
More Efficient Constructions
for Inner-Product Encryption

Somindu C. Ramanna(B)

Laboratoire LIP, ENS de Lyon, Lyon, France
somindu.ramanna@ens-lyon.fr

Abstract. We propose new constructions for inner product encryp-
tion – IPE1 and IPE2, both secure under the eXternal Diffie-Hellman
assumption (SXDH) in asymmetric pairing groups. The first scheme has
constant-size ciphertexts whereas the second one is weakly attribute hid-
ing. IPE2 is derived from the identity-based encryption scheme of Jutla
Roy (Asiacrypt 2013), that was extended from tag-based quasi-adaptive
non-interactive zero-knowledge (QA-NIZK) proofs for linear subspaces of
vector spaces over bilinear groups. The verifier common reference string
(CRS) in these tag-based systems are split into two parts, that are com-
bined during verification. We consider an alternate form of the tag-based
QA-NIZK proof with a single verifier CRS that already includes a tag,
different from the one defining the language. The verification succeeds as
long as the two tags are unequal. Essentially, we embed a two-equation
revocation mechanism in the verification. The new QA-NIZK proof sys-
tem leads to IPE1, a constant-sized ciphertext IPE scheme with very
short ciphertexts. Both the IPE schemes are obtained by applying the n-
equation revocation technique of Attrapadung and Libert (PKC 2010) to
the corresponding identity based encryption schemes and proved secure
under SXDH assumption. As an application, we show how our schemes
can be specialised to obtain the first fully secure identity-based broadcast
encryption based on SXDH with a trade-off among the public parame-
ters, ciphertext and key sizes, all of them being sub-linear in the maxi-
mum number of recipients of a broadcast.

Keywords: Inner-product encryption · Attribute-hiding · Constant-
size ciphertexts · Quasi-adaptive non-interactive zero knowledge proofs

1 Introduction

Inner product encryption (IPE) is a special form of the more general attribute-
based encryption (ABE), which provides fine-grained access control to encrypted
data. In ABE, a ciphertext is encrypted to some attribute x and a secret key is
associated to some attribute y such that decryption succeeds iff some relation
R on x,y holds true i.e., R(x,y) = 1. The standard notion of security for
ABE requires resistance to collusion attacks. More precisely, the privacy of a
message encrypted to attribute x must not be compromised in the event of
an attack by a group of users possessing secret keys for y1,y2, . . . ,yq where
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R(x,yi) = 0 for all i = 1, . . . , q. Another useful security property, called weak
attribute hiding, requires that given a ciphertext, the group of corrupt users
unauthorised to decrypt the ciphertext, learn nothing about the attribute x. In
both cases, adaptive security allows users to be corrupted adaptively.

A simple form of ABE is identity-based encryption, where x and y represent
identities and the relation R tests equality of identities. IPE is a more complex
form with R testing orthogonality of x and y that are vectors in some inner prod-
uct space. In other words, R(x,y) = 1 if 〈x,y〉 = 0 and 0 otherwise. Though they
appear restricted, inner products cover a wide range of functionalities useful in
practice including polynomial functions, boolean formulae evaluating conjunc-
tive and disjunctive normal forms, and identity-based broadcast encryption and
revocation.

Most efficient constructions of IPE are based on pairings. A pairing e : G1 ×
G2 → GT is a bilinear, non-degenerate and efficiently computable map defined
over three groups G1,G2,GT all having the same order. The common order of
the groups may be composite or prime. Prime order pairings where G1 �= G2 are
called asymmetric. The best choices for implementation are asymmetric pairings,
particularly those with no efficiently computable isomorphisms between G1 and
G2 (called Type-3 pairings), from a point of view of security as well as efficiency.
A consequence of the absence of efficient isomorphisms makes the decisional
Diffie-Hellman (DDH) problem hard in both groups G1 and G2, collectively
called the symmetric eXternal decisional Diffie-Hellman (SXDH) problem. We
mainly focus on security under this assumption.

A powerful technique to obtain adaptive security for attribute-based encryp-
tion schemes is the dual system methodology introduced by Waters [Wat09].
Important features of the underlying algebraic structure that facilitate a dual
system proof are cancelling and parameter-hiding. These features are explic-
itly available in composite order pairing groups that are not really suitable for
practical deployment. A number of works have investigated the possibilities of
translating the properties of composite order pairings to the prime-order setting,
mostly in the context of dual system hierarchical IBE and ABE. However, the
constructions resulting from these translations are not necessarily optimised in
terms of various system parameters (such as ciphertext/key size, time required
for decryption and so on). In contrast, direct constructions in the prime-order
setting circumventing the route via composite order pairings, holds more promise
in this regard. We believe that IPE as a cryptographic primitive is significant
enough to justify attempts for direct constructions.

The goal of this work is to obtain new direct Type-3 pairing-based construc-
tions of IPE that are efficient, adaptively secure with a focus on achieving either
of the following properties – attribute-hiding or compact ciphertexts – from the
SXDH assumption.

