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Abstract. A Forman gradient V on a cell complex Γ enables efficient
computation of the homology of Γ : the Morse chain complex defined
by critical cells of V and their connection through gradient V -paths is
equivalent to the homology of chain complex defined by cells of Γ and
the immediate boundary relation between them.

We propose an algorithm that computes the boundary operator of the
Morse chain complex associated with Forman gradient V defined on a
regular cell 3-complex Γ . The algorithm computes the boundary operator
with coefficients in Z2, and encodes it in the form of the boundary matrix.
Our algorithm is incremental: as it progresses through a filtration of Γ
induced by V , it computes the boundary operator for each critical cell
reached in the filtration order.
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1 Introduction

Available scientific data sets are of increasing quantity and quality, thus gener-
ating the need for efficient computational methods for the topological analysis
of shapes represented as such complexes and of functions defined on them.

Forman theory has been established as a versatile and widely applied tool
in many research fields, such as computational topology, computer graphics,
scientific visualization, molecular shape analysis, and geometric modeling [1,2,7–
9,11,13]. To be able to exploit its theoretical results, starting from a scalar field f
given on the vertices of a regular cell complex Γ , a Forman gradient V is defined
on Γ . Many algorithms that construct such gradient have been proposed, and
the connection between critical points of scalar field f and critical cells of the
associated Forman gradient V has been established in 2D [9] and 3D [13].

The Morse chain complex M of a Forman gradient V on a cell complex Γ
enables the calculation of its (persistent) homology [4,12]. The chain groups of
M are defined by the critical k-cells of V and the boundary operator is defined
through gradient V -paths connecting them.

We propose here an iterative algorithm, which computes the boundary opera-
tor ∂M and boundary matrices Bk with coefficients in Z2 from a Forman gradient
V on a regular 3-complex Γ in R

3. The algorithm updates the Morse chain com-
plex at each step of the Forman gradient traversal. Thus, it produces the Morse
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chain complex not only for the given cell complex Γ , but also for each subcom-
plex Fi in a (non -unique) filtration ∅ = F0 ⊆ F1 ⊆ ... ⊆ FM = Γ induced
by V .

In Sect. 2 we give some basic notions on Forman theory. In Sect. 3 we describe
our algorithm for computing the Morse chain complex M. In Sect. 4 we summa-
rize the paper with a brief discussion.

2 Background Notions

We review some basic notions on Forman gradient and on the associated Morse
chain complex. We focus on regular cell 3-complexes. Recall that a cell d-complex
in R

m is a finite set Γ of cells in R
m such that (i) the cells in Γ are pairwise

disjoint, and (ii) for each cell a ∈ Γ , the boundary of a is a disjoint union
of cells in Γ . The maximum of dimensions of cells in Γ is d. A complex is
constructed inductively by starting from a discrete set of points and attaching
discs of nondecreasing dimension along their boundaries. Each attaching map
is continuous, homeomorphic on the interior of discs, and maps the boundary
of the disc to a union of lower-dimensional discs. A complex is regular if each
attaching map is a homeomorphism. The immediate boundary of a k-cell a in Γ
is composed of (k − 1)-cells incident to a (called faces of a). The set of k-cells in
Γ is denoted as Γk. The total number of cells in Γ is denoted as n.

2.1 Forman Gradient

A discrete vector field V on a regular cell complex Γ is a collection of pairs (a, b),
such that

– a is a k-cell, and b is a (k + 1)-cell of Γ ,
– a is a face of b (denoted as a < b), and
– each cell in Γ is in at most one pair of V .

Thus, V can be seen as a mapping V : Γ → Γ ∪{∅}. If (a, b) ∈ V , then V (a) = b,
and (from the third condition of the previous definition) V (b) = ∅.

A V -path is a sequence a1, b1, a2, b2, ..., ar+1 of k-cells ai and (k + 1)-cells bj ,
i = 1, .., r+1, j = 1, .., r, such that (ai, bi) ∈ V , bi > ai+1, and ai �= ai+1. V -path
a1, b1, ..., ar+1, r > 0, is closed if ar+1 = a1. Sequence a1 is a stationary V -path.

