
Automatic Page Object Generation
with APOGEN

Andrea Stocco1(B), Maurizio Leotta1, Filippo Ricca1, and Paolo Tonella2

1 DIBRIS – Università di Genova, Genova, Italy
andrea.stocco@dibris.unige.it, {maurizio.leotta,filippo.ricca}@unige.it

2 Fondazione Bruno Kessler, Trento, Italy
tonella@fbk.eu

Abstract. Page objects are used in web test automation to decouple the
test cases logic from their concrete implementation. Despite the unde-
niable advantages they bring, as decreasing the maintenance effort of
a test suite, yet the burden of their manual development limits their
wide adoption. In this demo paper, we give an overview of Apogen, a
tool that leverages reverse engineering, clustering and static analysis, to
automatically generate Java page objects for web applications.

1 Introduction and Motivation

Automated web test code created for tools such as Selenium1 is renowned for
being difficult to maintain as the application under test evolves [1]. When the
same functionality must be necessarily invoked within multiple test cases (e.g.,
user login), a major drawback is the duplication of code within the test suite.

Page objects can effectively improve the maintainability and longevity of a
web test suite [1], because they hide the technical details about how the test code
interacts with the web page behind a more readable and business-focused facade.
Indeed, they can be considered as an API toward the web application: the web
pages are represented as object-oriented classes, encapsulating the functionalities
offered by each page as methods. In this way, the tests specification is well
separated from their concrete implementation.

There are clear advantages stemming from the adoption of page objects
within the test code [1]. However, their manual development is expensive and
existing tools offer poor assistance in the creation of the source code [5]. In short,
most of the page objects development effort is still on the shoulders of the tester.

Our tool Apogen [5,6] is the first solution providing a considerable degree of
automation, offering a more complete page objects generation tool, that can be
used as a baseline to create well-architected, and thus more maintainable, web
test suites.

The demo paper is organised as follows: Sect. 2 describes the high level archi-
tecture of Apogen. Section 3 illustrates the tool functioning from the user’s
perspective, by means of a running example. Conclusions are drawn in Sect. 4.
1 http://www.seleniumhq.org/projects/webdriver/.

c© Springer International Publishing Switzerland 2016
A. Bozzon et al. (Eds.): ICWE 2016, LNCS 9671, pp. 533–537, 2016.
DOI: 10.1007/978-3-319-38791-8 42

http://www.seleniumhq.org/projects/webdriver/


534 A. Stocco et al.

2 Tool Architecture

We now explain the tool architecture, how a web tester can automatically gen-
erate page objects using Apogen, and how such page objects are used for the
construction of a web test case. Apogen has been developed in Java and makes
use of several external libraries and tools. Figure 1 shows the high level architec-
ture of Apogen [6].

The Crawler (1) is built on top of Crawljax [4], a state of the art tool for fully
customisable exploration of highly-dynamic web applications. Since the model
retrieved by the Crawler can be huge, the Clusterer (2) groups conceptually
correlated web pages within the same cluster [6], using clustering algorithms
available from the popular machine learning library Weka.

The Cluster Visual Editor (CVE) (3) is a web-based tool developed using
the D3 library2. It supports the tester with an interactive cluster visualisation
and editor facility, allowing her to inspect and modify the clustering results.
Indeed, CVE allows the tester to interactively move nodes to the cluster they
should belong to, in order to manually refine the output of the Clusterer (see
the stickman in Fig. 1).

The Static Analyser (4) uses JavaParser3 and XMLUnit4. The former is
used to gather information from the web pages Document Object Model (DOM)
and build an abstract representation for each cluster of web pages. The latter,
instead, is used to collect the dynamic portions of the web pages within the same
cluster (performing intra-cluster DOM differencing), on top of which the tester
might create test case assertions.

In the last step, the Code Generator (5) transforms each cluster into a Java
page object, tailored for the Selenium WebDriver framework. The Code Gener-
ator uses JavaParser to iteratively create from scratch the abstract syntax trees
(AST) of the Java page objects. The class constructor contains a Selenium Web-

Driver variable to control the browser and resorts to the PageFactory pattern to

Fig. 1. High level architecture of Apogen

2 http://d3js.org/.
3 http://javaparser.github.io/javaparser/.
4 http://www.xmlunit.org/.

http://d3js.org/
http://javaparser.github.io/javaparser/
http://www.xmlunit.org/


Automatic Page Object Generation with APOGEN 535

initialise the web elements at once. The methods that Apogen generates are
of three types: navigations between page objects, representing the links and the
graph transitions (e.g., login page → home page), actions wrapping every data-
submitting form and exposing the associated functionality (e.g., the login form),
and getters – methods which retrieve textual portions of a web page that can be
used to verify the behaviour of the web application through test case assertions
(e.g., the total of a shopping cart).