Our Contributions. We propose two new IPE schemes based on prime-order
pairings named IPE1 and IPE2 – the former with constant-sized ciphertexts
and the latter achieving weak attribute hiding, both secure under the SXDH
assumption. The constructions are derived from quasi-adaptive non-interactive
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Table 1. Constant-size ciphertext IPE.

Scheme #pp #cpr #key #dec

[CGW15] (2n+ 4)|G1|+ |GT | 4|G1|+ |GT | (2n+ 2)|G2| 4[P] + 2n[M2]

IPE1 (n+ 3)|G1|+ |GT | 3|G1|+ |Zp|+ |GT | (2n+ 1)|G2|+
(n− 1)|Zp|

3[P]+(2n−2)[M2]+
[E]

Table 2. Attribute-hiding IPE.

Scheme #pp #cpr #key #dec

[CGW15] (2n+ 4)|G1|+ |GT | (2n+ 2)|G1|+ |GT | 4|G2| 4[P] + 2n[M1]

IPE2 (n+ 3)|G1|+ |GT | (n+ 1)|G1|+ (n− 1)|Zp|+ |GT | 5|G2| 3[P] + (n+ 1)[M1]

zero knowledge (QA-NIZK) proofs of Jutla and Roy [JR13] and an IBE proposed
in the same work (denoted JR -IBE in the rest of the paper). IPE2 is obtained
from JR -IBE by a novel application of the n-equation revocation technique of
Attrapadung and Libert [AL10]. But a constant-size ciphertext IPE cannot be
constructed in a similar way from JR -IBE . To get around this problem, we pro-
pose a small tweak to the Jutla-Roy QA-NIZK proofs that leads to an alter-
nate form of JR -IBE (named JR -IBE-D). The n-equation revocation method is
then combined with JR -IBE-D to construct IPE1. QA-NIZK proofs were only
known to yield IBE [JR13], hierarchical IBE (HIBE) [RS14b] and identity-based
broadcast encryption [RS14a] but the question of whether they are useful in
constructing other forms of ABE remained open. Thus, we (partially) settle an
open question posed in [CGW15].

Tables 1 and 2 compare our constructions to those recently proposed by Chen
et al. [CGW15]. The reason we do not include other previous constructions in the
comparison is that the constructions in [CGW15] are the most efficient instan-
tiations known so far and their constructions achieve security from the SXDH
assumption. First, we define some abbreviations/notation we use in the compari-
son. #pp, #cpr and #key denote the sizes of public parameters, ciphertexts and
keys respectively. #dec denotes the time required for decryption. |X| denotes
the size of representation of an element from X. [P], [Mi] (for i = 1, 2) and [E]
respectively denote the time required for pairing operation, scalar multiplication
in Gi (for i = 1, 2) and exponentiation in GT respectively.

Note that both our schemes are at least as efficient as the corresponding
instantiations in [CGW15]. The public parameters and decryption time are bet-
ter in our schemes. The ciphertext size in both IPE1 and IPE2 are at least as
short as those in [CGW15].

Quasi-Adaptive NIZK Proofs to IPE. Jutla and Roy [JR13] proposed con-
structions of quasi-adaptive non-interactive zero knowledge (QA-NIZK) proofs
for linear equations over pairing groups that have a weaker soundness crite-
rion called quasi-adaptive soundness. The difference with regular NIZKs is that
the common reference string (CRS) is allowed to depend on the language.
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These are useful in constructing a number of primitives, such as signatures,
CCA2-secure public key encryption, commitment schemes and so on. From the
signature scheme, they obtained an IBE using Naor’s transform, which is the
most efficient IBE known till date in terms of size of public parameters and
ciphertexts achieving adaptive security under standard assumptions. Building
upon this IBE, we obtain a weakly attribute hiding IPE scheme using the n-
equation revocation method proposed in [AL10].

The NIZK construction that leads to the IBE is actually a split-CRS NIZK
for tag-based languages, where the CRS for the verifier is split into two com-
ponents. These two components are then combined using a public random tag
ctag, which is also a parameter defining the language. We make a slight modifi-
cation by combining the two components of the split-CRS with another tag ktag
and only providing the combination as the CRS. This ensures that verification
is successful unless the two tags are equal, thus making unconditional failure of
verification a possibility. Nevertheless, the probability of failure is negligible and
this small modification leads to an IBE scheme that has tags in both cipher-
texts and keys. Decryption requires the two-equation revocation technique of
Sahai and Waters [LSW08] as used in Waters’ IBE [Wat09] and fails uncondi-
tionally with (negligible) probability equal to that of NIZK verification failure.
The resulting IBE which we denote as JR -IBE-D, allows extension to primitives
that were not possible from JR -IBE , such as identity-based revocation schemes
with small secret keys, constant-size ciphertext IBBE and so on. We present a
construction of constant-size ciphertext IPE that can then be specialised to the
afore-mentioned primitives. Unlike earlier constructions based on dual pairing
vector spaces, specialising the IPE to specific cases actually leads to optimal
constructions, i.e., these schemes are as efficient as direct constructions obtained
from JR -IBE-D.

