
Can Situations Help with Reusability
of Software?

Hua Ming1(B) and Carl K. Chang2

1 Oakland University, Rochester, MI 48309, USA
ming@oakland.edu

2 Iowa State University, Ames, IA 50010, USA
chang@iastate.edu

Abstract. Software reusability is an important concept, as well as a
powerful tool, to achieve modular solutions in the design and implemen-
tation of modern software systems. There is a wide array of research
studies conducted in this area ranging from conceptual level to software
construction level. Despite all these good pieces of work, software engi-
neers still need to face the complications that strictly separate design
time activities from those carried out at software construction time, to
shift their mental gear between high level specification properties and
low level implementation details. To bridge this gap, we propose a unified
approach to facilitate software reuse. We seek to carry out this enterprise
surrounding an abstraction, namely Situation. More specifically, we have
created a computing environment and, under its runtime support, a func-
tional programming language called Situf in which domain experts can
capture the features of a software system in terms of functional expres-
sions. For each Situf program, declarations and functional expressions
provide essential definitions of Situations. Some language constructs of
Situf , such as the import and include directives, are designed to make
it easier to compose new software features by reusing existing ones.

1 Introduction and Related Work

Software reuse [9,10] is a powerful concept and realistic technique in the design
and construction of modern software systems. Often in a mutually promotive
relationship with modular programming [20], software reuse advocates a system-
atic embrace for the ideal of fully exploiting existing well tested code towards
building new software under reduced development time, increased productivity
and reliability.

The support for software reuse from modern programming languages,
component-oriented and framework-based technologies, middleware, as well as
from the state-of-the-art of modern software construction practices, has steadily
improved over the years. All these advantages, among other factors such as psy-
chology of programming and human factor improvement, are good preparations
leading software reuse to a certain degree of success [19]. On the flip side however,
problems such as idiosyncrasies and heterogeneities between different software
c© Springer International Publishing Switzerland 2016
M. Kurosu (Ed.): HCI 2016, Part I, LNCS 9731, pp. 598–609, 2016.
DOI: 10.1007/978-3-319-39510-4 55

Can Situations Help with Reusability of Software? 599

applications and application domains have been constraining the growing impact
and effectiveness of software reuse.

1.1 The Power of Abstraction and the Abstraction of Situation

Through the development and maturation of software engineering, as well as
of programming languages, we have fully witnessed the power of abstraction
[11,13,14]. By introducing abstractions, e.g., data abstractions, iteration abstrac-
tions, procedural abstractions etc., and in particular, by relating modularity to
abstraction [12], the composing, understanding, as well as the debugging and
maintenance of a gigantic computer program can be carried out in separate
manageable pieces. Consequently, the need for literally going through all the
coding details has thus been mitigated.

We propose to utilize an abstraction called situation, which is distilled from
our previous work on Situ framework [5,15–18]. The concept of situation can
be traced back to its root in mathematical logic [2,3], and thereafter applied to
AI [21] and theoretical computer science [4]. Situation as a concept also marched
into the realm of human computer interaction, contributing to the success of
situation awareness technologies [8].

Extending from the situation abstraction, we come up with an infrastructure
and a functional, domain specific programming language called Situf imple-
mented to secure the situation abstraction into concrete and practical software
engineering circumstances.

2 Functional Style Situation

From Situ framework [5], the behavioral context of a situation represented by
A as in (d,A,E)t, refers to the interaction of a software system through its
interface, usually a GUI, with its human user. The concept of situation intimately
portrays integrated use case scenarios, including the features of the software
system.

Functional programming paradigm [1] is about computing with values, where
the control flow of the entire program is deeply akin to the evaluation of a mathe-
matical function, with little, or no side effect [1]. It is more of a what rather than
how process. Due to its high expressive power and elegant computational effect,
in recent years functional programming paradigm keeps gaining momentum, and
has already been absorbed and built into some high impact computing technolo-
gies or well known infrastructures. Google’s MapReduce [6] for the processing of
big data is such an example.

In this work, we argue that functional situations present a powerful abstrac-
tion to model software features. The motivation behind this paper is this: if
we can program functional situations, where runtime environment1

1 Figure 4 is such an environment.

600 H. Ming and C.K. Chang

links situations with software features, then software reusability can
be translated to situation reusability.

map ((submit review.download), [paper1, paper2, . . . papern]) (1)

(1) above is an example functional expression:

– It features a functional expression, where higher order function map is used;
– For map, the composite function submit review.download is one of its inputs;
– The composite function submit review.download intrinsically reflects a tem-

poral order: download goes first, submit review second;
– (1) specifies a paper review situation, corresponding to a software feature like

in MyReview software2, shown in Fig. 1.

