Skip to main content

Role of Small RNAs in Wolbachia-Mosquito Interactions

  • Chapter
  • First Online:
Non-coding RNAs and Inter-kingdom Communication
  • 627 Accesses

Abstract

Wolbachia are endosymbiotic bacteria prevalent in many arthropods, in particular insect species, and nematodes. While they are mostly known for reproductive manipulations of their host, some strains may confer fitness advantages to their host, including protection from virus infection. As a consequence, utilization of Wolbachia to suppress transmission of vector-borne viruses and other pathogens has attracted immense interest in recent years. In particular, transinfection of Wolbachia strains with strong anti-viral properties into mosquitoes has proven successful in inhibition of a number of mosquito-borne pathogens. While the effects of Wolbachia on their hosts have been known for decades, little is known about the molecular mechanisms underlying these interactions. Study of small non-coding RNAs as key regulatory molecules involved in many cellular pathways may provide leads to unravel these molecular mechanisms. Here, recent findings on the role of small RNAs in mediating Wolbachia-mosquito interactions are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alphey L, Benedict M, Bellini R, Clark G, Dame D, Service M, Dobson S (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10:295–311. doi:10.1089/vbz.2009.0014

    Google Scholar 

  • Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, Morozova N, Fenouil R, Descostes N, Andrau J, Mathieu J, Hamiche A, Ait-Si-Ali S, Muchardt C, Batsché E, Harel-Bellan A (2012) Argonaute proteins couple chromatin silencing to alteRNAtive splicing. Nat Stru Mol Biol 19:998–1004. doi:10.1038/nsmb.2373

    Google Scholar 

  • Asgari S (2013) MicroRNA functions in insects. Insect Biochem Mol Biol 43:388–397. doi:10.1016/j.ibmb.2012.10.005

    Google Scholar 

  • Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to Dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833. doi:10.1126/science.1236192

    Google Scholar 

  • Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z (2013) Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:748–751. doi:10.1371/journal.ppat.1000833

    Google Scholar 

  • Bourtzis K, Braig HR, Karr TL (2003) Cytoplasmic incompatibility. In: Bourtzis K, Miller TA (eds) Insect Symbiosis. CRC Press, FL, USA, pp 217–246

    Chapter  Google Scholar 

  • Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY, Song HW, Corbett MA, Gifford WD, Gecz J, Pfaff SL, Wilkinson MF (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510. doi:10.1016/j.molcel.2011.04.018

    Google Scholar 

  • Caldelari I, Chao Y, Romby PJV (2012) RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 3:a010298. doi:10.1101/cshperspect.a010298

    Google Scholar 

  • Carvalho D, McKemey A, Garziera L, Lacroix R, Donnelly C, Alphey L, Malavasi A, Capurro M (2015) Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Neg Trop Dis 9:e0003864. doi:10.1371/journal.pntd.0003864

    Google Scholar 

  • Chambeyron S, Seitz H (2014) Insect small non-coding RNA involved in epigenetic regulations. Curr Opin Insect Sci 1:1–9. doi:10.15252/embr.201439092

    Google Scholar 

  • Conrad K, Giering F, Erfurth C, Neumann A, Fehr C, Meister G, Niepmann M (2013) MicroRNA-122 dependent binding of Ago2 protein to hepatitis C virus RNA is associated with enhanced RNA stability and translation stimulation. PLoS ONE 8:e56272. doi:10.1371/journal.pone.0056272

    Google Scholar 

  • Etebari K, Osei-Amo S, Blomberg S, Asgari S (2015) Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti. Sci Rep 5:15968. doi:10.1038/srep15968

  • Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL (2014) Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. Plos Neglect Trop Dis 8:e2688. doi:10.1371/journal.pntd.0002688

    Google Scholar 

  • Furuse Y, Finethy R, Saka H, Xet-Mull A, Sisk D, Smith K, Lee S, Coers J, Valdivia R, Tobin D, Cullen B (2014) Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells. PLoS ONE 9:e106434. doi:10.1371/journal.pone.0106434

    Google Scholar 

  • Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, Jünemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310. doi:10.1038/emboj.2008.244

    Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—A statistical analysis of current data. FEMS Microbiol Lett 218:215–220. doi:10.1111/j.1574-6968.2008.01110.x

    Google Scholar 

  • Hoffmann A, Iturbe-Ormaetxe I, Callahan A, Phillips B, Billington K, Axford J, Montgomery B, Turley A, O’Neill S (2014) Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Neg Trop Dis 8:e3115. doi:10.1371/journal.pntd.0003115