The reason for first constructing an IBE is two-fold. Firstly, it provides better
intuition and acts as a basis for moving to inner product functionality. Second
and most importantly, we do not know a direct generic transformation from
QA-NIZK proofs to IBE, let alone IPE. To this end, there has been some recent
work [JR15] that defines the so-called dual system simulation sound QA-NIZK
proofs that explain the JR -IBE construction better in generic terms. It may be
possible to explain our constructions too within this framework.

Application. As an application of IPE, we consider identity-based broadcast
encryption (IBBE) wherein the goal is to securely broadcast an encrypted mes-
sage to users associated with identities so that only a subset of privileged users
can decrypt the message. Unlike the public key broadcast setting where the num-
ber of public keys varies polynomially with the security parameter, the number
of valid identities in an IBBE are allowed to be exponential. Some direct con-
structions of adaptively secure constructions of IBBE schemes already exist in
the literature [GW09,AL10,RS14a]. Most of these schemes require the number
of privileged recipients for any broadcast to be bounded during setup (call this
bound n). Previous schemes had either constant-sized ciphertexts or constant-
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sized keys with at least one out of public parameters, ciphertext, key having size
depending linearly on n.

We show how to construct an IBBE from IPE1 that achieves parameters,
ciphertexts and keys all having size sublinear in n while maintaining security
under static complexity assumptions. (Here, static means that the number of
elements in instance is a constant). Due to lack of space, we present this discus-
sion in the full version of this paper [Ram16].

Related Work. There have been several constructions of attribute encryp-
tion schemes based on pairings [SW05,GPSW06,OSW07,BSW07,Wat11,LW12],
some focussing only on inner product encryption [KSW08,OT09,OT10,AL10].
Lattice-based constructions include ABE of [Boy13] for formulas and [GVW13,
GGH+13] for circuits. We are mostly interested in constructions based on bilin-
ear maps with prime order. Several approaches have been taken to construct-
ing ABE schemes in the prime order pairing setting, most of them attempting
to simulate properties of composite order pairings in suitably defined prime-
order counterparts. A widely used technique is based on dual pairing vector
spaces [OT08,OT09] which obtains all the nice theoretical properties but fails
to preserve efficiency. The sparse DPVS technique introduced in [OT11] uses sub-
groups of sparse matrices (those mostly covered with zero entries) with the hope
of improving efficiency. But the conversions are no longer generic and involve
very complex security analysis. Another generic technique is that of dual system
groups [CW13] that provides more efficient translations in the context of IBE.
However, it does not extend to primitives that require anonymity or attribute-
hiding. Two recent works [Wee14,Att14] present unifying frameworks for pred-
icate encryption schemes fully secure within the dual system framework. These
frameworks were defined in the composite order setting and later translated to
prime-order groups [CGW15,Att15]. The new technique used in [CGW15] actu-
ally obtained very efficient and near-optimal constructions in the prime-order
setting. Apart from translations from composite-order groups, there have been
attempts at direct constructions of certain simple primitives such as IBE and
HIBE. The approach of [JR13] is via QA-NIZK proofs. This was later extended
to HIBE in [RS14b] and IBBE [RS14a]. Another interesting approach was to
construct (H)IBE from message authentication codes (which is a symmetric
primitive), examined in [BKP14]. But we do not know whether the last method
extends to attribute-based encryption.

2 Preliminaries

This section introduces some notation followed by a review of pairings and
related hardness assumptions. Also provided are definitions related to inner-
product encryption.

2.1 Notation

The notation x1, . . . , xk
R←− X indicates that elements x1, . . . , xk are sampled

independently from the set X according to some distribution R. We use U to
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denote the uniform distribution. For a (probabilistic) algorithm A, y
R←− A(x)

means that y is chosen according to the output distribution of A on input x.
A(x; r) denotes that A is run on input x with its internal random coins set to r.
For two integers a < b, the notation [a, b] represents the set {x ∈ Z : a ≤ x ≤ b}.
If G is a finite cyclic group, then G

× denotes the set of generators of G.
We denote vectors in Z

n
p by bold upright characters (e.g. x). Inner product

of two Z
n
p -vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is given by 〈x,y〉 =∑n

i=1 xiyi.

2.2 Asymmetric Pairings and Hardness Assumptions

A bilinear pairing ensemble is a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where
G1 = 〈P1〉, G2 = 〈P2〉 are written additively and GT is a multiplicatively written
group, all having the same order p and e : G1 × G2 → GT (the pairing) is a
bilinear, non-degenerate and efficiently computable map. In a Type-3 pairing,
G1 �= G2 and no efficiently computable isomorphisms between G1 and G2 are
known. The constructions we provide are based on such pairings.

The assumptions based on which the security of our constructions is proven
are the decision Diffie-Hellman (DDH) assumptions in groups G1 and G2, called
DDH1 and DDH2 respectively. Below, we describe these two assumptions. Tech-
nically speaking, the two assumptions are not in the standard form but can be
shown to be equivalent. The reason we use the alternate forms is that they suit
the requirements of our reductions and also to be in sync with the notation
in [JR13].