Fig. 1. Paper review situation vs. paper reivew software feature under MyReview
software

The most important software features shown in Fig. 1 are marked by red
arrows along with the names of the two functions in functional expression (1),
i.e., “dowload” and “submit review”. Further, a moment’s reflection reveals that
the functional expression (1) captures the bareback essentials of the software
features demonstrated in Fig. 1.

Indeed, functional expression (1) models the software features that allow
the user, in this case a paper reviewer, to download papers and to submit
reviews. It is a situation whose semantics is resulted by evaluating the functional
expression (1).

It is a key observation from the preceding example that a situation may nat-
urally take its form, or syntax, from extending a functional expression like (1).
2 http://myreview.sourceforge.net.

http://myreview.sourceforge.net

Can Situations Help with Reusability of Software? 601

In addition, a functional expression like (1) can semantically capture the essen-
tials of the targeted software features. Situations thus proposed is a solid abstrac-
tion that carries both its syntax and semantics.

We further state that situation is an easy to use yet powerful abstraction
for domain engineers. Using Fig. 1 again as an example: without the situation
abstraction, Fig. 1 simply points to a bunch of software features for MyReview
system; with the situation abstraction, Fig. 1 is simply one situation, namely
paper review situation, for example. Its meaning is expressed via functional
expression (1). The abstraction of situation is applied here in a natural and
intuitive manner. On the following pages, we present a domain specific, func-
tional programming language, named Situf to further promote the abstraction
of situations.

3 The Design of a Functional Domain Specific Language

To introduce Situf , we follow the reverse order: we will first present a program
written in it, i.e., Program 1 given in Fig. 2. Program 1 is a Situf program for
the paper review situation just discussed.

Fig. 2. A Situf program for paper review situation

Program 1 defines context-oriented paperReview situation, following the orig-
inal Situ framework, where all situations are based on behavioral and environ-
mental contexts.

1. The notion of @ creates an IO channel in a Situf program called paperRe-
view to bind data and action to their real world counterparts: a paper can

602 H. Ming and C.K. Chang

be downloaded from Review.php, whose server-side url is specified; Review
can be submitted and later on collected also through the same page. Each
time a paper is downloaded or a review is submitted through Review.php,
the contextual information will be captured by @ and sent back to program
paperReview. @ is an I/O based language feature. Once declared, data and
action can be used to construct a situation.

2. () is another I/O based feature Situf offers. It is a data constructor: at run-
time paper() returns a list of papers resulted by a series of paper downloading
actions performed on Review.php of the deployed MyReview system. Figure 3
helps illustrate this point.

3. Closely related with SituIO and its @ operator is the <program url>3 defined
in the attribute grammar of Situf at Table 1. This symbol specifies where
Situf runtime is able to find the external counterpart that supplies contextual
information to declared data, actions and situations defined in Program 1
(Fig. 2.) Situation services provides the implementation.

Fig. 3. Runtime expansion of “paper()”

3.1 Syntactical Features

The details of the attribute grammar for Situf are given in Table 1. The data and
action declarations in Program 1 (Fig. 2) set up the data, as well as the action to
construct a situation. @ operator connects data structures like paper and Review
to their real world data source. For Program 1 (Fig. 2) the source of data for
paper and review is the server-side Review.php. This simply means that each
time the user downloads a paper through Review.php, the context data related
to that paper such as author list, email contact and abstract etc. . . . will be
collected over the Graphical User Interface and sent back to Program 1 runtime.
More concretely, through paper(), context information of all assigned papers
3 <prog url> denotes a program url which takes the form of

server IP address:serverside absolute directory. For programs on your local
machine, simply use 255.255.255.255; .

Can Situations Help with Reusability of Software? 603

are captured incrementally one after another and are given as input to review
action. When the user finishes reviewing that paper and generates a Review4,
the Review will be captured in terms of its context ensemble: an aggregation of
review comments, review score, suggestions to the Program Committee, etc. The
communication is carried out while all intermediate results are recorded through
XML intermediate representation.

