] to P2 and proves a related statement. Afterwards, both use the
distributed decryption to safely decrypt the value c′

1 + c′
2, which does not reveal

any information about the product if x1, x2 were appropriately chosen. P1 now
sets c1 = c′

1 + c′
2 + x1 as her share, while P2 chooses c2 = x2. These shares do

individually not reveal any information about the product.
Our approach is, instead of sampling all ai, bi independently, to let the factors

be evaluations of a polynomial (that is implicitly defined), and then multiply
these factors unreliably : Instead of giving a zero-knowledge proof that b′

2 = b2,
we only need to prove that P2 knows b′

2, x2 such that the above equation is
satisfied, which reduces the complexity of the proof. This means that the result
is only correct if all parties honestly follow the multiplication protocol.

The products computed using unreliable multiplication now all lie on a poly-
nomial as well, and using Lagrange interpolation one can evaluate the polynomial
in arbitrary points. This can be used to efficiently (and almost locally) check if
all products are correct.

We want to remark that this approach is asymptotically as efficient as existing
techniques, but relies on zero-knowledge proofs with lower message complexity.
It is an interesting open question how these approaches compare in practice.
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1.2 Related Work

In an independent work, Frederiksen et al. showed how to preprocess data for
the SPDZ MPC scheme using oblivious transfer ([15]). Their approach can make
use of efficient OT-extension, but does only allow fields of characteristic 2. While
this has some practical applications, it does not generalize (efficiently) to arbi-
trary fields. On the contrary, our techniques are particularly efficient for other
use-cases when binary fields cannot be used to compute the desired function
efficiently. Therefore, both results complement each other.

Our technique for checking multiplicative relations is related to the work in [4]
for secret shared values in honest majority protocols and in [9] for committed
values in 2-party protocols. To the best of our knowledge, this type of technique
has not been used before for dishonest majority MPC.

Paillier Encryption: The Paillier encryption scheme has been used in MPC
preprocessing before such as in [5]. Moreover it was also employed in various
MPC schemes such as [6,8,12] to just name a few. The particular instance of
the scheme that we use is from [10].

2 Preliminaries

Throughout this work, we assume that a secure point-to-point channels between
the parties exist and that a broadcast channel is available. We make com-
mitments abstractly available using the functionality FCommit and assume the
existence of a random oracle, which will be used in the coin-flipping proto-
col PProvideRandom

2. Both FCommit,PProvideRandom can be found in the full ver-
sion [2]. We use � for point-wise multiplication of vector entries, (g, h) = d to
denote that d is the greatest common divisor of g, h and let [r] be defined as
the set [r] := {1, ..., r}. We will denote vectors in bold lower-case letters such as
e.g. b whereas matrices are bold upper-case letters such as M . [[m]] denotes an
encryption of a message m where the randomness is left implicit.

2.1 The SPDZ Multiparty Computation Protocol

We start out with a short primer on the [14] MPC protocol which we will mostly
refer to as SPDZ. This we use not just as motivation for our results, but also to
make the reader familiar with the notation.

SPDZ evaluates an arithmetic circuit C over a field Zp on a gate-level, where
there are addition and multiplication gates. Each value c ∈ Zp of the computation
(which is assigned to a wire in the process of the evaluation) is MACed using
a uniformly random MAC secret MAC key α as α · c and both of these values
are then sum-shared among all parties. This MAC key α is fixed for all such
shared values, and α is additionally sum-shared among the parties, where party
Pi holds share αi such that α =

∑n
i=1 αi.

