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Abstract. A new class of software Denial of Service (DoS) attacks
against Android platforms was recently discovered, where the attacks
can force the victim device unresponsive, target and terminate other
applications on the device, and continuously soft reboot the device [26].
After Google was informed of these DoS attacks, their attempt to resolve
the problem did not adequately address the fundamental underlying
attack principles. In this paper, we show that engineering software DoS
defenses is challenging, especially for embedded and resource-constrained
devices. To support our findings, we detail a revised DoS attack strat-
egy for the latest version of Android. For our experimental evaluation,
we demonstrate that the new class of DoS attacks are even more dam-
aging to embedded Android devices. As part of our proof-of-concept
attacks, we were able to render the Sony Bravia XBR-43X830C Android
TV and the Amazon Fire TV Stick 1st generation devices permanently
unusable. In addition, other devices, including the Moto 360 1st genera-
tion smartwatch, required flashing firmware images, whereas the Nvidia
Shield Android TV and the Amazon Fire 7′′ Tablet required a factory
reset to recover. Our attack is applicable to most Android devices and
requires manual intervention to attempt to recover the device. The pro-
posed attack strategy is more debilitating to devices that do not provide
means for the end-user to easily access safe mode, recovery mode, or
the ability flash firmware images. To mitigate the attack, we created an
open-source defense application that has a 100 % prevention rate after
a single soft reboot of the device while incurring less than 1.6 % perfor-
mance overhead.
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1 Introduction

The Android Operating System (OS) is becoming popular and pervasive to
embedded platforms such as mini PCs, streaming media players, smart TVs,
smartwatches, and infotainment systems. Despite the fact that most of the under-
lying Android framework remains the same among these devices, a common vul-
nerability may affect each platform differently. This is due to the devices having
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different form factors, hardware buttons, safe mode availability, and access to
the recovery and fastboot modes. For instance, smartphones, the most mature
of the Android platforms, are the best-equipped to deal with malicious applica-
tions since they generally provide both easy access to safe mode and recovery
mode from a powered-off state by holding a combination of hardware buttons
during boot. Some of the less mature or resource-constrained devices may lack
or not provide easy access to these capabilities, which increases their exposure
to Denial of Service (DoS) attacks.

Designing adequate defenses to software DoS attacks is difficult: in most
cases, the resource under attack is shared and thus a trade-off between preventing
the attack and allowing legitimate use of the resource is required in practice. If
the attack countermeasure is not restrictive enough, it will enable a malicious
actor to reduce the availability of the resource. On the other hand, if the attack
countermeasure is too restrictive, it will limit legitimate usage of the resource.
In the context of the DoS attack presented in this paper, the resource being
attacked is availability of the device itself and, by extension, all of its constituent
resources. Contrary to the software DoS, preventing DoS and Distributed DoS
(DDoS) for network-based attacks is a well-researched area [27,28,31–33] and
is known to be a difficult problem. There has been less research in application-
level DoS attacks, which exploit inherent software design weaknesses, especially
against Android [16,21,25,26].

In Android, intents are used for inter-process and intra-process communi-
cation. An intent is like a message that is sent by an app to itself or another
app. An intent can contain data to be utilized by the receiving app to perform
an action. Broadcast intents are sent to all apps that listen for a specific event
or handle an action. Intents are a fundamental communication mechanism that
are used by Android apps and can be abused since the Android OS does not
put any limit on the amount or rate that intents can be directly sent from an
app. Rapidly sending intents from a third-party app can result in various DoS
attacks including making the target device unresponsive to the user, targeting
and terminating other running apps, and forcing a soft reboot of the device. A
soft reboot occurs whens the Android framework, residing in user space, crashes,
but the Linux kernel continues execution. A soft reboot may appear to the user
as a reboot since the Android boot animation is displayed during a soft reboot.

We informed Google of a novel class of intent-based DoS attacks on Android
in September 2015, and they subsequently introduced fixes in Android to address
them. We created variations of the intent-based DoS attacks that work around
Google’s fixes, making the attacks effective on the latest Android version. In
this paper, we focus on the DoS attack to quickly and repeatedly soft reboot an
Android device, which we refer to as the soft reboot cycle DoS attack, since it is
the most severe of the DoS attacks. We provide results for the updated soft reboot
cycle DoS attack on popular embedded Android devices. The underlying cause
of the soft reboot is explained in conjunction with referencing Android Open
Source Project (AOSP) Android 6 source code files. We also proposed changes
to the Android framework to thwart the attacks, and we created an open-source



Why Software DoS Is Hard to Fix: Denying Access EAP 195

Android application that precludes the soft reboot cycle DoS attack from being
successful. This countermeasure application can be utilized by device manu-
facturers without making any modification to the Android framework. Device
manufacturers can utilize it as a system application in their next build or sign
the application with the device platform key to make it readily deliverable to
current devices.