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing ensemble and A ,
a probabilistic polynomial time (PPT) algorithm A that outputs 0 or 1.

AssumptionDDH1.Define a distribution D as follows: P1
U←− G

×
1 ; b, s U←− Zp,

μ
U←− Zp; D = (G, P1, bP1, bsP1). The advantage of A in solving the DDH1 prob-

lem is given by

AdvDDH1
G (A ) = |Pr[A (D, sP1) = 1] − Pr[A (D, (s + μ)P1) = 1]|.

Essentially, A has to decide whether μ = 0 or μ ∈U Zp given (D, (s + μ)P1).
The (ε, t)-DDH1 assumption holds in G if for any adversary A running in time
at most t, AdvDDH1

G (A ) ≤ ε.

Assumption DDH2. Let a distribution D be defined as follows: P2
U←− G

×
2 ,

r, c
U←− Zp, γ

U←− Zp;
D = (G, P2, rP2, cP2).

A ’s advantage in solving the DDH2 problem is given by

AdvDDH2
G (A ) = |Pr[A (D, rcP2) = 1] − Pr[A (D, (rc + γ)P2) = 1]|.

The (ε, t)-DDH2 assumption is that, for any t-time algorithmA ,AdvDDH2
G (A )≤ε.
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2.3 Inner Product Encryption (IPE)

Definition 1 (IPE). Let V denote a vector space of dimension n over a field F

and M denote the message space. An IPE scheme for inner products over V , is
defined by four probabilistic algorithms – Setup, Encrypt, KeyGen and Decrypt.

Setup(κ, n) Takes as input a security parameter κ and the dimension of V . It
outputs the public parameters PP and the master secret MSK.

KeyGen(MSK,y) On input a vector y ∈ V and the master secret MSK; this
algorithm outputs a secret key SKy for y.

Encrypt(PP,m,x) Takes as input a message m and an attribute vector x ∈ V
and outputs a ciphertext C.

Decrypt(PP, C,SKy) If 〈x,y〉 = 0, this algorithm returns the message m and ⊥
otherwise.

Correctness. The IPE scheme is said to satisfy the correctness condition if for
all vectors x,y ∈ V with 〈x,y〉 = 0 and for all m ∈ M, if (PP,MSK) R←−
Setup(κ, n), SKy

R←− KeyGen(MSK,y), C R←− Encrypt(PP,m,x), then Pr[m =
Decrypt(PP, C,SKy)] = 1.

Definition 2 (Security). The security definition for inner product encryp-
tion scheme that we consider is weak attribute hiding and adaptive security
against chosen plaintext attacks. It is formalised in terms of the following game
ind-wah-cpa between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm of the IPE and gives the public
parameters to A .

Key Extraction Phase 1: A makes a number of key extraction queries adap-
tively. For a query on a vector y, the challenger responds with a key SKy.

Challenge: A provides two pairs of messages and attribute vectors m0, x̂0 and
m1, x̂1with the restriction that if y is queried in the key extraction phase 1, then
〈x̂0,y〉 �= 0 and 〈x̂1,y〉 �= 0. The challenger chooses a bit β uniformly at random
from {0, 1}, encrypts mβ to x̂β and returns the resulting ciphertext Ĉ to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any vector y with 〈x̂0,y〉 = 0 or
〈x̂1,y〉 = 0.

Guess: A outputs a bit β′.
If β = β′, then A wins the game. The advantage of A in winning the

ind-wah-cpa is given by

Advind-wah-cpaIPE (A ) =
∣
∣
∣
∣Pr[β = β′] − 1

2

∣
∣
∣
∣ .

The IPE scheme is said to be (ε, t, q)-IND-WAH-CPA secure if every t-time adver-
sary making at most q key extraction queries has Advind-wah-cpaIPE (A ) ≤ ε.
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We also consider a slightly weaker form of adaptive security denoted
IND-CPA-security where attribute hiding property is not achieved. In the cor-
responding security game, denoted ind-cpa, x̂1 = x̂2 that is, there is only one
challenge attribute vector x̂.

3 Variant of Jutla-Roy Split-CRS NIZK Proof and IBE

In this section, we suggest a small modification to QA-NIZK proofs of Jutla
and Roy [JR13] and describe an IBE derived from it. We denote the IBE as
JR -IBE-D, the ‘d’ signifying a sort of ‘dual’ of the original scheme. JR -IBE-D
forms the basis of our IPE construction with short ciphertexts. Since the QA-
NIZK construction only points a way to the IBE construction, we provide an
informal description of the modification required without delving into details of
the construction or proof. For definitions and more details related to QA-NIZK
proofs we refer to [JR13].

We are mainly interested in NIZK proofs for languages that are linear sub-
spaces of vectors of G2-elements. [JR13] actually considers vectors over G1. Since
G1 has shorter representation compared to G2, we prefer the ciphertext compo-
nents to live in G1 and hence reverse the roles of G1 and G2 in our presentation.
A linear subspace language is parameterised by an t×m matrix A of G2-elements
and defined as

LA = {xTA | x ∈ Z
t
p}.