A discrete vector field V is called a Forman (discrete) gradient if and only
if there are no closed V -paths in V . A critical cell of V of index k is a k-cell
c which does not appear in any pair of V . In other words, a cell c is critical if
V (c) = ∅, and c /∈ ImV . We denote as C the set of critical cells, and as Ck the
set of critical k-cells.

In Fig. 1, two Forman gradients V1 and V2 are illustrated. The pairing between
a k-cell a and a (k +1)-cell b is indicated by an arrow starting at a and pointing
towards b. Both gradients V1 and V2 have two critical vertices (labeled 1 and 2)
and one critical edge (labeled c). Gradient V2 has also one critical face (labeled D)
and one critical 3-cell (labeled v).
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Fig. 1. Forman gradient (a) V1 and (b) V2 defined on a complex Γ with one 3-cell, four
triangles, six edges and four vertices (a solid tetrahedron). Arrows indicate the pairing
between cells (green for vertices and edges, blue for edges and faces, red for faces and
3-cells). (Color figure online)

2.2 Morse Chain Complex

The homology of cell complex Γ with Z2 coefficients can be computed as the
homology of the chain complex with chain groups defined by the k-cells in Γ , and
the boundary operator defined for each k-cell a in Γ as the set of all (k −1)-cells
in its immediate boundary. The homology of Γ is equivalent to the homology of
the Morse chain complex M induced by a Forman gradient V on Γ [5]. The chain
groups of M are defined by the critical cells of V , and the boundary operator ∂M
is defined by the parity of gradient V -paths connecting them: a critical (k − 1)-
cell c is in the boundary ∂M(d) of critical k-cell d in the Morse chain complex
M if there is an odd number of V -paths connecting some (k − 1)-cell incident
to d in Γ to c, i.e., for d ∈ Ck

∂M(d) =
∑

c∈Ck−1
there is an odd number of V -paths

starting at a cell e ∈ Γk−1, e<d, and ending at c

c

Complex M has fewer cells than complex Γ , implying that homology compu-
tation on M requires less time than homology computation on Γ , if the bound-
ary operator ∂M can be computed efficiently. In the next section, we propose
an iterative algorithm that computes this boundary operator and the boundary
matrices Bk of the Morse chain complex M, not only for Γ , but also for sub-
complexes Fi of Γ in a filtration induced by the topological order defined by
Forman gradient V .

3 Extraction Algorithm

The input of the algorithm is a regular cell 3-complex Γ in R
3, endowed with

a Forman gradient V . The gradient V induces a filtration ∅ = F0 ⊂ F1 ⊂ .. ⊂
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FM = Γ of Γ , which is computed in the preprocessing step of the algorithm. In
the main loop of the algorithm, the boundary operator ∂M on the Morse chain
complex M is computed iteratively, while traversing a filtration induced by V .
In the post processing step, boundary matrices Bk, 1 ≤ k ≤ 3, are constructed
from boundary operator ∂M.

Recall that a cell complex is regular if all the attaching maps are homeomor-
phisms, i.e., if there are no identifications on the boundaries of attached cells. We
are interested in computing the boundary operator ∂M of the associated Morse
chain complex M and the boundary matrices Bk, 1 ≤ k ≤ 3, with coefficients in
Z2. Thus, there is no need to consider the orientation of cells: the incidence coef-
ficient between incident cells of consecutive dimension in Γ is equal to 1. Most
complexes used in shape modeling, computer graphics, or image processing, such
as cubical and simplicial complexes, are regular.

3.1 Filtration

A Forman gradient V on a cell complex Γ can be encoded in a directed acyclic
graph (DAG) G = (N,A). Each node in N corresponds either to a critical cell
of V , or to a pair of cells in V , i.e., N = {{c} : c ∈ C} ∪ {{a, b} : (a, b) ∈ V }.
There is an arc in A connecting node m1 ∈ N to node m2 ∈ N if a cell in node
m2 is in the boundary of a cell in node m1.