    Google Scholar 

  • Hoffman A, Ross P, RaÅ¡ić G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8:751–768. doi:10.1111/j.1574-6968.2008.01110.x

    Google Scholar 

  • Hoffman AA, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffman AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 42–80

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici I, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457. doi:10.1038/nature10356

    Google Scholar 

  • Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL (2011) Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 7:e1002043. doi:10.1371/journal.ppat.1002043

    Google Scholar 

  • Hussain M, Asgari S (2014) MicroRNAs as mediators of insect host–pathogen interactions and immunity. J Insect Physiol 70:151–158. doi:10.1016/j.jinsphys.2014.08.003

    Google Scholar 

  • Hussain M, Frentiu FD, Moreira LA, O’Neill SL, Asgari S (2011) Wolbachia utilizes host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci USA 108:9250–9255. doi:10.1073/pnas.1105469108

    Google Scholar 

  • Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, Asgari S (2013a) Effect of Wolbachia on replication of West Nile Virus in mosquito cell line and adult mosquitoes. J Virol 87:851–858. doi:10.1128/JVI.01837-12

    Google Scholar 

  • Hussain M, O’Neill SL, Asgari S (2013b) Wolbachia interferes with the intracellular distribution of Argonaute 1 in the dengue vector Aedes aegypti by manipulating the host microRNAs. RNA Biol 10:1868–1875. doi:10.4161/rna.27392

    Google Scholar 

  • Hwang H, Wentzel E, Mendell J (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    Google Scholar 

  • Ishizu H, Siomi H, Siomi M (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Gene Dev 26:2361–2373. doi:10.1101/gad.203786.112

    Google Scholar 

  • Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231

    Google Scholar 

  • Jeffries CD, Fried HM, Perkins DO (2011) Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA 17:675–686. doi:10.1261/rna.2006511

    Google Scholar 

  • Johnson KN (2015) Bacteria and antiviral immunity in insects. Curr Opin Insect Sci 8:97–103. doi:10.1016/j.cois.2015.01.008

    Google Scholar 

  • LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, Thornburg CD, Telen MJ, Ohler U, Nicchitta CV, Haystead T, Chi JT (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12:187–199. doi:10.1016/j.chom.2012.06.007

    Google Scholar 

  • Landmann F, Orsi GA, Loppin B, Sullivan W (2009) Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 5:e1000343. doi:10.1371/journal.ppat.1000343

    Google Scholar 

  • LePage D, Jernigan K, Bordenstein S (2014) The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. PeerJ 2:e678. doi:10.7717/peerj.678

    Google Scholar 

  • Liu Y, Zhou Y, Wu J, Zheng P, Li Y, Zheng X, Puthiyakunnon S, Tu Z, Chen X (2015) The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell Biosci 5:16. doi:10.1186/s13578-015-0009-y

  • Lu P, Bian G, Pan X, Xi Z (2012) Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. Plos Neglect Trop Dis 6:e1754. doi:10.1371/journal.pntd.0001754

    Google Scholar 

  • Ma F, Liu XG, Li D, Wang P, Li N, Lu L, Cao X (2010) MicroRNA-466 l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 184:6053–6059. doi:10.4049/jimmunol.0902308

    Google Scholar 

  • Martinez J, Longdon B, Bauer S, Chan Y, Miller W, Bourtzis K, Teixeira L, Jiggins F (2014) Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10:e1004369. doi:10.1371/journal.ppat.1004369

    Google Scholar 

  • Mayoral JG, Etebari K, Hussain M, Khromykh AA, Asgari S (2014a) Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line. PLoS ONE 9:e96107. doi:10.1371/journal.pone.0096107

    Google Scholar 

  • Mayoral JG, Hussain M, Joubert DA, Iturbe-Ormaetxe I, O’Neill SL, Asgari S (2014b) Wolbachia small non-coding RNAs and their role in cross-kingdom communications. Proc Natl Acad Sci USA 111:18721–18726. doi:10.1073/pnas.1420131112

    Google Scholar 

  • McGraw EA, O’Neill SL (2013) Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11:181–193. doi:10.1038/nrmicro2968

    Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144. doi:10.1126/science.1165326

    Google Scholar 

  • Miesen P, Girardi E, van Rij RP (2015) Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 43:6545–6556. doi:10.1093/nar/gkv590

    Google Scholar 

  • Morazzani E, Wiley M, Murreddu M, Adelman Z, Myles K (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8:e1002470. doi:10.1371/journal.ppat.1002470

    Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. doi:10.1016/j.cell.2009.11.042

    Google Scholar 

  • O’Neill S, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471. doi:10.1016/j.molcel.2008.05.001