A NIZK proof system for this language is a collection of four algorithms
(K0,K1,P,V) where K0 generates the common parameters (group descriptions
for a pairing), K1 generates CRSp and CRSv, the prover and verifier CRS’s respec-
tively, P generates a proof given a witness x for a candidate �Q ∈ LA and V verifies
that the proof is valid. Quasi-adaptiveness refers to the CRS being allowed to
depend on the parameter, (A in the above case). Three notions – completeness,
soundness and zero-knowledge – formalise the security requirements of a NIZK
proof system. [JR13] starts with an efficient construction for this language and
then extends it to what they call the split-CRS QA-NIZK system. The languages
supported by such systems are characterised as

LA, �A1, �A2
= {xT · [A| �A1 + ctag · �A2] | x ∈ Z

t
p, ctag ∈ Zp},

with A ∈ G
t×m
2 , �A1, �A2 ∈ G

t
2 are parameters defining the language. Writing A

as [Al|Ar] with Al ∈ G
t×t
2 and Ar ∈ G

(m−t)×t
2 and assuming that the number

(m− t) of equations in excess of the number of unknowns can be verified by just
making additional randomised copies of the CRS [JR13], we only consider Al

in our descriptions. The algorithms of the split-CRS NIZK system are described
below.

K0: Generates the bilinear pairing parameters G = (p,G1,G2,GT , e, P1, P2).
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K1: Generates CRS as

CRSp,0 =
[
Al| �A1

] [
u1

b−1

]

CRSp,1 =
[
Al| �A2

] [
u2

b−1

]

CRSv,0 =

⎡

⎣
bu1

1
−b

⎤

⎦ P1 CRSv,1 =

⎡

⎣
bu2

0
0

⎤

⎦P1,

where u1,u2
U←− Z

t
p and b

U←− Z
×
p . Note that CRSv,0,CRSv,1 ∈ G

t+2
1 .

P: Suppose the candidate is �Q = xT · [A| �A1 + ctag · �A2]. The proof is given by

�R = xT (CRSp,0 + ctag · CRSp,1).

V: Given a proof �R for a candidate �Q , the verifier checks whether

e
(
[�R | �Q],CRSv,0 + ctag · CRSv,1

)

equals 1T , the identity of GT or not indicating validity of the proof or other-
wise, respectively. Here the pairing function e evaluated on vectors is nothing
but the product of the component-wise evaluations.

Our Modification. We are now ready to propose our tweak to this split-CRS
NIZK system. Instead of combining the verifier CRS’s during verification, con-
sider providing only one verifier CRS defined as

CRSv = CRSv,0 + ktagCRSv,1

where ktag
U←− Zp is chosen in K1. Verification is now done by testing whether

e
(
[�R | �Q],CRSv

) 1
(ctag−ktag)

is 1T only if ctag �= ktag. Verification fails unconditionally if the two tags are
equal. The modification weakens the quasi-adaptive soundness criterion since
there is a probability that the verification algorithm fails. However, we make this
modification only to make a transition to attribute-based encryption. Whether
this NIZK system is actually useful for other purposes is beyond the scope of
this work.

IBE. We now present the identity-based encryption scheme obtained from the
above mentioned NIZK system.

Setup(κ): Let G = (p,G1,G2,GT , e, F1, F2) be a Type-3 pairing ensemble gen-
erated based on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 ,

b
U←− Z

×
p , α1, α2, u1, u2, v1, v2, w1, w2

U←− Zp and set U1 = (u1+bu2)P1, V1 =
(v1 + bv2)P1, W1 = (w1 + bw2)P1, gT = e(P1, P2)α1+bα2 . The parameters are
given by
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PP : (P1, bP1, U1, V1,W1, gT )
MSK : (P2, α1, α2, u1, u2, v1, v2, w1, w2)

Encrypt(PP,m, id): The ciphertext is given by C = (C0, C1, C2, C3, ctag) where

ctag, s
U←− Zp,

C0 = m · (gT )s,
C1 = sP1, C2 = sbP1, C3 = s(U1 + idV1 + ctagW1).

KeyGen(MSK, id) Compute the secret key SKid = (K1,K2,K3,K4,K5, ktag) as
follows.

r, ktag
U←− Zp,

K1 = rP2, K2 = (α1 + rw1) P2, K3 = (α2 + rw2) P2

K4 = r(u1 + idv1 + ktagw1)P2, K5 = r(u2 + idv2 + ktagw2)P2.

Decrypt(C,SKid): If ctag = ktag, return ⊥. Otherwise compute

A =
(

e(C3,K1)
e(C1,K4)e(C2,K5)

) 1
ctag−ktag

and recover the message as

m =
C0 · A

e(C1,K2)e(C2,K3)
.

The message m can be recovered in a single step involving 3 pairing operations.

Decryption involves the two-equation revocation technique of Sahai and
Waters [LSW08] that was also used in Waters IBE [Wat09]. The scheme is adap-
tively secure under the SXDH assumption. Since JR -IBE-D is a special case of
IPE1, its security is implied by that of IPE1. Hence we omit the proof.