The DAG G encodes a partial order on the set N of nodes, which can be
extended to a (non-unique) total order, called topological order of the DAG [3].
When the nodes in N are sorted in ascending topological order as m1 ≤ m2 ≤
... ≤ mM , then no cell in Γ comes before any cell in its boundary.

Each subsequence m1, .. mi corresponds to a subcomplex Fi of Γ . The topo-
logical order induces the filtration ∅ = F0 ⊆ F1 ⊆ ... ⊆ FM = Γ of Γ , where
each Fi, 1 ≤ i ≤ M , is obtained from Fi−1 by adding to it the cells in mi. Thus

– Fi = Fi−1 ∪ {c}, where c is a critical cell of V , or
– Fi = Fi−1 ∪ {a, b} where (a, b) ∈ V .

For the Forman gradient V1 illustrated in Fig. 1(a), one possible topological
order is e.g.

{{1}, {2}, {3, a}, {4, b}, {c}, {d,A}, {e,B}, {f, C}, {D, v}}.

For Forman gradient V2 in Fig. 1(b), one possible topological order is

{{1}, {2}, {3, a}, {4, b}, {c}, {d,A}, {e,B}, {f, C}, {D}, {v}}.

The corresponding filtrations of complex Γ are illustrated in Fig. 2.

3.2 Boundary Operator

For each critical edge c, ∂M(c) is either empty, or it consists of two distinct
critical vertices. As the gradient lines connecting critical vertices and edges never
split, they can be extracted by tracing the Forman gradient V starting from the
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Fig. 2. (a)–(h) The common subcomplexes in the filtrations induced by the topological
order of Forman gradients V1 and V2 illustrated in Fig. 1, and the updates of sets Conn
and ∂M performed by the extraction algorithm. (i) The final complex obtained by
adding the paired face D and 3-cell v to the complex illustrated in (h) and the last
step of the extraction algorithm for Forman gradient V1 illustrated in Fig. 1(a). (j) and
(k) The final complex obtained by adding critical face D and critical 3-cell v to the
complex in (h) and the last steps of the extraction algorithm for Forman gradient V2

illustrated in Fig. 1(b)
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endpoints of each critical edge c until critical vertices are reached. If the two
reached critical vertices are distinct, then there is a unique gradient path from c
to each of them, and they both belong to ∂M(c). Otherwise, if the same critical
vertex is reached from both endpoints of c, then it is reached through two distinct
gradient paths from c, and ∂M(c) is empty.

Dually, gradient lines connecting critical 3-cells and faces never merge, and
can be extracted by backtracking V starting from critical faces until critical
3-cells are reached. Each critical face d belongs to ∂M(v) of two distinct critical
3-cells, or it does not belong to ∂M(v) for any critical 3-cell v, depending on
whether the two reached critical 3-cells are distinct or the same, respectively.
Thus, boundary operator for critical edges and critical 3-cells (and boundary
matrices B1 and B3) can be computed directly from V in a straightforward
fashion. For completeness, we will include their computation in the algorithm
through the same technique used for the computation of boundary operator for
faces (and boundary matrix B2).

The interesting and challenging part of the algorithm is the extraction of
boundary operator for critical faces in the Morse chain complex, and we describe
this part of the algorithm in greater detail. The algorithm is iterative. It traverses
the cells of the complex in ascending order determined by the Forman gradient
V and the induced filtration F and updates two sets (Conn and ∂M) associated
with relevant edges and faces.

The edges that contribute to boundary operator for faces are critical edges
and edges that are paired with a face, while the edges paired with a vertex do
not contribute to it. The faces that contribute to boundary operator for critical
faces are critical faces of V , and those that are paired with an edge. The latter
will be processed at the same step of the algorithm as the edge they are paired
with. The algorithm stores for each current reached edge a the set Conn(a) of
all critical edges c that can be reached from a following the Forman gradient V ,
through an odd number of gradient V -paths.