2 Threat Model

We assume that the user side-loads the malicious application or downloads and
installs it from an official or third-party application marketplace. The code to
perform the soft reboot cycle DoS attack can be introduced by repackaging a pop-
ular application with malicious code. Repackaging Android applications is a pop-
ular method for distributing malware [29,30,34–36]. Social engineering is another
possible attack vector to deliver the malicious application [10,13,18,23]. The
available approaches to remove an application depend on the specific Android
device. Safe mode prevents the execution of installed third-party applications.
If safe mode is available on the device, the user can boot into safe mode and
uninstall third-party applications. Android Debug Bridge (ADB) is a command-
line tool that allows the user to issue commands from a separate computing
device to an Android device or emulator. ADB comes disabled by default on
most devices. The user must specifically enable ADB in the Settings app, and
authorize the debug device that the Android device will be connected to [7]. If
ADB over a USB cable is enabled, then the user can obtain a list of all installed
third-party applications on the device using the adb shell pm list packages
-3 command and uninstall them using ADB.

Certain devices will allow the user to boot into recovery mode and fastboot
mode from a powered-off or booting state using hardware buttons or screen
touches on smartwatches. The standard Android recovery mode allows a user to
perform a factory reset which wipes the data and cache partitions on the device
resulting in the removal of the user’s installed applications. Fastboot mode allows
the user to flash firmware images to the device if the bootloader can be unlocked.
The soft reboot cycle DoS attack is persistent: once the attack is triggered, the
device becomes unresponsive and enters into soft reboot cycles. To summarize,
if all of the following four conditions are met, the user cannot remove an app
executing the soft reboot cycle DoS attack from the device:

1. No access to safe mode on the device.
2. ADB over USB is disabled prior to the attack.
3. The Android OS sends the BOOT COMPLETED broadcast intent to third-party

apps after the booting process completes1.
4. There is no hardware-based method to enter a mode from a powered-off or

booting state that will allow the user to perform a factory reset or flash
firmware images.

1 The only Android device that we have encountered that does not do this is the
Xiaomi Mi TV Box Mini [11].
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If only the first 3 conditions are fulfilled, the user is forced to perform a
factory reset or flash firmware images to recover the device from the attack.

3 Attack Method

Conceptual Attack Summary. A third-party Android app can soft reboot
the Android OS by sending a large amount of intents rapidly. An Android app
is composed of application components. An activity application component pro-
vides a Graphical User Interface (GUI) that allows the user to interact with the
application. A service application component performs tasks in the background
and does not present a GUI to the user. A broadcast receiver application com-
ponent listens for specific events and state changes that occur within an app
or the OS itself. The attack app contains the following application components:
activity, service, and broadcast receiver.

The attack begins shortly after the Android OS boot process completes.
The OS sends a broadcast intent, to indicate the fact that the boot process
has completed, to broadcast receivers who have permission to receive it. The
broadcast receiver in the attack app receives this broadcast intent and starts
the service application component so it can execute in the background. The
service application component then starts rapidly sending intents to start the
activity application component. The intents being sent by the service contain
specific flags which create an activity in its own task stack, so new activities are
created even though the same activity already exists in a different task stack.
Each started activity will send an intent to the service which will create more
activities and the cycle repeats leading to a multiplicity the same activity being
created.

The system server process, an integral part of the Android framework, con-
tains service threads that apps interact with using a client-server architecture.
system server creates the activity application components requested the by
the service, and it also creates a socket pair to deliver the user’s touch events
to the app. Each activity that is created requires a single file descriptor from
the system server process for its end of the socket pair, although it can require
two file descriptors if intents are sent rapidly since it will not be able to transfer
the other socket to the app. Each process has a soft limit of file descriptors to
prevent a single process from exhausting the resource. Once a process hits its
soft limit for file descriptors, it cannot open or create files, pipes, or sockets.

A third-party app can create activities rapidly to force system server to
reach its soft limit of 1,024 file descriptors. When this occurs, system server
is constrained and can crash in a number of ways. The most common crash is
due to system server trying to create a system message dialog box indicating
that the attacking app has crashed. A socket for this dialog box is required to
obtain the user’s input, but system server will not be able to create it. This
leads to an uncaught exception and results in a crash of system server. This
event causes the Android OS to soft reboot. The attacking app will again receive
the broadcast intent that is sent out to apps indicating that the Android OS has
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completed the boot process. The attacking app again performs the attack to
make the device soft reboot and this cycle will persistently occur until the user
manually takes some action to prevent it.