The output of Apogen is a set of Java page objects that reflect the pages
of the web application, organised using the Page Factory design pattern, as
supported by the Selenium WebDriver framework. A more detailed description
and evaluation of the tool can be found in our recent papers [5,6], while a web
page containing the source code and demo videos is available at: http://sepl.
dibris.unige.it/APOGEN.php.

3 Running Apogen on PetClinic

Let us consider PetClinic5, a veterinary clinic web application allowing veteri-
narians to manage data about pets and their owners. PetClinic makes use of
technologies as Java Spring Framework, JavaBeans, MVC presentation layer and
Hibernate. It consists of 94 files of various type (Java, XML, JSP, XSD, HTML,
CSS, SQL, etc.), for a total of about 12 kLOC, of which 6.1 kLOC accounting
for Java source files (63 Java classes). Hence, it is a medium size web system,
with features and technologies that are quite typical of many similar systems
available on the web.

We provided Apogen with the URL of PetClinic, together with the data nec-
essary for the login and form navigation. This task can be performed either via
the tool’s GUI, or by setting a configuration file. In the next step, the Crawler (1)
reverse-engineered a graph-based representation of the web application, coming up
with 26 nodes, i.e., 26 dynamic states of the web pages, and 105 event-based tran-
sitions between such nodes.

However, the manual inspection of such graph was challenging. Indeed, the
high number of dynamic states (26) and transitions (105) made the visualisa-
tion of the graph quite tangled, definitely undermining its understandability and
reducing the effectiveness of the automated page object creation. For this reason,
the Clusterer (2) executed a clustering algorithm over the graph, with the aim of
grouping within the same cluster web pages conceptually correlated among each
other. Clusterer’s default setting is [clustering algorithm=“Hierarchical Agglom-
erative”, feature vector=“DOM tree-edit distance”], because this was empirically
found to be effective in producing clusters of web pages close to those manually
defined by a human tester [6]. In the case of PetClinic, 10 clusters were found and
displayed by CVE (3). We manually inspected such clusters. The Clusterer was
able to find the best page-to-cluster assignment automatically, thus no manual
adjustments were necessary. It is worth to mention that, by disabling cluster-
ing, Apogen would have been generated 26 page objects for PetClinic (a 160 %
5 https://github.com/spring-projects/spring-petclinic.

http://sepl.dibris.unige.it/APOGEN.php
http://sepl.dibris.unige.it/APOGEN.php
https://github.com/spring-projects/spring-petclinic


536 A. Stocco et al.

Fig. 2. Page objects generated by Apogen to support a web test case development

increment in the amount of generated page objects, and therefore of duplicated
and useless code). In the next steps of the approach, the Static Analyser (4),
and the Code Generator (5) ran to completion and automatically generated 10
Java page objects for PetClinic.

Figure 2 shows a Selenium WebDriver test case for the “Add Owner” func-
tionality of PetClinic, developed using the methods of the page objects generated
by Apogen. For space constraints, we limit the code only to the methods that
are used by the test, in the considered test scenario. We can see how the page
objects effectively realise the use case scenario steps as methods, and thus, are
an effective aid for the tester during the creation of a real web test case for
PetClinic.

4 Conclusions and Future Work

We presented Apogen, a prototype research tool for the automatic generation of
page objects to be used for web applications testing. Apogen leverages a combi-
nation of non-trivial techniques, such as reverse-engineering, machine learning,
web-visualisation, HTML static analysis and differencing, and AST creation.
Apogen represents the most advanced state of the art tool for the automatic
generation of page objects for web applications, because it is the first solution
providing a high degree of automation. As future work, we plan to experiment
with case studies involving human subjects to measure the efficacy in supporting



Automatic Page Object Generation with APOGEN 537

the development of web test suites. The maintainability of the generated page
objects can also benefit from robust web element localisation techniques [2,3]. At
last, we plan to enhance the level of automation, by employing MDE techniques
as, for instance, templates.

References

1. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. Adv. Comput. 101, 193–237 (2016)

2. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Using multi-locators to increase the
robustness of web test cases. In: Proceedings of 8th International Conference on
Software Testing, Verification and Validation, ICST, pp. 1–10. IEEE (2015)

3. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: ROBULA+: an algorithm for gener-
ating robust XPath locators for web testing. J. Softw. Evol. Process 28(3), 177–204
(2016)

4. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. TWEB 6(1), 1–30 (2012)

5. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: Why creating web page objects manu-
ally if it can be done automatically? In: Proceedings of 10th International Workshop
on Automation of Software Test, AST, pp. 70–74. IEEE (2015)

6. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: Clustering-aided web page object
generation. In: Bozzon, A., Cudré-Mauroux, P., Pautasso, C. (eds.) ICWE 2016.
LNCS, vol. 9671, pp. 132–151. Springer, Heidelberg (2016)


	Automatic Page Object Generation with APOGEN
	1 Introduction and Motivation
	2 Tool Architecture
	3 Running Apogen on PetClinic
	4 Conclusions and Future Work
	References