If a is a critical edge, then the only critical edge that can be reached from a
is a itself, through a unique stationary path of length 0 (Conn(a) = {a}). This
unique path from a to a consists of a only.

If edge a is paired with some face b in V , then each V -path starting at a is
of the form a, b, e, ..., where e is an edge incident to face b in Γ . The only critical
edges that can be reached from a are those that can be reached from some of
the edges e. In other words, the set of all gradient V -paths that start at edge
a and connect edge a to some critical edge can be obtained by adding edge a
and face b at the beginning of each gradient V -path that starts at some edge e
incident to face b in Γ and ends at some critical edge. Such edges e are those
that are not paired with a vertex in V : they are either critical edges, or edges
that are paired with some face in V . The information contained in the edges e in
the boundary of b is propagated to edge a. If a critical edge c cannot be reached
through a V -path from some edge e incident to face b in Γ , then it cannot be
reached from edge a, and it does not belong to Conn(a). If c can be reached
through a V -path from some edge e incident to b in Γ , then the total number of
V -paths from a to c that pass through e is equal to the total number of V -paths



48 L. Čomić

from e to c. This is due to the fact that there is exactly one V -path from a to
e: it is the path a, b, e. The total number of paths from a to c (mod 2), i.e., the
parity of the number of such paths, is equal to the sum (mod 2) of the number
of paths from some edge e incident to face b in Γ to c. The sum is taken over
all edges e. Thus, the set Conn(a) of all critical edges that can be reached from
edge a through an odd number of V -paths can be obtained as the symmetric
difference of sets Conn(e) over all edges e incident to face b in Γ .

When a critical face d is reached by the algorithm, critical edges c in the
sets Conn(e) associated with the edges e incident to critical face d in Γ are
used to compute the boundary operator ∂M(d). With the similar reasoning as
above, we conclude that ∂M(d) can be obtained as the symmetric difference of
sets Conn(e) over all edges e incident to d in Γ .

We give a more formal pseudo-code-like description of the algorithm, and we
illustrate its steps in Fig. 2. At step i, i.e., when complex Fi is reached in the
filtration F , the following actions are performed depending on Di = Fi − Fi−1:

Di = {c}, c ∈ C0

– set Conn(c) = {c}
For example, after the addition of critical vertex 1 to empty complex F0, the

set Conn(1) of critical vertices that are connected to critical vertex 1 through
an odd number of gradient V -paths contains only vertex 1 (see Fig. 2(a)), and
similarly for critical vertex 2 (Fig. 2(b)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ0,b ∈ Γ1

– set Conn(a) = Conn(a1), where a1 is the other endpoint of edge b
– set Conn(b) = ∅

For example, when vertex 3 and edge a (that are paired in V ) are reached and
added to the complex, the set Conn(3) of critical vertices connected to vertex 3
contains critical vertex 1 (see Fig. 2(c)). Similarly, when vertex 4 and edge b are
added, the set Conn(4) contains critical vertex 1 (Fig. 2(d)). The sets Conn(a)
and Conn(b) are empty.

Di = {c}, c ∈ C1

– set Conn(c) = {c}, ∂M(c) = ∅
– for each of the two vertices v incident to c in Γ do ∂M(c) = ∂M(c)
Conn(v)

For example, the two vertices incident to critical edge c in Γ are 2 and 4. Since
Conn(2) = {2}, Conn(4) = {1} and 1 �= 2, the boundary ∂M(c) of c contains
critical vertices 1 and 2. The set Conn(c) of critical edges that are connected to
c contains only edge c (see Fig. 2(e)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ1,b ∈ Γ2

– set Conn(a) = ∅
– for each edge e incident to face b in Γ do Conn(a) = Conn(a)
Conn(e)
– set Conn(b) = ∅
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For example, there are no critical edges in the set Conn(d) of edge d paired
with face A in V , because the other two edges a and b incident to face A in Γ are
paired with a vertex in V : no critical edge can be reached from edge d through
V (see Fig. 2(f)). The set Conn(e) for edge e paired with face B in V contains
critical edge c, because c is incident to face B in Γ , and the remaining edge b
incident to A is paired with a vertex (Fig. 2(g)). The set Conn(f) for edge f
paired with face C contains critical edge c, because the other two edges incident
to face C in Γ are a and e. Edge a is paired with a vertex (Conn(a) = ∅) and
Conn(e) = {c} (Fig. 2(h)).