Prior to Android 6, a third-party app was able to make the system server
process attack itself and eventually crash by creating a repeating alarm to
have system server send an intent every millisecond. Google, in response to
our vulnerability disclosure, raised the minimum recurrence interval in between
alarms to 60 s. This partially addressed the vulnerability, although they did
not add a restriction on the amount or rate for all available means that an
app can send intents. An app can still send an unrestricted amount of intents
directly from an application component using the inherited methods of the
android.content.ContextWrapper class. Without rate-limiting the sending of
intents for all approaches available to an app or creating a reasonable limit on
the amount of activity instances an app can concurrently have, the attack will
be successful.

Soft Rebooting the Device. The interaction between the Reboot appli-
cation, our malicious app, and system server is shown in Fig. 1. Certain
events have been omitted from Fig. 1 for clarity, such as the fact that the
com.android.server.am.ActivityManagerService class creates all applica-
tion components used by the attack app. In addition, only certain services
within system server are displayed. The Reboot application has a broad-
cast receiver application component (i.e., RebootReceiver in Fig. 1) to receive
the BOOT COMPLETED broadcast intent sent from system server, so that the
application can begin execution shortly after the Android OS completes the
boot process (displayed as arrow 1 in Fig. 1). The app also listens for the

Fig. 1. Interaction between the Reboot malicious app and the system server process.
Dashed lines indicate indirect inter-process interactions.
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android.hardware.usb.action.USB STATE broadcast intent which is part of
AOSP and does not require a permission. On all the devices we tested,
this broadcast intent can be received prior to the BOOT COMPLETED broadcast
intent. Listing 1.1 shows how RebootReceiver should be declared in the app’s
AndroidManifest.xml file. It is important to ensure that the android:priority
attribute be set to the maximum value (i.e., 999) in the intent-filter for the
BOOT COMPLETED action. Upon receiving this intent, RebootReceiver sends an
intent to start the RebootService (displayed as arrow 2 in Fig. 1). RebootService
will, first, create a thread to perform the attack, then return the START STICKY
constant in its onStartCommand method.

The thread that launches the attack will send a large number of
intents to rapidly create numerous instances of activity application compo-
nents (i.e., RebootMainActivity in Fig. 1) that are internal to the attack-
ing app. The attack requires that the intents use the following two flags:
FLAG ACTIVITY MULTIPLE TASK and FLAG ACTIVITY NEW TASK. These intent
flags, when used together, create a new task stack containing a single activity
even when a matching activity already exists within the attack application. The
default behavior, without using these intent flags, is to push a new activity on top
of the current task stack. Newly created instances of RebootMainActivity will
attempt to start the RebootService in its onCreate method. The RebootService
has already been created and is running, so it will just result in the execution of
its onStartCommand method which will result in the creation of more instances
of RebootMainActivity. This essentially creates an cycle of the two application
components calling each other (displayed as arrows 3 and 4 in Fig. 1). The attack
creates numerous instances of task stacks containing only a single activity. Each
task stack will require system server to allocate 1 to 2 file descriptors depend-
ing on the rate of the attack. The attack causes system server to exhaust its
file descriptors. As a result of this condition, system server generally encoun-
ters an uncaught exception causing its termination. Alternatively, the watchdog
daemon process can also kill system server if it perceives a deadlock.

Disabling Wireless Communication Methods. The attack can be
made more aggressive by having the attack app programmatically dis-
able the Bluetooth and Wi-Fi communication methods on the device. The
android.bluetooth.BluetoothAdapter.disable() Android Application Pro-
gramming Interface (API) call requires the BLUETOOTH and the BLUETOOTH ADMIN

1 <receiver android:name="RebootReceiver">

2 <intent-filter android:priority="999">

3 <action android:name="android.intent.action.BOOT_COMPLETED" />

4 </intent-filter>

5 </receiver>

Listing 1.1. Declaration of the RebootReceiver in the app’s manifest.
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permissions. This API call disables Bluetooth on the device so that any
paired devices can no longer interact with the device. This will also pre-
clude ADB over Bluetooth to the device for Android Wear devices. The
android.net.wifi.WifiManager.setWifiEnabled(boolean) API call requires
the ACCESS WIFI STATE and CHANGE WIFI STATE permissions. This API call can
disable Wi-Fi so that other devices on the wireless network can be prevented
from interacting with the target device over Wi-Fi, and it also prevents ADB
over Wi-Fi which is present on certain Android devices.