Situf provides four built-in functional patterns as situation constructors
to propagate contexts, or in attribute grammar’s terms: attributes, to the
entire parse tree. These four built-in patterns are map, filter, reduce and
apply. The map pattern is used in Program 1 (Fig. 2) in statement “map sub-
mit review.download paper()” to describe a situation where a reviewer needs to
download and then review every paper assigned to her/him. The map pattern,
commonly found in functional programming paradigm, applies its first input,
i.e. the temporally combined action of downloading and then reviewing (“sub-
mit review.download”) to its second input, which is a list of papers. Readers
familiar with functional programming know that map is a higher-order function
that applies the first argument it accepts, which is a function or a composed
function, to its second argument, usually a sequence of data such as the paper
list aforementioned. Situf introduces map pattern so that its first argument can
be re-used for all members in its second argument. Overall, applying map pat-
tern over a list is to transform the list to another by working on each and every
member of the list according to its first argument; in Specification (1), a list of
reviewed papers that are attached with review comments and scores etc. are the
end result for the main success scenario for Specification (1).

3.2 Situf-based Environment

The situation model that Situf is built upon is context-oriented, where context
data are derived from actions exerted by a user over a software system. However
a software system itself does not provide extra functionality to support context
data collection tasks. The design of Situf keeps that in mind and proposes a
special include directive to “include” situation services that provide context
collection capabilities. Situation services are programs with implementation to
collect context information for different Situf programs.

With concrete examples, this section elaborates on the technical details of
context specification, situation services, their relationship with XML, their affil-
iation to a Situf program and finally the active roles they play towards a Situf -
based environment.

According to the grammar of Situf language, the major constituents of a
situation are data and actions. In a Situf program, the situation constructors,
i.e., map, reduce, filter and apply, are used to assemble data and actions declared
into a meaningful situation. This means that the context information in a Situf

program is classified into two categories: data context and action context. Action
context is built on top of data context, as the input and output of each action

4 the data type declared in Program 1 (Fig. 2.) .

604 H. Ming and C.K. Chang

Table 1. Attribute grammar for Situ f

(1) <program> → [include <service list>][import <situation spec list>]
program <identifier> data <dataDeclList>
action <actionDeclList> situation <SituStmtList>
{< SituStmtList >env = < dataDeclList >env

∪ < actionDeclList >env ∪ < service name >env

∪ < situaion spec >env }

(2)<identifier> → [a . . . | z | A . . . | Z |]+[0 | . . . | 9 | a . . . | z | A . . . | Z | | \]∗

(3)<dataName> → None
{ < dataName >env = φ}

(4)<dataName> → <identifier>
{ < dataName >env = {< identifier > .id} }

(5)<dataDeclList> → declare <dataName>@<prog url>
{ < dataDeclList >env = < dataName > .env

∪ {< prog url > .id} }

(6)<dataDeclList1> → declare<dataName>@<prog url>; <dataDeclList2>
{ < dataDeclList1 >env=< dataName > .env

∪ {< prog url > .id} ∪ < dataDeclList2 >env }

(7)<action> → None
{< action >env = φ}

(8)<action> → <indentifier>
{ < action >env = {< identifier > .id} }

(9)<actionList> → <action>
{ < actionList >env = < action >env }

(10)< actionList >1 → <action>.< actionList >2

{ < actionList >1
env = < action >env ∪ < actionList >2

env }

(11)<input> → None
{ < input >env = φ }

(12)<input> → <identifier>
{ < input >env = {< identifier > .id}}

(13)< input >1 → <identifier>,< input >2

{ < input >1
env = {< identifier >id} ∪ < input >2

env }

(14)<output> → None
{ < output >env = φ }

(15)<output> → <identifier>
{ < output >env = {< identifier > .id}}

(16)< output >1 → <idnetifier>,< output >2

{ < output >1
env = {< identifier >id} ∪ < output >2

env }

(17)<actionDeclList> → declare<actionList>(< input >: < output >) @<prog url>
{ < actionDeclList >env = < actionList > .env

∪ < input > .env ∪ < output > .env
∪ {< prog url > .id} }

(18)<actionDeclList> → declare<actionList>(< input >: < output >) @<prog url>
;<actionDeclList>
{ < actionDeclList >env = < actionList > .env

∪ < input >env ∪ < output >env

∪ < prog url > .id ∪ < actionDeclList >env }

(19)<situStmtList> → <situStmt>
{< situStmt >env = < situStmtList >env}

(20)<situStmtList1> → <situStmt>;<situStmtList2>
{< situStmt >env = < situStmtList >env

< situStmtList2 >env = < situStmtList1 >env}

(21)<situStmt> → map <actionList> <dataName>()
{mapenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(22)<situStmt> → filter <actionList> <dataName>()
{filterenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(23)<situStmt> → reduce <actionList> <dataName>()
{reduceenv = < situStmt >env ∪ < actionList >env

∪ < dataName > ()env}

(24)<situStmt> → apply <actionList> <dataName>
{applyenv = < situStmt >env ∪ < actionList >env

∪ < dataName >env}

Can Situations Help with Reusability of Software? 605

Fig. 4. Situf -based environment: the overview

come from data. We will concentrate on explaining data context, through which
action context should seem easy.