Di = {a,b}, (a,b) ∈ V,a ∈ Γ2,b ∈ Γ3

– set Conn(a) = ∅
– for each face f incident to 3-cell b in Γ do Conn(a) = Conn(a)
Conn(f)

For example, Conn(D) = ∅, because each of the remaining faces A, B and
C incident to 3-cell v in Γ is paired with an edge, and hence no critical face is
connected to any of them through V1 (see Fig. 2(i)).

Di = {d},d ∈ C2

– set Conn(d) = {d}
– set ∂M(d) = ∅
– for each edge e incident to d in Γ do ∂M(d) = ∂M(d)
Conn(e)

For example, ∂M(D) = ∅, because there are two gradient paths starting at
an edge incident to D in Γ and ending at c: one starts at edge f , and the other
at edge c (see Fig. 2(j)).

Di = {v}, c ∈ C3

– set ∂M(v) = ∅
– for each face f incident to v in Γ do ∂M(v) = ∂M(v)
Conn(f)

For example, ∂M(v) = {D}, since there is one gradient path from a face
incident to 3-cell v in Γ to critical face D: it is the stationary path D (see
Fig. 2(k)).

3.3 Boundary Matrices

There is a 1-1 correspondence between rows in Bk and critical (k − 1)-cells of
V , and between columns of Bk and critical k-cells of V . Boundary matrices are
computed from the boundary operator in a straightforward manner.

For the 2-complex Γ1 and the Forman gradient illustrated in Fig. 2(i), the
computed boundary matrices are

B1 =
[

1
1

]
and B2 =

[
0
]
.

The rows of matrix B1 correspond to critical vertices 1 and 2, respectively,
and the column corresponds to critical edge c.
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The row of matrix B2 corresponds to critical edge c and the column corre-
sponds to critical face D.

For the 3-complex Γ and Forman gradient V1 illustrated in Fig. 1(a) and in
Fig. 2(j), the (only nontrivial) boundary matrix is

B1 =
[

1
1

]
.

For the 3-complex Γ and Forman gradient V2 in Figs. 1(b) and 2(k), the
boundary matrices are

B1 =
[

1
1

]
B2 =

[
0
]

and B3 =
[
1
]
.

The row of matrix B3 corresponds to critical face D and the column corre-
sponds to critical 3-cell v.

3.4 Analysis

The preprocessing step of the proposed algorithm finds a topological order in
the DAG G = (N,A) induced by Forman gradient V on the complex Γ . The
number |N | of nodes in N is in O(n), where n is the total number of cells in Γ .
The number |A| of arcs in A in a DAG is at most |N | · |N − 1|/2. Thus, |A| is
in O(n2). Kahn’s algorithm finds a topological order of the nodes in N in time
O(|N | + |A|) = O(n2) [3].

If Γ is a cubical complex, then each k-cell has a constant number of (k − 1)-
cells in its immediate boundary (six for 3-cells, four for edges and two for edges).
Thus, the number |A| of arcs in A is in O(n), and the preprocessing step takes
O(n) time in the worst case.

Proposition 1. The proposed algorithm correctly extracts the boundary opera-
tor ∂M and boundary matrices Bk from the Forman gradient V on a regular 3D
cell complex Γ .

Proof. We need to show that the extracted boundary operator ∂M is correct and
does not depend on the filtration order. The algorithm maintains the following
invariant: if the sets Conn and ∂M are correct for complex Fi−1, then the appli-
cation of the corresponding step of the algorithm produces the correct sets Conn
and ∂M for complex Fi, 1 ≤ i ≤ n. This follows from the discussion in Sect. 3.2,
and the fact that the initial complex F0 is empty. Thus, for each sub complex
Fi, the algorithm computes the correct sets Conn and ∂M. The last complex in
every filtration induced by some topological order is Γ , implying that the output
of the algorithm is correct and independent of the filtration order.