4 Underlying Cause for the Soft Reboot

The intents sent by the attacking app have the FLAG ACTIVITY MULTIPLE TASK
and FLAG ACTIVITY NEW TASK flags set, so a new starting window with a new
task stack will be required for each activity. In this section, the classes that
end with “Service” are contained within the system server process. The
com.android.server.wm.WindowManagerService class [4] creates a window for
the activity and each window requires a pair of android.view.InputChannel
objects to be created so that the input events from the input device files can be
delivered to the activity window. Third-party applications cannot read directly
from the input device files which are contained in the /dev/input directory,
but system server has permission to read from them since it belongs to the
input group. Therefore, WindowManagerService creates a pair of sockets using
the socketpair() system call, registers the input channel with the window via
the com.android.server.input.InputManagerService class, and transfers the
output channel to the application. This allows the application to consume and
process input events from the user via system server.

A socket pair requires a file descriptor for each end of the socket pair. Each
created activity will initially make system server use two file descriptors. It
will then transfer one socket to the attacking app, although during the attack
system server is processing a deluge of intents and does not get a chance to
transfer the socket. This results in system server using two file descriptors
per activity created which makes system server get closer to approaching the
soft limit of 1,024 per-process file descriptors set by the kernel. Once the soft
limit is reached, system server cannot open or create any new files, pipes, or
sockets, and WindowManagerService will fail to create the starting window for
each activity.

The attacking app will encounter an uncaught exception once its activities
cannot be created. The attacking app uses an android.view.InputChannel
object received from the WindowManagerService as a parameter to the
android.view.InputEventReceiver constructor. The InputEventReceiver
object is used to queue the received user events so that they can be stored
while waiting to be consumed by the application. The InputChannel object
that the application received will be null. So an exception will be thrown by
the InputEventReceiver.nativeInit() native method in the attacking appli-
cation which goes uncaught and causes it to terminate.
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1 Intent i = new Intent(this, RebootMainActivity.class);

2 i.setFlags(Intent.FLAG_ACTIVITY_MULTIPLE_TASK | Intent.

↪→ FLAG_ACTIVITY_NEW_TASK);

3

4 TaskStackBuilder tsb = TaskStackBuilder.create(this);

5 for (int a = 0; a < 1024; a++)

6 tsb.addNextIntent(i);

7

8 if (Build.VERSION.SDK_INT >= 23) {

9 while (true)

10 tsb.startActivities();

11 } else {

12 PendingIntent pi = PendingIntent.getActivity(getApplicationContext()

↪→ , 0, i, PendingIntent.FLAG_CANCEL_CURRENT);

13 AlarmManager am = (AlarmManager) this.getSystemService(Context.

↪→ ALARM_SERVICE);

14 am.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP, 1, 1, pi);

15 tsb.startActivities();

16 }

Listing 1.2. Rapidly sending Intents using pending intents via AlarmManager and
TaskStackBuilder, causing a soft reboot.

When the attacking app crashes, ActivityManagerService tries to display
an android.app.Dialog object indicating that the attacking app has crashed.
A socket will be required to deliver the user input to the window of the Dialog
system message. system server will not be able to create the socket, and an
uncaught exception occurs. The zygote daemon process contains pre-loaded
classes and resources and forks itself to create other applications quickly. zygote
[6] starts system server with the --runtime-args flag which provides the
threads of system server with an UncaughtExceptionHandler interface object
of the type com.android.internal.os.RuntimeInit.UncaughtHandler [3]. It
receives uncaught exceptions occurring within the threads of system server. It
only has one method and all of its code is within try-catch-finally blocks.
The finally block calls the android.os.Process.killProcess(int) API call
with an integer parameter that is the result of the Process.myPid() API call.
Since the thread that has the uncaught exception occurs within system server,
this results in system server both sending and receiving the SIGKILL signal,
which results in its termination.

zygote is the parent process of system server, so it will receive a
SIGCHLD signal when system server terminates. For each SIGCHLD signal
that zygote receives, it will specifically check if the terminated child process
is system server. If system server terminates, then zygote will send the
SIGKILL signal to itself [5] which results in a soft reboot. The init process
will then restart zygote since it is declared as a service in the init.rc file [2].
zygote will then restart system server.
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Listing 1.2 provides the source code to cause a soft reboot by rapidly sending
intents. The attack uses AlarmManager to send an intent every millisecond in
builds prior to Android 6. The android.app.TaskStackBuilder class is used
to send 1,024 intents repeatedly for Android 6. The use of TaskStackBuilder
requires Android 4.1 or above. The Service.startActivities(Intent[]) API
call can be used in place of TaskStackBuilder which requires Android 3.0 or
above.