2 In practice, this can be implemented in several ways, e.g. using a pseudorandom
function and the commitment scheme FCommit.
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To make the above more formal, we define the 〈·〉-representation of a shared
value as follows:

Definition 1. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 :=
(
(r1, ..., rn), (γ(r)1, ..., γ(r)n)

)

where r =
∑n

i=1 ri and α · r =
∑n

i=1 γ(r)i. Each player Pi will hold his shares
ri, γ(r)i of such a representation. We define

〈r〉 + 〈s〉 :=
(
(r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n)

)

e · 〈r〉 :=
(
(e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n)

)

e + 〈r〉 :=
(
(r1 + e, r2, ..., rn) , (γ(r)1 + e · α1, ..., γ(r)n + e · αn)

)

This representation is closed under linear operations:

Proposition 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct
to the same value. Then it holds that

〈r〉 + 〈s〉 =̂ 〈r + s〉 and e · 〈r〉 =̂ 〈e · r〉 and e + 〈r〉 =̂ 〈e + r〉

In order to multiply two representations, we rely on a technique due to Beaver [3]:
Let 〈r〉, 〈s〉 be two values where we want to calculate a representation 〈t〉 such
that t = r · s. Assume the availability of a triple3 (〈a〉, 〈b〉, 〈c〉) such that a, b
are uniformly random and c = a · b. To obtain 〈t〉, one can use the procedure
as depicted in Fig. 1. Correctness and privacy of this procedure were estab-
lished before, e.g. in [14]. This already allows to compute on shared values, and
inputting information into such a computation can also easily be achieved using
standard techniques4. Checking that a value was indeed reconstructed correctly
will be done using PCheckMac which allows to check the MAC of the opened value
without revealing the key α.

Procedure PMult

Multiply(〈r〉, 〈s〉, 〈a〉, 〈b〉, 〈c〉):
(1) The players calculate 〈γ〉 = 〈r〉 − 〈a〉, 〈δ〉 = 〈s〉 − 〈b〉.
(2) The players publicly reconstruct γ, δ.
(3) Each player locally calculates 〈t〉 = 〈c〉 + δ〈a〉 + γ〈b〉 + γδ.
(4) Return 〈t〉 as the representation of the product.

Fig. 1. Procedure PMult to generate the product of two 〈·〉-shared values.

3 We will also refer to those triples as multiplication triples throughout this paper.
4 Open a random value 〈r〉 to a party that wants to input x. That party then broad-

casts x − r and the parties jointly compute (x − r) + 〈r〉 = 〈x〉.
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This checking procedure will fail to detect an incorrect reconstruction with
probability at most 2/p over fields of characteristic p, and similarly with proba-
bility 2/q over rings ZN where q is the smallest prime factor of N . This in essence
is captured by the following Lemma which we will also need in other cases (Fig. 2):

Lemma 1. Assume that PCheckMac is executed over the field Zp. The protocol
PCheckMac is correct and sound: It returns 1 if all the values vi and their corre-
sponding MACs γ(vi) are correctly computed and rejects except with probability
2/p in the case where at least one value or MAC is not correctly computed.

Procedure PCheckMac

CheckOutput(v1, ..., vt, m):
(1) The parties compute r ← PProvideRandom. ProvideRandom(m, t).
(2) Each Pi computes v =

∑t
i=1 r[i] · vi and γi =

∑t
j=1 r[j] · γ(vj).

(3) Each Pi computes σi = γi − αi · v and commits to σi using FCommit as c′
i.

(4) Each c′
i is opened towards all players using FCommit.

(5) If σ =
∑n

i=1 σi is 0 then return 1, otherwise return 0.

Fig. 2. Procedure PCheckMac to check validity of MACs.

Proof. See e.g. [11].

For some of our settings we will choose p to be rather small (i.e. of constant size
in the security parameter). In this case, one can extend the 〈·〉−representation
as in Definition 1 by having a larger number of MACs and then check all of these
MACs in parallel.

2.2 (Reed-Solomon) Codes

Let q, k,m ∈ N
+,m > k and q be a prime power. Consider the two vector

spaces F
k
q ,Fm

q and a monomorphism C : Fk
q → F

m
q together as a code, i.e. c =

C(x) as an encoding of x in F
m
q . We assume that it is efficiently decidable

whether c′ ∈ C (error checking), where c′ ∈ C ⇔ ∃x′ ∈ F
k
q : C(x′) = c′ and

the minimum distance d of two codewords x,y ∈ C should be large (meaning
that the difference of any two distinct codewords should be nonzero in as many
positions as possible). Such a code is called an [m, k, d] code.