In Situf environment, context information, either for data or for action, is
represented and transmitted using XML format. We use XML Schema to con-
figure “context” templates to synchronize the communication between a Situf

program and the external context collection capabilities, i.e., situation services,
under a Situf -based environment.

To provide concrete explanations and illustrations for key issues involved, let
us revisit the paper review example given in Program 1 (Fig. 2.) The attribute
grammar of Situf given in Table 1 requires that each declared data, represented
by grammar symbol <dataName>, have an attribute called env, meaning envi-
ronment. This is a composite attribute. Its runtime implication depends on the
context specification the Situf program imports. In fact each paper declared
in Program 1 (Fig. 2) contains the following attributes: abstract, author name,
author affiliation, email contact, paperID, submitTime, and target trackName.

This detailed context information is generally beyond the concern or knowl-
edge of a domain expert, but it is very important to answer the attribute gram-
mar requests. Situf ’s support of separation of concerns [7] bridges this gap.
More concretely, Situf offers an import clause feature. As seen in Program 1
(Fig. 2), the “Context Spec MyReview” following the “import” directive is an
instance of <situation spec>, which is encoded as an XML Schema given in
Fig. 5.

In fact, XML Schema enables user-defined data types, comprising simple data
types, which cannot use elements or attributes, and complex data types, which can
use elements and attributes [22]. Complex data types can also be defined from
already existing data types. The XML Schema given in Fig. 5 essentially provides

606 H. Ming and C.K. Chang

Fig. 5. An XML schema-based context template for the paper data type

a template to help bind paper, a data variable declared in Program 2, and its
closely related context. Note that Fig. 5 provides detailed attributes pertaining
to the specific situations associated with the MyReview system. The associating
power is further enhanced by the use of namespace MyReview in Fig. 5. That
said, a paper under a different circumstance, such as the “EasyChair” software
system, could involve completely different attributes, the use of which requires
the importing of a different XML schema. Besides, the use of namespace in
an XML Schema helps to disambiguate identical naming and to differentiate
between separate situation domains, e.g., MyReview vs. EasyChair5.

Upon the import of a context specification where relevant information for
a paper is provided, the Situf compiler automatically executes the following
action (Note: the initial env attribute of paper only includes its id information.
To see that, from production (4) given by the attribute grammar in Table 1:
< dataName >env= < identifier > .id, when paper is declared, it replaces
<dataName>.):

paperenv = paperenv ∪ { abstract, author name,
author affiliation, email contact, paperID,
submitTime, targeted trackName }

In Fig. 5, “paper” is defined as a new type, where abstract, author name,
author affiliation, email contact, paperID, submitTime, targeted trackName and
conference name are its built-in fields. Each field, corresponding to the respective
context of a “paper”, is of a precisely defined data type, such as string, integer,
etc. . . The diverse data types available in XML Schema make XML Schema pow-
erful enough to specify highly diverse data different Situf programs may face.

5 For more background information on namespace mechanism of XML schema, please
consult [22].

Can Situations Help with Reusability of Software? 607

Figure 6 is a direct instantiation of the XML Schema based context template
given in Fig. 5. Given that Fig. 6 strictly follows the format prescribed by Fig. 5,
the latter is hence named Context Template.

Fig. 6. A sample runtime collected context value stored in XML

Figure 6 presents a concrete runtime example of a data value traveling through
SituIO. This XML element is a value for the data variable “paper” declared in Pro-
gram 1 (Fig. 2). It is generated under the governing of “Context Spec MyReview”
file, which contains theXMLSchema given inFig. 5. TheXMLcontext information
shown in Fig. 6 for “paper” also presents itself as a sample value for env attribute of
<dataName>, a grammar symbol instantiated by “paper,” from Situf ’s attribute
grammar in Table 1. Figure 6 shows a concrete instance of context values.

3.3 The Inclusion of Situation Services

Situation services extend the capability of a Situf program that includes them.
Situation services are either made by a third party provider and hosted on the
cloud, or they can be hosted on the local machine. The default situation service
for Situf is called “common service GUI”. The default service offers the capa-
bility that, once deployed at the targeted url site, it can capture and record
a software user’s action information, which is then sent back through SituIO
to where the Situf runtime is deployed. What is captured by the default ser-
vice is real time behavioral and environmental contextual information, which
is configured by the central Situf program that generally contains program url
addresses.