Proposition 2. The time cost of the extraction algorithm is in O(nhc), where
h is the maximum cardinality of the set of cells forming the immediate boundary
of cells in Γ and c is the total number of critical cells of V .
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Proof. The algorithm iterates over the filtration induced by V , and the number
of complexes Fi in the filtration is in O(n). The time cost for each step of the
algorithm depends on the set Di, and can be broken in two parts. The first
consists of initialization of sets Conn and/or ∂M, which can be done in constant
time. The second part is due to loop through O(h) (k − 1)-cells incident to the
processed k-cell (critical k-cell c if Di = {c}, c ∈ Ck, or higher-dimensional cell
b if Di = {(a, b)}, (a, b) ∈ V ), and the computation of symmetric difference of
O(h) sets each containing O(c) elements.

If Γ is a cubical 3-complex, then h is constant (h = 6), and the extraction
algorithm runs in time O(nc) = O(n2) (the total number of critical cells of V
may be linear in the total number of cells in Γ ).

The alternative algorithms for the extraction of Morse chain complex with
Z2 coefficients have been proposed in [6,13]. Both algorithms first construct a
Forman gradient on a (cubical) cell 3-complex Γ , and then the Morse chain
complex induced by it.

For each critical k-cell d of V , the algorithm in [13] follows all gradient paths
that start at d using a breadth first search, and counts those that connect d
to another critical (k − 1)-cell c. First, the (k − 1)-cells incident to d in Γ that
are paired with some k-cell in V are enqueued. Then, for each (k − 1) cell a
in the queue that is paired with a k-cell b in V , each non-critical (k − 1)-cell e
that is incident to b in Γ and that is paired with a k-cell in V is enqueued and
subsequently processed by the algorithm. The gradient paths connecting edges
and faces may (branch and) merge, causing the possible multiple traversal of
cells: when processing a critical k-cell d, each (k − 1)-cell e that can be reached
from d through a V -path may be enqueued and processed multiple times.

The algorithm in [6] improves on the previous one by not allowing this multi-
ple traversal. It first extracts all (k − 1)-cells that can be reached from a critical
k-cell d by traversing Forman gradient V and deleting the visited cells, thus
preventing the multiple traversal of cells. Then, from each critical (k − 1) cell
c that can be reached from d, V -paths connecting d and c are backtracked and
their number is counted (mod 2). The reported computational complexity of
algorithms in [13] and [6] is in O(n2) and O(cn), respectively.

Both algorithms in [13] and [6] compute the boundary operator ∂M and
boundary matrices for the given cubical 3-complex Γ with the Forman gradient
V . Unlike ours, these algorithms do not adapt straightforwardly to the com-
putation of the same boundary information for all intermediate complexes in a
filtration induced by V .

4 Conclusions

We have presented an iterative algorithm that extracts the boundary operator
∂M and boundary matrices Bk, k = 1, 2, 3 for homology computation over Z2

of the Morse chain complex M of a regular 3D cell complex Γ endowed with a
Forman gradient V . The algorithm progresses through a filtration of Γ induced
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by V , and computes this data not only of the Morse chain complex of Γ but also
of each of the subcomplexes in the filtration of Γ .

Our present work includes the extension of the algorithm presented here to
computation of boundary operator and boundary matrices with coefficients in Z

for cell complexes in arbitrary dimension. We are also developing a specialization
of the extraction algorithm to cubical complexes. The structure of cubical com-
plexes allows for implicit encoding of its cells, which can be accessed through
their combinatorial coordinates [10]. We will utilize this encoding for efficient
implementation of the extraction algorithm. We plan to investigate the compu-
tation of persistent homology of Γ using the extracted boundary matrices.
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