If, for every message x ∈ F
k
q the message x reappears directly in C(x) then

the code is called systematic. Without loss of generality, one can assume that
the first m positions of a codeword are equal to the encoded message in that
case. The mapping of C can be represented as multiplication with a matrix
G (called the generator matrix ), and one can write the encoding procedure as
C : x 	→ Gx where G ∈ F

m×k
q . Similarly, we assume the existence of a check

matrix H ∈ F
(m−k)×m
q where Hx = 0 ⇔ x ∈ C.
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For a [m, k, d] code C, define the Schur transform (as in [13]) as C∗ =
span({x � y | x,y ∈ C}). C∗ is itself a code where the message length k′

cannot be smaller than k. On the contrary, C∗ has a smaller minimum distance
d′ ≤ d. The actual values k′, d′ depend on the properties of the code C.

A code with small loss d − d′ with respect to the Schur transform (as we
shall see later) is the so-called Reed-Solomon code ([20]), where the encoding C
works as follows: Fix pairwise distinct and nonzero z1, ..., zm ∈ Fq and define
the matrices A1 = V (z1, ..., zk)−1 and A2 = V (z1, ..., zm) where V (·) is the
Vandermonde matrix. We then define the encoding as

C : Fk
q → F

m
q

x 	→ A2A1x

This encoding can be made efficient since the matrices are decomposable for
certain values z1, ..., zk using the Fast Fourier Transform (FFT). The decoding
works essentially the same way, where one computes y�A−1

2 A−1
1 .

The intuition behind the encoding procedure is as follows: The k values
uniquely define a polynomial f of degree at most k − 1, whose coefficients can
be computed using A1 (as an inverse FFT). One evaluates the polynomial in
the remaining m − k positions using A2. The minimum distance d is exactly
m − k + 1, since two polynomials of degree at most k − 1 are equal if they agree
in at least k positions. Now, by letting A2 be another FFT matrix, the point-
wise multiplication of codewords from C yields a codeword in C∗ which is a
polynomial of degree at most 2(k − 1) and the code C∗ therefore has minimum
distance d′ = m − 2k + 1.

2.3 The Paillier Cryptosystem

We use the Paillier encryption scheme as defined in [10,19] (with some practical
restrictions). Let N = p · q be the product of two odd, τ -bit safe-primes with
(N,φ(N)) = 1 (we choose τ such that the scheme has λ bit security). Paillier
encryption of a message x ∈ Z/NZ with randomness r ∈ Z/NZ

∗ is defined as:

Encpk(x, r) := rN · (N + 1)x mod N2

Knowing the factorization of N allows decryption of ciphertext c ∈ Z/N2
Z

∗,
e.g., by determining the randomness used,

r = cN−1 mod φ(N) mod N .

The decryption then proceeds as

x = ((c · r−N mod N2) − 1)/N mod N

The KG algorithm samples an RSA modulus N = p · q, and we let the public
key be pk = (N) and the secret key be sk = (p, q, f = N−1 mod ϕ(N)). The
encryption scheme is additively homomorphic and IND-CPA secure given the
Composite Residuosity problem CR[N ] is hard.
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Functionality FKGD

Generate key:
(1) On input (generate key, τ, κ) by all parties, randomly sample two different

primes p, q ∈ P of bit length approximately τ . Let N = p · q and compute
f = N−1 mod ϕ(N).

(2) Sample key shares f1, ..., fn ∈ Z/2κNZ.
(3) Output (N, fi) to party Pi, and save (N, f, f1, ..., fn) locally.

Distributed decryption:
(1) When receiving (decrypt, fi, c) from each party Pi, check whether some

(N, f, f1, ..., fn) was stored. If not, return ⊥.
(2) Send (x, r) ← Decsk(c) to the adversary. Upon receiving x′ ∈ {(x, r), ⊥}

from the adversary, send (result, x′) to all players.

Fig. 3. Functionality FKGD that provides shared keys and decrypts ciphertexts.

During the decryption of a ciphertext as described above one does completely
recover the randomness used during encryption. This gives rise to a reliable dis-
tributed decryption algorithm, which we describe in the full version of this work5

Both key generation and distributed decryption are described in the functionality
Fig. 3.