5 Attack Evaluation

We tested the soft reboot cycle DoS attack on various Android devices. Some of
the newer Android platforms tend not have safe mode and some do not have easy
access to recovery mode, so we focused on these devices. All of these devices were
running a non-rooted stock version of the Android OS that came pre-installed on
the device. All of these devices had ADB over USB disabled by default. Table 1
aggregates the results of the experimental data.

5.1 Sony Bravia XBR-43X830C Android TV

The Sony Bravia XBR-43X830C Android TV is vulnerable to the soft reboot
cycle DoS attack, and there is no known way to recover. During our testing, the
device was running Android 5.1.1 with a build fingerprint of Sony/SVP4KDTV15
UC/SVP-DTV15:5.1.1/LMY48E.S63/2.473:user/release-keys. The only way
to perform a factory reset of the device is through the Settings app [14]. During
the attack, the GUI becomes unresponsive to the infrared remote which pre-
vents the user from reaching the Settings app to perform a factory reset. The
device does have ADB over Wi-Fi, but this can be subverted since the attack-
ing application disables Wi-Fi. This device does not have the ADB over USB

Table 1. Test devices and results summary.

Device Build No Android
Version

Vulnerable Recoverable

Sony Bravia XBR-43X830C TV LMY48E.S63 5.1.1 Yes No

Moto 360 1st Gen. Smartwatch LDZ22O 5.1.1 Yes Yesa

Amazon Fire TV Stick 1st Gen JDQ39 4.2.2 Yes Nob

Xiaomi Mi Mini TV Box KOT49H 4.4.2 No Yes

Nvidia Shield Android TV LMY47D 5.1 Yes Yesc

Amazon Fire 7′′ Tablet LMY47O 5.1.1 Yes Yesc

Devices prior to Android 4.1 - < 4.1 Yes Yesc

a Recovering requires crafting a special USB cable and flashing firmware images.
b Recovering requires ADB over USB, which is disabled by default, to be enabled
prior to the attack.

c Recovering requires a full factory reset in recovery mode or flashing firmware images.
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capability. The device also does not have safe mode, recovery mode, or fastboot
mode. Therefore, the user is unable to uninstall the application, perform a fac-
tory reset, or flash firmware images. Booting to fastboot mode via ADB over
Wi-Fi will show a black screen, but it will also soft brick the device as it will not
boot properly after that. The device comes pre-installed with Google Play so the
user can download apps, and they can also be installed via ADB over Wi-Fi.

5.2 Moto 360 1st Generation Smartwatch

The Moto 360 1st generation smartwatch is vulnerable to the soft reboot cycle
DoS attack, although there is a way to recover via a modified USB cable that
can be used to unlock the bootloader and flash firmware images to the device
[12]. During our testing, the device was running Android 5.1.1 with a build
fingerprint of motorola/metallica/minnow:5.1.1/LDZ22O/2006643:user/
release-keys. The device allows the user to directly install or uninstall apps
using ADB over Bluetooth. When a user installs or uninstalls an app on an
Android smartphone or tablet, which is paired with an Android Wear device,
the accompanying Android Wear app, if present, will also be installed or unin-
stalled from the Android Wear device. The Moto 360 does not have a direct way
to uninstall a particular application through its GUI. The user has about 8 s to
perform some action on the device before the GUI becomes unresponsive. The
user can initiate a factory reset through the GUI, but it will not have enough
time to complete and be successful before the device soft reboots. The Moto 360
lacks a standard USB interface, so only ADB over Bluetooth is available. The
attack app will disable Bluetooth to prevent communication with paired devices.

5.3 Amazon Fire TV Stick 1st Generation

The Amazon Fire TV Stick 1st generation is vulnerable to the soft reboot cycle
DoS attack and can leave the device in an unusable state if ADB over USB is
not enabled prior to the attack. The device runs Amazon Fire OS 3.0, which is a
modified version of Android 4.2.2. The device we tested had a build fingerprint:
BRCM/montoya:4.2.2/JDQ39/54.1.2.2 user 122066120:user/release-keys.
If ADB over USB is enabled prior the attack, the user can list the installed
third-party applications and uninstall them as the device is booting. The mali-
cious application programmatically disables Bluetooth and Wi-Fi. This renders
any paired devices ineffective and precludes ADB over Wi-Fi. There are no hard-
ware buttons to force the device to boot into recovery mode or bootloader mode
from a powered-off or booting state. This will effectively preclude the user from
removing the application if ADB over USB is not enabled prior to the attack.