4 IPE with Short Ciphertexts

In this section, we define our first IPE construction IPE1 with constant-size
ciphertexts and show that it is adaptively secure. As mentioned earlier, we use
the n-equation revocation technique of Attrapadung and Libert [AL10] to extend
JR -IBE-D to support inner product encryption. Below is the description of the
algorithms of IPE1 = (IPE1.Setup, IPE1.Encrypt, IPE1.KeyGen, IPE1.Decrypt).

IPE1.Setup(κ, n): Generate a Type-3 pairing G = (p,G1,G2,GT , e, F1, F2) based
on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 , b

U←− Z
×
p ,

α1, α2, w1, w2
U←− Zp, u1 = (u1,1, . . . , u1,n),u2 = (u2,1, . . . , u2,n) U←− Z

n
p and

set u = (u1+bu2)P1, w = (w1+bw2), gT = e(P1, P2)α1+bα2 . The parameters
are given by
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PP : (P1, bP1,uP1, wP1, gT )
MSK : (P2, α1, α2,u1,u2, w1, w2)

IPE1.Encrypt(PP,m,x = (x1, . . . , xn)): Components of the ciphertext are com-
puted as follows.

ctag, s
U←− Zp,

C0 = m · (gT )s,
C1 = sP1, C2 = sbP1, C3 = s(〈x,u〉 + ctag · w)P1.

Note that C3 can be computed from uP1, wP1 and ctag using n + 1 scalar
multiplications. The ciphertext is given by C = (x, C0, C1, C2, C3, ctag).

IPE1.KeyGen(MSK,y = (y1, . . . , yn)): The secret key for y is given by SKy =
(K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2) where

r, (ktagi)n
i=2

U←− Zp,
K1 = rP2, K2 = (α1 + rw1)P2, K3 = (α2 + rw2)P2,
For i = 2, . . . , n,
K4,i = r(−u1,1

yi

y1
+ u1,i + ktagiw1)P2,

K5,i = r(−u2,1
yi

y1
+ u2,i + ktagiw2)P2.

IPE1.Decrypt(C,SKy): Compute ktag =
∑n

i=2 xiktagi. If ctag = ktag, return ⊥.
Otherwise let

A =

(

e(C3,K1)e(C1,

n∑

i=2

xiK4,i)−1e(C2,

n∑

i=2

xiK5)−1

) 1
ctag−ktag

.

Recover the message as m = C0·A
e(C1,K2)e(C2,K3)

. As in the IBE, decryption can
be done in a single step involving 3 pairings.

Correctness: Let C ←− IPE1.Encrypt(PP,m,x = (x1, . . . , xn); s) where
C = (x, C0, C1, C2, C3, ctag) and let SKy ←− IPE1.KeyGen(MSK,y =
(y1, . . . , yn); r) with SKy = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2). Suppose 〈x,y〉 =
0 and ktag =

∑n
i=2 xiktagi �= ctag. First, we look at the computation of A.

We have
n∑

i=2

xiK4,i =
n∑

i=2

xir(−u1,1
yi

y1
+ u1,i + ktagiw1)P2

= r

(

−u1,1

y1

n∑

i=2

xiyi +
n∑

i=2

xiu1,i + w1

n∑

i=2

xiktagi

)

P2

= r

(

−u1,1

y1
(〈x,y〉 − x1y1) + 〈x,u1〉 − x1u1,1 + ktag · w1

)

P2

= r (〈x,u1〉 + ktag · w1) P2.

Similarly,
∑n

i=2 xiK5,i = r (〈x,u2〉 + ktag · w1) P2. Combining the two, we get

e(C1,

n∑

i=2

xiK4,i)e(C2,

n∑

i=2

xiK5) = e(P1, P2)rs(〈x,u〉+ktag·w)
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implying that

A =

(

e(C3,K1)e(C1,

n∑

i=2

xiK4,i)−1e(C2,

n∑

i=2

xiK5)−1

) 1
ctag−ktag

= e(P1, P2)rsw.

The second stage of decryption recovers the message as shown below.

C0 · A

e(C1,K2)e(C2,K3)
=

m · gs
T · A

e(sP1, (α1 + rw1)P2)e(sbP1, (α2 + rw2)P2)

=
m · e(P1, P2)(α1+bα2)s · e(P1, P2)rsw

e(P1, P2)(α1+bα2)se(P1, P2)rsw

= m

Before proving security, we describe algorithms that generate the necessary
semi-functional objects for a dual system proof. These are required only in the
proof.

IPE1.SFEncrypt(PP,MSK,m,x): Generate (C′ = (x, C0, C1, C2, C3, ctag))
R←−

IPE1.Encrypt(PP,m,x). Choose μ
U←− Zp and generate the semi-functional

ciphertext components as follows.

C0 ←− C0 · e(P1, P2)μα1 ,
C1 ←− C1 + μP1, C3 ←− C3 + μ(〈x,u1〉 + ctag · w1).

Return C = (x, C0, C1, C2, C3, ctag) as the resulting semi-functional cipher-
text.