Observe that the distributed decryption does also output the randomness
used in the ciphertext. This can be harmful in some applications, but is sufficient
for our application.

3 More Efficient Preprocessing from SHE

In this section, we present an improved preprocessing protocol for SPDZ over
large fields. Towards achieving this, we overhaul the triple generation in a way
that allows more efficient checks of correctness. This check uses the original
SPDZ preprocessing as a black box6 (see Fig. 4). Our approach introduces some
computational overhead, but we show how this overhead can be reduced. In the
full version of this work ([2]), we additionally present a technique to improve the
zero-knowledge proofs of plaintext knowledge used in [11].

Offline Phase Protocol. Let C be some [m, k, d] Reed-Solomon code as
described in the previous section. Moreover, let C∗ be its [m, k′, d′] Schur trans-
form. We assume the existence of a functionality that samples faulty correlated

5 One can also find such an algorithm in [10], but our solution allows for a much
simpler decryption routine. In particular, no zero-knowledge proofs are involved in
the decryption process.

6 We therefore abstain from introducing the concept of SHE in this work and refer
the reader to [2,14] for more details on the subject.
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Functionality FTripleGen

This functionality generates a shared MAC key α and (potentially faulty) 〈·〉-
representations.

Initialize: On input (init, p, C) from all players, the functionality stores the prime
p and a description of the code C. A chooses the set of parties I ⊂ {1, . . . , n}
he corrupts.
(1) For all i ∈ I, A inputs αi ∈ Zp, while for all i I∈� , the functionality chooses

αi ← Zp at random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi, i I∈� .

Triples: On input (triples) from all parties, the functionality does the following to
generate triples:
(1) For i I∈� , the functionality samples ai, bi ∈ C at random.
(2) For i ∈ I, A inputs ai, bi, ci, δ, Δγ,a, Δγ,b, Δγ,c ∈ Z

m
p . If ai, bi �∈ C then

stop.
(3) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(4) Let j I∈� be the smallest index of an honest player. For all i I∈� , i �= j choose
ci ∈ Z

m
p uniformly at random. For Pj let cj = a 	 b + δ − ∑

i∈[n],i�=j ci.
Send ai, bi, ci to each honest Pi.

(5) Run the macros
〈a〉 ← Angle(a1, . . . , an, α, Δγ,a, m, p),
〈b〉 ← Angle(b1, . . . , bn, α, Δγ,b, m, p),
〈c〉 ← Angle(c1, . . . , cn, α, Δγ,c, m, p).

(6) Return (〈a〉, 〈b〉, 〈c〉).

Angle(r1, . . . , rn, α, Δγ , m, p): This macro will be run to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ I, A inputs γi ∈ Z
m
p , and for i I∈� , the functionality chooses

γi ← Z
m
p at random except for γj , with j being the smallest index not in I.

(3) Set γ = α · r + Δγ and γj = γ − ∑n
j �=i=1 γi. For every honest party Pi,

send γi.
(4) Define 〈r〉 = (r1, ..., rn, γ1, ..., γn). Return 〈r〉.

Fig. 4. Functionality FTripleGen that generates potentially faulty triples.

randomness and which is depicted in Fig. 4. It generates random codewords as
the shares of factors a, b of multiplication triples and also enforces that malicious
parties choose such codewords as their shares. The functionality then computes
a product and shares it among all parties, subject to the constraint that A can
arbitrarily modify the sum and the shares of malicious parties. Figure 4 can be
implemented using a SHE scheme as was shown in [14]. As a twist, the zero-
knowledge proofs must be slightly extended to show that the vectors inside the
ciphertexts contain codewords from C. Based on this available functionality,
we show that one can implement FFullTripleGen as depicted in Fig. 5 using our
protocol ΠTripleCheck. FFullTripleGen is similar to FTripleGen but additionally
ensures that all multiplication triples are correct.
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Functionality FFullTripleGen

Let I be the set of parties that are controlled by A, u ∈ N
+. This functionality

generates a shared MAC key α and 〈·〉-representations. It uses the macro Angle as
depicted in FTripleGen.