5.4 Xiaomi Mi TV Box Mini

The Xiaomi Mi TV Box Mini is not vulnerable to the soft reboot cycle DoS
attack. The device we tested was running Android 4.4.2 and had a build
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fingerprint of Xiaomi/forrestgump/forrestgump:4.4.2/KOT49H/566:user/
release-keys. Applications can be installed through the browser or a network-
connected device. Communication with the device is performed via a Blue-
tooth remote, and it contains no USB interfaces. The device does not send the
BOOT COMPLETED broadcast intent to third-party applications, so the application
is unable to soft reboot the device after the devices completes the boot process.

5.5 Amazon Fire 7′′ Tablet

The Amazon Fire 7′′ Tablet is vulnerable to the soft reboot cycle DoS attack
if ADB over USB is not enabled prior to the attack. If ADB over USB is not
enabled prior to the attack, then the user must perform a factory reset of the
device or flash firmware images to the device. The device we tested was run-
ning Amazon Fire OS 5.0, which is a modified version of Android 5.1.1 and had
a build fingerprint of Amazon/full ford/ford:5.1.1/LMY47O/37.5.4.1 user
541112720:user/release-keys. The attacking app receives the android.
hardware.usb.action.USB STATE broadcast intent because it is sent prior to
the BOOT COMPLETED broadcast intent and does not require any permissions to
be able to receive it. This broadcast intent is received by the attacking app prior
to the Amazon launcher being displayed, so the user is precluded from unin-
stalling the app via the GUI. The device provides easy access to recovery mode
from a powered-off state by holding the volume down and power buttons during
boot.

5.6 Nvidia Shield Android TV

The Nvidia Shield Android TV device is vulnerable to the soft reboot cycle
DoS attack if ADB over USB is not enabled prior to the attack. The
device we tested was running Android 5.1.1 and had a build fingerprint of
NVIDIA/foster e/foster:5.1/LMY47D/35739 609.6420:user/release-keys.
The device does not have safe mode and ADB over Wi-Fi can be program-
matically disabled. The only way to recover is by performing a factory reset or
flashing firmware images to the device. There is a method to perform a factory
reset that is not published on Nvidia’s website [1]. Alternatively, the user can
access the fastboot menu and flash firmware images.

5.7 General Android Mini PC Devices

Android mini PC devices are somewhat vulnerable to the soft reboot cycle DoS
attack since they generally lack safe mode. Some devices allow the user to push
a button during boot to enter recovery mode. In addition, some devices can
utilize the SD card to flash firmware images to the device. Whether the attack is
effective or not depends on the specific device and the mechanisms for recovery
it provides.
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5.8 Android Devices Prior to Android 4.1

Safe mode was introduced in Android 4.1. Prior to Android 4.1, the user was
forced to perform a factory reset via recovery mode or flash firmware images to
remove an application that persistently soft rebooted the device. According to
the Android Dashboard, devices running a version of Android prior to Android
4.1 made up 5.0 % of all Android devices as of March 7, 2016 [8].

6 Standalone Defense App

We developed an anti-reboot app (source available at [9]) that passively monitors
intents sent by third-party apps on the system, and disables or uninstalls apps
that attempt to flood the system with intents. The anti-reboot app observes
intents by reading the system log buffer using logcat on the device, and parsing
the log messages searching for intents. The app filters log messages using relevant
log tags to reduce the amount of log messages it processes. For every observed
intent, the sender’s package name is logged and its total outbound intents count n
is incremented. The anti-reboot app only considers intents that create new tasks,
i.e., the FLAG ACTIVITY NEW TASK and FLAG ACTIVITY MULTIPLE TASK intent
flags are set. It also ignores intents sent by system apps by filtering on the
process User ID (UID) since system apps are assigned UIDs that are less than
10,000. Anti-reboot uses a one-level decay, where the intent count n is decreased
by a constant c every second. This is intended to simulate the time a user would
interact with a new activity before dismissing it. In other words, the value of
c controls the tolerable persistence level of an offending app. For a period of t
seconds, this results in an effective intent count n′ = n − ct, and an effective
sending rate ρ = n′

t = n
t − c. Finally, a monitored app is disabled or uninstalled

if its corresponding n′ exceeds a preset threshold (θ), which indicates that the
monitored app has more than θ active task stacks.