    Google Scholar 

  • Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O’Neill SL, Johnson KN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila. Appl Environ Microbiol 78:6922–6929. doi:10.1128/AEM.01727-12

    Google Scholar 

  • Osei-Amo S, Hussain M, O’Neill SL, Asgari S (2012) Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line. PLoS ONE 7:e50049. doi:10.1371/journal.pone.0050049

    Google Scholar 

  • Raddatz G, Guzzardo P, Olova N, Fantappié M, Rampp M, Schaefer M, Reik W, Hannon G, Lyko F (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci USA 110:8627–8631. doi:10.1073/pnas.1306723110

    Google Scholar 

  • Rainey S, Shah P, Kohl A, Dietrich I (2014) Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol 95:517–530. doi:10.1099/vir.0.057422-0

    Google Scholar 

  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress induced cleavage. Genes Dev 24:1590–1595. doi:10.1101/gad.586710

    Google Scholar 

  • Schnettler E, Donald CL, Human S, Watson M, Siu RW, McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R (2013) Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 94:1680–1689. doi:10.1099/vir.0.053850-0

    Google Scholar 

  • Shmaryahu A, Carrasco M, Valenzuela P (2014) Prediction of bacterial microRNAs and possible targets in human cell transcriptome. J Microbiol 52:482–489. doi:10.1007/s12275-014-3658-3

    Google Scholar 

  • Shrinet J, Jain S, Jain J, Bhatnagar R, Sunil S (2014) Next generation sequencing reveals regulation of distinct Aedes microRNAs during chikungunya virus development. Plos Neglect Trop Dis 8:e2616. doi:10.1371/journal.pntd.0002616

    Google Scholar 

  • Siddle K, Tailleux L, Deschamps M, Loh Y, Deluen C, Gicquel B, Antoniewski C, Barreiro L, Farinelli L, Quintana-Murci L (2015) Bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genet 11:e1005064. doi:10.1371/journal.pgen.1005064

    Google Scholar 

  • Slonchak A, Hussain M, Torres Morales S, Asgari S, Khromykh AA (2014) Expression of mosquito microRNA aae-miR-2940-5p is down-regulated in response to West Nile virus infection to restrict viral replication. J Virol 88:8457–8467. doi:10.1128/JVI.00317-14

    Google Scholar 

  • Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K, Wenchich L, Houstek J, Zeman J (2012) YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell 23:1010–1023. doi:10.1091/mbc.E11-08-0674

    Google Scholar 

  • Sylvestre G, Gandini M, Maciel-de-Freitas R (2013) Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. PLoS ONE 8:e59933. doi:10.1371/journal.pone.0059933

    Google Scholar 

  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Stru Mol Biol 19:900–905. doi:10.1038/nsmb.2357

    Google Scholar 

  • Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. RNA 3(3):311–330. doi:10.1002/wrna.121

    Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Google Scholar 

  • Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffman AA (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453. doi:10.1038/nature10355

    Google Scholar 

  • Werren J, Zhang W, Guo L (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B 261:55–63

    Article  CAS  Google Scholar 

  • Wilke A, Marrelli M (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342. doi:10.1186/s13071-015-0959-2

  • Woolfit M, Algama M, Keith J, McGraw E, Popovici J (2015) Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS ONE 10:e0118595. doi:10.1371/journal.pone.0118595

    Google Scholar 

  • Ye YH, Woolfit M, Huttley GA, Rancès E, Caragata EP, Popovici J, O’Neill SL, McGraw EA (2013) Infection with a virulent strain of Wolbachia disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti. PLoS ONE 8:e66482. doi:10.1371/journal.pone.0066482

    Google Scholar 

  • Zhang G, Hussain M, Asgari S (2014) Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication. Insect Biochem Mol Biol 53:81–88. doi:10.1016/j.ibmb.2014.08.003

    Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40 % of terrestrial arthropod species are infected. PLoS ONE 7:e38544. doi:10.1371/journal.pone.0038544

    Google Scholar 

Download references

Acknowledgments

I would like to thank Dr Beth McGraw for helpful comments on the manuscript. I also acknowledge the contributions made by my lab members over the years that have been cited here. Work in my laboratory has been supported by the Australian Research Council (DP110102112) and National Health and Medical Research (APP1062983, APP1027110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sassan Asgari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asgari, S. (2016). Role of Small RNAs in Wolbachia-Mosquito Interactions. In: Leitão, A., Enguita, F. (eds) Non-coding RNAs and Inter-kingdom Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-39496-1_6

Download citation

Publish with us

Policies and ethics