Initialize: On input (init, p, u) from all players, the functionality stores the prime p
and the vector dimension u. A chooses the set of parties I ⊂ [n] he corrupts.
(1) For all i ∈ I, A inputs αi ∈ Zp, while for all i I∈� , the functionality chooses

αi ← Zp at random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi, i I∈� .

Triples: On input (triples) the functionality does the following
(1) Let A input ai, bi, ci, Δγ,a, Δγ,b, Δγ,c ∈ Z

u
p for each i ∈ I.

(2) Choose ai, bi ∈ Z
u
p for each honest Pi uniformly at random. Set

a =
∑

i ai, b =
∑

i bi and define c = a 	 b.
(3) Let j be the smallest number in [n]\I. Choose uniformly random ci ∈ Ru

for each Pi with i ∈ [n]\I, i �= j and set cj = c − ∑
i∈[n],i�=j ci.

(4) Run the macros
〈a〉 ← Angle(a1, . . . , an, α, Δγ,a, u, p),
〈b〉 ← Angle(b1, . . . , bn, α, Δγ,b, u, p),
〈c〉 ← Angle(c1, . . . , cn, α, Δγ,c, u, p).

(5) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 5. Functionality FFullTripleGen that generates correct triples.

The main idea of this protocol follows the outline as presented in the intro-
duction:

(1) Check that the output vector c is a codeword of C∗. If so, then the error
vector δ is also a codeword, meaning that either it is 0 or it has weight at
leastd′.

(2) Open a fraction of the triples to check whether they are indeed correct. If
so, then δ must be the all-zero vector with high probability.

Due to the lack of space, the proof of security of ΠTripleCheck is postponed to the
full version of this work [2], where the security is proven in the UC framework [7].

Fast and Amortized Checks. In the protocol presented in Fig. 7, we check
each potential code vector separately. Let H ∈ Z

l×m
p be the check matrix of the

Schur transform of the code. Multiplication with a check matrix H can be done
in O(m2) steps - but assuming that this must be carried out for a number of
e.g. m vectors this leads to O(m3) operations, if done trivially. Let us put all
the l input vectors a1, ...,al into a matrix A = [a1||a2||...||al ]. If all vectors are
drawn from the code, then HA = 0.
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Now consider another generator matrix G ∈ Z
m′×l
p for a Reed-Solomon code

of message dimension l, where we denote the redundancy as d ∈ O(m) again (we
can easily assume that m′ ∈ O(m)). Multiplication of each of the matrices H,A
with G can be done in time m′2 ·log(m′) using the FFT, and one can precompute
GH before the actual computation takes place. GHAG� is a zero matrix if A

Procedure PMatrixMultCheck

CheckMultiplication(H, A):
(1) Compute the matrices GH and AG�.
(2) For j ∈ [m′] select a pair (xj , yj) ∈ {1, ..., m′}2.
(3) For j ∈ [m′], compute zj as the inner product of the xjth row of GH and

the yjth column of AG�.
(4) If all zi are 0 return accept, otherwise reject.

Fig. 6. Procedure PMatrixMultCheck to check whether a matrix product is zero.

Protocol ΠTripleCheck

Let H be the check matrix of C∗ and t ∈ N
+, t < k − 1 be the upper bound on the

number of opened triples. We assume that both C, C∗ are in systematic form, and
are over the field Zp.

Initialize:
(1) All parties send (init, p, C) to FTripleGen to receive their shares αi of α.

Triples:
(1) All parties send (triples) to FTripleGen and obtain (〈a〉, 〈b〉, 〈c〉).
(2) Let ci be Pis share of 〈c〉. Each party locally computes σi = Hci and

commits to σi using FCommit.
(3) Each party Pi opens its commitments to σi towards all parties. Check if

0 =
∑

i σi. If not, abort.
(4) Let A = [m]. For j ∈ [t] all parties do the following

(4.1) Sample the uniformly random value r ← ProvideRandom(m, 1). Set
A ← A\{r}.