6.1 Parameters Selection

There are two parameters that control the detection performance of the anti-
reboot app: the intent decay c, and the cutoff threshold θ at which an app is
disabled or uninstalled. The value of c controls the tolerance level of the defense
to apps that persistently send multiple intents over time. While benign apps
may create new tasks, such behavior typically lasts for only a very short period
of time (i.e., short bursts) compared to attacking apps which need to be highly
persistent in order to adversely affect the system. Therefore, the higher the value
of c, the higher the tolerance and the more likely an attack may go undetected. A
reasonable value of c would mimic the time it takes a user to click the recent tasks
button and dismiss an activity off the screen, which takes about 2 s. Therefore,
we set c to one intent every 2 s, i.e., c = 0.5.
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Avoiding False Positives. The cutoff threshold θ controls when an attack is
detected, based on the number of active task stacks s the attack app has created.
Note that s ≤ n′, since each task stack would hold at least one activity. Since
an attack is detected if n′ ≥ θ, setting θ to a very small value may result in
faster detection at the expense of false positives (i.e., false alarms). Conversely,
a very large value of θ results in lower detection rate. We can pick a reasonable
value of θ by estimating an upper bound on n′ for benign apps. Recent studies
(e.g., [17,20]) have shown that the total number of activities declared in an app’s
manifest is less than 110 for the top 30 apps in the market, with a total of 60
foreground activities created on the device per day from the top 800 apps on the
market. Therefore, we set θ = 200, which allows 200 task stacks to be created at
any point in time. This is more than three times the number (60) of task stacks
that would be created, in the worst case, by benign apps if we assume each of the
benign 60 activities was created in a new task stack and was never terminated.

In versions of Android earlier than 6.0, where AlarmManager does not have
a minimum recurrence interval of 60 s, attacking apps can flood the system with
activities using pending intents with short repeat intervals. To mitigate this, and
in addition to observing intents, the anti-reboot app monitors the count and
repeat interval of active pending intents being processed by the AlarmManager.
It periodically retrieves a snapshot of the AlarmManager state by executing the
dumpsys alarm command. Note that excessively running dumpsys can harm the
overall system performance, while very long query periods can cause the attacks
to go undetected. We empirically found that executing dumpsys every 500ms is
suitable on the test devices used in this study. For each pending intent record,
the anti-reboot app extracts the package name of the source app and the repeat
interval. If the interval is less than a predefined threshold (set to 60 s as in
Android 6.0), or the number of active pending intents of a source app is more
than θ, the source app is flagged and is either disabled or uninstalled.

6.2 Detection Results

The anti-reboot app detected the soft reboot attack and identified the source of
the attack 100 % of the time during out testing, even when the attack was in its
most aggressive form. In many cases, we observed that the device reboots before
the anti-reboot app gets a chance to disable or uninstall the attacking app. This is
mainly due to the fact that the attacking app can request to start up to 5, 500 new
tasks in a single transaction using Service.startActivities(Intent[]) API
call. This quickly depletes the file descriptors of system server which inhibits its
capabilities and renders system server unresponsive to any requests to disable
or uninstall the offending app. To mitigate this, the anti-reboot app records the
package name of offending apps along with a time stamp of when the attack
was detected in persistent memory. It then checks when the system was soft
rebooted, and if an offending app was detected within a 60 second period before
the soft reboot, it disables the offending app after the soft reboot and informs
the user. In addition, we confirm a soft reboot by checking to see if the Process



206 R. Johnson et al.

ID of system server has changed, which occurs during a soft reboot. The user
can re-enable disabled apps through the GUI of the anti-reboot app.

We emphasize that it is not possible to rate-limit the intents sent by processes,
without changes to the OS itself. Even then, a balance has to be struck between
usability and security. If the system sets overly strict limits on the sending rate
of intents, apps may become unresponsive or sluggish, resulting in an overall
degradation of the system performance and user experience. In addition, it is
not straightforward to implement rate-limiting in a system that is heavily event-
driven such as Android. If the system decides to silently drop intents, apps are
likely to malfunction as a result of lost intents. Notifying apps that they are
exceeding the rate-limit would require a back channel from system server to
the app, besides requiring the app to anticipate and handle the notification,
which further complicates the design of both the OS and the apps. We are
unaware if this attack have been used in “the wild.” After informing Amazon
of the DoS attack, they created a detection mechanism for it in the Amazon
AppStore. Google did not respond to our question whether or not the attack
app would make it through their vetting process to be available on Google Play.

6.3 Performance Evaluation

We tested the overhead introduced by the anti-reboot defense app by using the
following two benchmarks: AnTuTu Benchmark v6.0.1 and BenchmarkPI v1.1.
AnTuTu Benchmark provides an aggregate score that combines both multitask-
ing, user experience, CPU and memory speeds, and 3D rendering performance.
BenchmarkPI is a CPU time benchmark that computes π to the nth digit. We
tested the defense app on the following devices: Nexus 5 running AOSP Android
6.0.1, Nvidia Shield Android TV running Android 5.1.1, Amazon Fire TV 1st

generation running Android 4.2.2, and Amazon Fire 7
′′

tablet running Android
5.1.1. Under each scenario, we performed 20 runs and took the average of the
resulting benchmark scores. We report the overhead as the percentage degrada-
tion in the aggregated average of the benchmark scores.