The design and runtime support environment for Situf as introduced facili-
tate the domain experts, who have domain specific knowledge of existing software
features, to compose new ones. Consider again the software features of MyRe-
view shown in Fig. 1. The paper reviewers can use it to download the assigned
papers for a conference and submit their reviews. The corresponding situation
program in Situf named “paperReview”, is found in Program 1 (Fig. 2.)

608 H. Ming and C.K. Chang

Fig. 7. A Situf program for review reminder

Now that there is a need to add a new feature named reviewReminder to
the MyReview system, which aims to send a reminder email, after certain date,
to the reviewers who have not finished their review assignments. The overall
requirement for the reviewReminder feature is to go through all paper reviews
and to count the number of words in the review comments, by which empty
reviews bear zero word count. Below a certain count value, the relative reviews
will be considered incomplete. Correspondingly, a reminder message is emailed
to the related reviewers.

A good question to ask is how to take full advantage of, or, re-use, the
existing system features to compose reviewReminder. To this end, being able to
expressively and immediately compose the essential linkage, between exist-
ing features and reviewReminder, gives the software designer a leg up towards
a high quality software construction. Using Situf language and with relative
ease, the domain experts can propose a short solution, i.e., a Situf program,
shown in Fig. 7.

References

1. Backus, J.: Can programming be liberated from the von neumann style? a func-
tional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

2. Barwise, J.: The Situation in Logic. Center for the Study of Langauge and Infor-
mation. Stanford University, Stanford (1989)

3. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, New York (1983)
4. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (1997)

5. Chang, C.K., Jiang, H., Ming, H., Oyama, K.: Situ: a situation-theoretic app-
roach to context-aware service evolution. IEEE Trans. Serv. Comput. 2(3), 261–275
(2009)

Can Situations Help with Reusability of Software? 609

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI, p. 1 (2004)

7. Dijkstra, E.W.: On the role of scientific thought. Selected Writings on Computing:
A Personal Perspective. Texts and Monographs in Computer Science, pp. 60–66.
Springer, New York (1982)

8. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum.
Factors 37(1), 32–64 (1995)

9. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans.
Softw. Eng. 7, 529–536 (2005)

10. Krueger, C.W.: Software reuse. ACM Comput. Surv. (CSUR) 24(2), 131–183
(1992)

11. Liskov, B., Guttag, J.: Abstraction and Specification in Program Development.
MIT press, Cambridge (1986)

12. Liskov, B., Guttag, J.: Program Development in JAVA: Abstraction, Specification,
and Object-oriented Design. Pearson Education, New York (2000)

13. Liskov, B., Snyder, A., Atkinson, R., Schaffert, C.: Abstraction mechanisms in clu.
Commun. ACM 20(8), 564–576 (1977)

14. Liskov, B.H., Zilles, S.: Specification techniques for data abstractions. IEEE Trans.
Softw. Eng. 1, 7–19 (1975)

15. Ming, H.: Situf: a domain specific language and a first step towards the realization
of situ framework. PhD Dissertation. Iowa State University. ProQuest Dissertations
& Theses Global. UMI 3539397 (2012)

16. Ming, H., Chang, C.K., Yang, J.: Dimensional situation analytics: from data towis-
dom. In: 2015 IEEE 39th Annual Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 50–59. IEEE (2015)

17. Ming, H., Chang, C., Oyama, K., i Yang, H.: Reasoning about human intention
change for individualized runtime software service evolution. In: 2010 IEEE 34th
Annual Computer Software and Applications Conference (COMPSAC), pp. 289–
296, July 2010

18. Ming, H., Oyama, K., Chang, C.: Human-intention driven self adaptive software
evolvability in distributed service environments. In: 12th IEEE International Work-
shop on Future Trends of Distributed Computing Systems 2008, FTDCS 2008, pp.
51–57, October 2008

19. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse.
IEEE Trans. Softw. Eng. 28(4), 340–357 (2002)

20. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

21. Reiter, R.: The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. Artif. Intell. Math. Theor.
Comput.: Papers in Honor of John McCarthy 27, 359–380 (1991)

22. W3C: Extensible markup language (xml) (2003). http://www.w3.org/XML/

http://www.w3.org/XML/

	Can Situations Help with Reusability of Software?
	1 Introduction and Related Work
	1.1 The Power of Abstraction and the Abstraction of Situation

	2 Functional Style Situation
	3 The Design of a Functional Domain Specific Language
	3.1 Syntactical Features
	3.2 Situf-based Environment
	3.3 The Inclusion of Situation Services

	References