(4.2) Each party Pi commits to its shares ai[r], bi[r], ci[r] using FCommit.
(4.3) Each party opens its commitments towards all other parties.
(4.4) Each party checks that (

∑
i ai[r]) · (

∑
i bi[r]) =

∑
i ci[r]. If not, then

they abort.
(5) Let U = [m]\A, where U = {u1, ..., ul}. Compute

d ← PCheckMac. CheckOutput(σ, a[u1], b[u1], c[u1], ..., a[ul], b[ul], c[ul]).
If d �= 0 the parties return ⊥.

(6) Let O ⊂ A be the smallest k − t − 1 indices of A. The parties output
(〈a[O]〉, 〈b[O]〉, 〈c[O]〉).

Fig. 7. Protocol ΠTripleCheck that checks the correctness of triples.
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only consists of codewords. On the other hand, consider GHA: If one row is not
a codeword, then it will be encoded to a vector with weight at least d due to the
distance of the code. Multiplying with G� will then yield a matrix where at least
d2 entries are nonzero. Since both m′, d ∈ O(m), the fraction d2

m′2 is constant.
One can compute both GH and AG� in time m′2 · log(m prime) using the FFT,
and then choose rows/columns from both product matrices for which one then
computes the scale product. In case that at least one ai is not a codeword, it will
be nonzero with constant probability. Repeating this experiment Ω(m′) times
yields 0 in all cases only with probability negligible in m′ (Fig. 6). We refer to
[13] for more details on this technique.

4 Preprocessing from Paillier Encryption

In this section we present a novel approach to produce multiplication triples using
Paillier’s cryptosystem. In comparison to previous work which uses heavy zero-
knowledge machinery to prove that multiplications are done correctly, we choose
a somewhat different approach that is related to the preprocessing protocol from
the previous section. Moreover, we present two zero-knwoledge proofs which are
used in the protocol. In comparison to previous work, they will require to send
less bits per proof instance.

Protocol ΠZKPoPK

P proves the relation RZKPoPK.

(1) P chooses s ← Z/NZ
∗ and sends t = sN mod N to V.

(2) V chooses e ← Z/NZ and sends it to P.
(3) P sends k = s · re mod N to V.
(4) V accepts if kN = ce · t mod N and otherwise rejects.

Fig. 8. Protocol ΠZKPoPK to prove knowledge of plaintexts of Paillier encryptions.

4.1 Proving Statements About Paillier Ciphertexts

First, consider a regular proof of plaintext knowledge. For Paillier encryption,
one would prove the following relation:

RZKPoPK =
{
(a,w)

∣
∣ a = (c, pk) ∧ w = (x, r) ∧ x ∈ Z/NZ ∧

r ∈ Z/NZ
∗ ∧ c = Encpk(x, r)

}

Throughout the protocol, the parties must compute products with ciphertexts,
where we want to establish that a party knows which value it multiplied in. This
can be captured as follows:
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RPoM =
{
(a,w)

∣
∣ a = (z, ẑ, pk) ∧ w = (b, c, r) ∧ b, c ∈ Z/NZ ∧

r ∈ Z/NZ
∗ ∧ ẑ = zb · Encpk(c, r) mod N2

}

Protocol ΠPoM

P proves the relation RPoM.

(1) P generates t, u ∈ Z/NZ, v ∈ Z/NZ
∗. He then sends f = zt·Encpk(u, v) mod N2

to V.
(2) V chooses a uniformly random e ∈ Z/NZ and sends it to P.
(3) P computes g = t + e · b mod N, h = u + e · c mod N, i = v · re mod N and

and sends (g, h, i) to V.
(4) V accepts if zg · Encpk(h, i) = ẑe · f mod N2, and rejects otherwise.

Fig. 9. Protocol ΠPoM to prove linear relation on ciphertexts.

In the following, we present honest-verifier perfect zero-knowledge proofs for
both RZKPoPK, RPoM between a prover P and verifier V. In order to use them in
the preprocessing protocol, one can either make them non-interactive using the
Fiat-Shamir transformation in the Random Oracle Model, or use the secure coin-
flip protocol PProvideRandom to sample the challenge e. Since during a protocol
instance, many proofs are executed in parallel, one can use the same challenge
for all instances and so the complexity of doing the coin-flip is not a significant
cost.