IPE1.SFKeyGen(PP,MSK,y): Let SK′
y = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2)
be obtained by running IPE1.KeyGen(MSK,y). Pick γ

U←− Zp and modify
the components of SK′

y as follows:

K2 ←− K2 + γP2, K3 ←− K3 − γ
b P2.

The semi-functional key given by SK′
y = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2)
is returned as output.

For a given pair of ciphertext and key satisfying (ktag =
∑n

i=2 xiktagi) �= ctag
and 〈x,y〉 = 0, decryption fails only when both are semi-functional since the
message will be blinded by e(P1, P2)μγ . It is easy to see that the rest of the
semi-functional components get canceled.

We now prove that scheme IPE1 is adaptively secure, formalised in the the-
orem below.

Theorem 1. Scheme IPE1 is (q, ε, t)-IND-CPA-secure if the (εDDH1, t1)-DDH1
and (εDDH2, t2)-DDH2 assumptions hold in the underlying pairing description G
where ε ≤ εDDH1 + q · εDDH2 + (1/p) and t = max(t1, t2) − O(qρ), ρ being the
maximum cost of scalar multiplication in either G1 or G2.
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Proof Sketch. Let G0 denote the real security game ind-cpa (defined in
Sect. 2.3). The proof proceeds though a sequence of games where we grad-
ually change the distribution of the keys and challenge ciphertext provided
to the adversary. At the end is the game where the attacker receives semi-
functional encryption of a random message. We first change the ciphertext to
semi-functional form and then the q keys provided as answers to the q queries
to semi-functional form. There are essentially three main parts in the reduction.

Distinguishing normal and semi-functional ciphertexts: We show that an
attacker’s ability to distinguish between normal and semi-functional cipher-
texts can be leveraged to solve the DDH1 problem. This is clear from the
definition of semi-functional ciphertexts. P1, bP1 and sbP1 come from the
instance and are sufficient to simulate the correct environment. The DDH1
challenge is embedded in C1 which is either normal or semi-functional accord-
ing as the instance is real or random. Since no encoding of b is known in G2,
the simulator itself cannot create a semi-functional key and detect the type
of the challenge ciphertext.

Detecting whether k-th key is normal or semi-functional: This is the
most crucial stage of the security reduction. Denote by y1, . . . ,yq the queries
made by the attacker. The first k − 1 keys returned are semi-functional and
the last q − k − 1 keys are normal. The simulator is designed in a way that
it can create both normal and semi-functional keys. The DDH2 challenge is
embedded in the k-th key and particularly in component K2. However, for
the k-th key the simulator can only create a semi-functional ciphertext with
ctag =

∑n
i=2 xiktagi. This ensures that the simulator itself cannot detect

the type of k-th key and trivially solve DDH2. Furthermore, the tags in the
ciphertext and keys need to be uniformly and independently distributed in
the attacker’s view. This is achieved by setting them as

⎛

⎜
⎜
⎜
⎝

ĉtag
ktag2

...
ktagn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−x̂1 −x̂2 −x̂3 · · · −x̂n

y2/y1 −1 0 · · · 0
y3/y1 0 −1 · · · 0

...
...

...
. . .

...
yn/y1 0 0 · · · −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

v2,1

v2,2

...
v2,n

⎞

⎟
⎟
⎟
⎠

where ĉtag is the tag associated with the challenge ciphertext for the chal-
lenge vector x̂ = (x̂1, . . . , x̂n) and ktag2, . . . , ktagn are the tags associated
with the secret key for yk. The matrix has determinant (−1)n〈x̂,yk〉/y1
which is non-zero because all of A ’s queries are such that 〈x̂,yk〉 �= 0.
(Here y1 is the first coordinate of yk). Hence all we need to do is choose
v2 = (v2,1, . . . , v2,n) uniformly from Z

n
p and also hide v2 information theo-

retically from the attacker. v2 is in fact embedded in the master secret key
(and as a result in the public parameters) but masked by other additive
terms. The argument repeated q times for each query gives a degradation of
q in DDH2.

Distinguishing the real message from a random one: The last important
step is an information theoretic argument to show that the message encrypted
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is random that is, the bit β is statistically hidden form the attacker. This is
done by changing the setup and semi-functional key generation algorithms
in such a way that all information provided to the attacker are independent
of α1. The only component that depends on α1 is C0 of the challenge cipher-
text where the message has a blinding factor of e(P1, P2)μα1 . Since all other
information is independent of α1, mβ · e(P1, P2)μα1 is uniformly distributed
in GT and thus provides no hint to about β unless μ = 0 which happens
with probability 1/p.

Refer to the full version [Ram16] for details of the proof.

5 Weakly Attribute-Hiding IPE

In this section, we present our second IPE construction IPE2 for inner prod-
ucts over Z

n
p . Unlike IPE1, this construction is based on JR -IBE . While the

n-equation revocation technique was used in [AL10] to obtain constant-size
ciphertexts forgoing attribute-hiding, we use it here to anonymise ciphertexts
by incorporating the technique into the encryption algorithm. We split the
ciphertext component of JR -IBE containing the identity hash into n − 1 compo-
nents corresponding to the entries of the attribute vector x. For decryption, the
relation R(x,y) can be verified by combining the ciphertext components using
the secret vector y without knowing x. Described below are the algorithms of
IPE2 = (IPE2.Setup, IPE2.Encrypt, IPE2.KeyGen, IPE2.Decrypt).