Figure 2 shows the overhead in the benchmark scores of AnTuTu Bench-
mark and BenchmarkPI. The overhead ranged from 0.8% to 1.51% for AnTuTu
Benchmark and 0.14% to 1.15 for BenchmarkPI. The overhead from the defense
app is mainly due to the threads it spawns to continuously monitor the Android
log and process the output of the dumpsys alarm command to record intent
usage and attribute them to the app that sent them. Overall, the defense app
introduced a small amount of overhead (less than 1.6%) which we believe is
acceptable for the service it provides.

6.4 Framework Defenses

We suggest changes be made to the ActivityManagerService class in the
Android framework to prevent a single app from starting an arbitrarily large
amount of activities. Currently, the amount of intents that can be sent to be
processed by ActivityManagerService is only limited by the Android Binder
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Fig. 2. Performance overhead based on AnTuTu Benchmark and BenchmarkPI scores.

transaction buffer size. On Android 6, this enables an app to send a around
5,500 intents to be processed by ActivityManagerService in a single transac-
tion using the Service.startActivities(Intent[]) API call. A limit of less
than 400 concurrent activities should be imposed on each app to preclude it from
soft rebooting the device. Alternatively, a proper rate for rate-limiting of intents
can be established from empirical analysis of intent usage among third-party
applications. We recommend that once the user selects to perform a factory
reset of an Android Wear device that all third-party applications should be ter-
minated so they cannot attempt to interfere with the factory reset process. In
addition, introducing some delay before sending the BOOT COMPLETED broadcast
intent and similar intents to third-party apps can provide the user additional
time to perform a factory reset through the Settings application.

7 Related Work

Researchers have previously discovered methods to perform a soft reboot of
Android devices. Armando et al. [16] discovered a vulnerability that made the
device reboot by repeatedly forking processes from the zygote process from a
third-party app. Huang et al. [25] discovered flaws in the concurrency control
within system server. When a monitor lock is held for more than a certain
time threshold (i.e., 60 s), the watchdog process will terminate system server
since it appears that the process has encountered a deadlock. Terminating
system server results in a soft reboot of the Android OS. They developed a
static tool to identify risky use of monitor locks within system server so they
can be triggered.

Chin et al. [21] presented various DoS attacks by intercepting intents destined
for another application. This is due to apps using implicit intents by using an
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action that is declared in an application component’s intent filter, as opposed to
using the fully qualified class name of an application component. Intent hijack-
ing can lead to the leaking of sensitive data sent embedded in an intent object.
Johnson et al. [26] developed various DoS attacks on device resources and sys-
tem availability using intent-based attacks. They discovered that a third-party
application can monopolize the camera and microphone resources from a service
application component running the background. The intent-based attacks can
render the system unresponsive to the user, target and terminate other running
applications, and soft reboot the device. We have continued this research and
proposed additional defenses and gathered experimental data by using the soft
reboot cycle DoS attack on a range of Android devices.

Antunes et al. [15] proposed a system for testing server programs for resource
exhaustion vulnerabilities by spraying the server with fuzzed inputs that are
generated from a user-supplied specification of the server protocol. In [24], Groza
et al. extends and formalizes the idea by formally modeling DoS attacks using
cost-based rules that are dependent on the steps of the server protocol. Chang et
al. [19] proposed a system that scans the source code of programs for potential
code sites that may result in uncontrolled CPU time and stack consumption,
and are influenced by untrusted input. Elsabagh et al. [22] proposed a system
that models both the temporal and spatial information in resource consumption
behavior of programs, and enforces the model at runtime. Extending such ideas
to Android remains an open challenge, especially because of Android’s uncoupled
execution nature which heavily depends on inter-application communication.

8 Conclusion

By introducing a novel strategy for the soft reboot cycle DoS attack, we show
that installing a third-party application, even with a limited set of permissions,
can render certain Android devices unusable. In other cases, the user needed to
perform a factory reset or flash firmware images to recover the victim device. Fur-
thermore, we provide a detailed explanation as to the the underlying cause of the
soft reboot that occurs in the Android framework. To support our claims, we ref-
erence the actual Android 6 source code and describe the mechanics of the attack
strategy. To mitigate the attack, we leverage the existing Android framework to
suggest changes that would either significantly reduce or eliminate the effects
of the attacks. As a proof-of-concept, we implemented an open-source Android
application that provides concrete countermeasures to prevent the attack and
can be utilized by device manufacturers without modifying the device or the
Android framework. As a final note, to ensure that our research is not misused,
we informed Google and all of the affected device manufacturers listed in this
paper so that Android devices can be made more secure.
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