For practical implementations, one can choose the random value e from a
smaller interval like e.g. [0, 2κ] where κ is the statistical security parameter.
This also yields negligible cheating probability7. The proof that ΠZKPoPK,ΠPoM

are in fact honest-verifier zero-knowledge proofs for the relations RZKPoPK, RPoM

can be found in the full version of this work.

4.2 Computing and Checking Triples

Our protocol ΠPaillierTripleGen, on a high level, runs in the following phases:

(1) In a first step, every party encrypts uniformly random values.
(2) Take k + 2 values which define a polynomial A of degree k + 1 uniquely

(when considered as evaluations in the points 1, ..., k + 2). Interpolate this
polynomial A in the next k+2 points locally, encrypt these points and prove
that the encrypted values are indeed points that lie on A. Then the same is
done for a polynomial B.

7 For the soundness of the proof, we rely on the fact that (e− e′, N) = 1 which indeed
is always true if e, e′ 
 √

N and N is a safe RSA modulus.



Better Preprocessing for Secure Multiparty Computation 341

Protocol ΠPaillierTripleGen (Part 1)

A protocol to perform preprocessing for the SPDZ protocol using Paillier encryption.

Initialize: On input (init,Z/NZ, k) the parties do the following:
(1) Each party Pi picks αi ∈ Z/NZ uniformly at random, broadcasts a fresh

encryption [[αi]] and proves knowledge of plaintext of [[αi]] using ΠZKPoPK.
(2) The parties compute [[α]] ← ∏n

i=1[[αi]].
(3) Each Pi stores [[α]] as the encrypted MAC key and its share αi of the MAC

key.

Triples: On input (triples) the parties do the following:
(1) For j ∈ [k + 2] each Pi picks Ai(j), Bi(j) ∈ Z/NZ uniformly at random,

computes [[Ai(j)]], [[Bi(j)]] and broadcasts ([[Ai(j)]], [[Bi(j)]])j∈[k+2] together
with proofs of ΠZKPoPK.

(2) For j ∈ [k + 2] every party Pi defines the polynomials Ai(·), Bi(·)
using Ai(j), Bi(j) as evaluations. Each party computes and broadcasts
([[Ai(l)]], [[Bi(l)]])l=k+3,...,2k+2 together with proofs of plaintext knowledge
using ΠZKPoPK.

(3) The parties locally compute

[[A(l)]] =

n∏
i=1

[[Ai(l)]] and [[B(l)]] =

n∏
i=1

[[Bi(l)]]

(4) The parties sample β ← PProvideRandom. ProvideRandom(N−2k−3, 1)+2k+3
so that β ∈ Z/NZ \ {0, ..., 2k + 2}.

(5) Define A�(β) to be the value A(β) computed using Lagrange interpolation
and the values A(1), ..., A(k + 2) and similarly A⊥(β) to be A(β) computed
using A(1), ...., A(2k + 2). Every Pi locally computes

[[A†(β)]] = [[A�(β)]]/[[A⊥(β)]] and [[B†(β)]] = [[B�(β)]]/[[B⊥(β)]]

(6) The parties decrypt [[A†(β)]], [[B†(β)]] and check whether A†(β) = B†(β) =
0 mod N . Otherwise they abort.

Fig. 10. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 1.

(3) An unreliable point-wise multiplication of A,B is performed. The resulting
polynomial C is interpolated in a random point β, and it is checked whether
the multiplicative relation holds. This is enough to check correctness of all
triples due to the size of N .