IPE2.Setup(κ, n): Generate a Type-3 pairing G = (p,G1,G2,GT , e, F1, F2) based
on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 , b

U←− Z
×
p ,

α1, α2, w1, w2
U←− Zp, u1,u2

U←− Z
n
p and set u = u1 + bu2, w = w1 + bw2

and gT = e(P1, P2)α1+bα2 . The parameters are given by

PP : (P1, bP1,uP1, wP1, gT )
MSK : (P2, α1, α2,u1,u2, w1, w2)

IPE2.Encrypt(PP,m,x = (x1, . . . , xn)): The ciphertext is given by the tuple
C = (C0, C1, C2, (C3,i, ctagi)n

i=2) where

(ctagi)n
i=2, s

U←− Zp,
C0 = m · (gT )s,
C1 = sP1, C2 = sbP1,

C3,i = s
(
− xi

x1
u1 + ui + ctagiw

)
P1 for i = 2, . . . , n.

Since (uiP1)i∈[1,n] and wP1 are provided in PP, each C3,i can be computed
using 3 scalar multiplications.

IPE2.KeyGen(MSK,y = (y1, . . . , yn)): Secret key SKy = (K1,K2,K3,K4,K5)
is computed as follows.

r
U←− Zp,

K1 = rP2, K2 = (α1 + r〈y,u1〉) P2, K3 = (α2 + r〈y,u2〉) P2

K4 = rw1P2, K5 = rw2P2.
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IPE2.Decrypt(C,SKy,y): Compute ctag =
∑n

i=2 yictagi. Recover the message as
follows.

m =
C0 · e(

∑n
i=2 yiC3,i,K1)

e(C1,K2 + ctagK4)e(C2,K3 + ctagK5)
.

Correctness. Let C R←− IPE2.Encrypt(PP,m,x = (x1, . . . , xn); s) and let
SKy

R←− IPE2.KeyGen(MSK,y = (y1, . . . , yn); r) where C, SKy are given by
(C0, C1, C2, (C3,i, ctagi)n

i=2), SKy = (K1,K2,K3,K4,K5) respectively. Suppose
〈x,y〉 = 0 and ctag =

∑n
i=2 yictagi. Let A1 = e(

∑n
i=2 yiC3,i,K1) and A2 =

e(C1,K2 + ctagK4)e(C2,K3 + ctagK5). Decryption is correct if A2/A1 = (gT )s.
We have

A1 = e

(
n∑

i=2

yiC3,i,K1

)

= e

(
n∑

i=2

yis

(

−xiu1

x1
+ ui + ctagiw

)

P1, rP2

)

= e

((

−(〈y,x〉 − x1y1)
u1

x1
+ 〈y,u〉 − y1u1 + ctag · w

)

P1, P2

)rs

= e (P1, P2)
rs(〈y,u〉+ctag·w)

,

and

A2 = e(C1,K2 + ctagK4)e(C2,K3 + ctagK5)
= e(sP1, (α1 + r〈y,u1〉) P2 + ctag · rw1P2)

· e(sbP1 (α2 + r〈y,u2〉) P2 + ctag · rw2P2)
= e (P1, (α1 + bα2)P2)

s
e (P1, r(〈y,u1〉 + b〈y,u2〉 + ctag(w1 + bw2))P2)

s

= (gT )s · e (P1, (〈y,u1 + bu2〉 + ctag · w)P2)
rs

= (gT )s · e (P1, P2)
rs(〈y,u〉+ctag·w)

thus implying that A2/A1 = (gT )s, as desired.

Security. The theorem below summarises the security guarantee we obtain for
IPE2.

Theorem 2. Scheme IPE2 is (q, ε, t)-IND-WAH-CPA-secure if the (εDDH1, t1)-
DDH1 and (εDDH2, t2)-DDH2 assumptions hold in the underlying pairing descrip-
tion G where ε ≤ εDDH1 + q · εDDH2 + (1/p) and t = max(t1, t2) − O(qρ), ρ being
the maximum cost of scalar multiplication in either G1 or G2.

The proof is more or less similar to the proof of Theorem 1 except for the
information theoretic argument in the last step. In addition to showing that
the blinding factor on the message is uniformly random in the attacker’s view,
we also need to prove that the attribute vector is hidden from the adversary.
The solution is to simulate the key extraction queries in such a way that all
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information the attacker sees is independent of u1. Observe that u1 is part of
the master secret and would also be used to define the semi-functional com-
ponents for C3,i. With all keys and parameters being independent of u1, one
can argue that C3,i components are uniform and independent elements of G1

thus providing no hint about which attribute vector the challenge ciphertext is
encrypted to. (This makes sense as the only ciphertext components determined
by the attribute vector are C3,i for i = 2, . . . , n). A detailed proof is provided in
the full version [Ram16].
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