(4) Share the points of C among all parties as random shares.
(5) For all of the shares of A,B,C that were generated in the protocol, products

with the MAC key α are computed. Correctness of the multiplication with
α is checked and if the check is passed, the MACs are reshared among the
parties in the same way as the points of C.
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Protocol ΠPaillierTripleGen (Part 2)

Triples:
(7) For j ∈ [2k + 2] each Pi chooses ri,j ← Z/NZ

∗, computes encryptions

[[ĉi,j ]] ← [[A(j)]]Bi(j)Encpk(0, ri,j)

broadcasts the [[ĉi,j ]] and proves the relation using ΠPoM.
(8) For j ∈ [2k + 2] each Pi picks c̃i,j ∈ Z/NZ uniformly at random, computes

[[c̃i,j ]] and broadcasts ([[c̃i,j ]])j∈{0,...,2k+3} together with proofs of ΠZKPoPK.
(9) For j ∈ [2k + 2] the parties locally compute

[[ĉj ]] =
∏n

i=1
[[ĉi,j ]]/

∏n

i=1
[[c̃i,j ]]

and publicly decrypt ĉj .
(10) For j ∈ [2k + 2] each party Pi sets

[[C1(j)]] = [[c̃1,j ]] · [[ĉj ]] and [[Ci(j)]] = [[c̃t,j ]]

for t ∈ [n], t �= 1 and [[C(j)]] =
∏n

i=1 [[Ci(j)]] and its share of C(j) as

Ci(j) =

{
c̃1,j + ĉj if i = 1

c̃i,j else

(11) The parties sample β ← PProvideRandom. ProvideRandom(N −k−1, 1)+k+1
so that β ← Z/NZ \ {0, ..., k}.

(12) The parties compute [[A(β)]], [[B(β)]], [[C(β)]] locally using Lagrange interpo-
lation and then decrypt these values.

(13) If A(β) · B(β) �= C(β) mod N then abort.
(14) Each Pi picks si ∈ Z/NZ uniformly at random, computes [[si]] and broad-

casts [[si]] together with a proof of ΠZKPoPK. Let s =
∑

i si.
(15) We define the following abbreviation:

ti,j ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si for j = 0

Ai(j) for j = 1, ..., k

Bi(j) for j = k + 1, ..., 2k

Ci(j) for j = 2k + 1, ..., 3k

and tj ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s for j = 0

A(j) for j = 1, ..., k

B(j) for j = k + 1, ..., 2k

C(j) for j = 2k + 1, ..., 3k

Fig. 11. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 2.

The protocol ΠPaillierTripleGen can be found in Figs. 10, 11 and 12. The proof
of security in the UC framework [7] as well as a short introduction into the UC
framework can be found in the full version of this work.
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Protocol ΠPaillierTripleGen (Part 3)

Triples:
(16) For j = 0, . . . , 3k each Pi picks ri,j ∈ Z/NZ

∗ uniformly at random and
computes

[[ti,j · α]] ← [[α]]ti,j · Encpk(0, ri,j)

then broadcasts ([[ti,j · α]]) and proves the relation using ΠPoM.
(17) For j = 0, . . . , 3k, P1, . . . , Pn compute

[[tj · α]] ←
∏n

i=1
[[ti,j · α]]

(18) The parties sample β ← PProvideRandom. ProvideRandom(N, 1).
(19) All parties compute

[[v]] ←
∏3k

j=0
[[tj ]]

βj

and [[v′]] ←
∏3k

j=0
[[tj · α]]β

j

(20) The parties jointly decrypt [[v]] to v and check that the decryption was
correct.

(21) The parties jointly decrypt

[[M ]] ← [[α]]v/[[v′]]

and verify that M = 0, otherwise they abort. All parties verify correctness
of decryption.

(22) For j ∈ [3k] each Pi picks mi,j ∈ Z/NZ uniformly at random, computes
[[mi,j ]] and broadcasts ([[mi,j ]])j∈[3k] together with proofs of ΠZKPoPK.

(23) For each j ∈ [3k], the parties compute

[[Oj ]] ← [[tj · α]]/
∏n

i=1
[[mi,j ]]

and publicly decrypt [[Oj ]]. All parties verify correctness of decryption.
(24) For each j ∈ [3k], each Pi determines its share γ(tj)i, of the MAC γ(tj) of

tj as

γ(tj)i ←
{

Oj + mi,j for i = 1

mi,j for 1 < i ≤ n

(25) Each party Pi uses ti,j , γ(tj)i as its shares of 〈tj〉.

Fig. 12. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 3.
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