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Abstract. Web APIs are increasingly becoming an integral part of web
or mobile applications. As a consequence, performance characteristics
and availability of the APIs used directly impact the user experience
of end users. Still, quality of web APIs is largely ignored and simply
assumed to be sufficiently good and stable. Especially considering geo-
mobility of today’s client devices, this can lead to negative surprises at
runtime.

In this work, we present an approach and toolkit for benchmarking the
quality of web APIs considering geo-mobility of clients. Using our bench-
marking tool, we then present the surprising results of a geo-distributed
3-month benchmark run for 15 web APIs and discuss how application
developers can deal with volatile quality both from an architectural and
engineering point of view.

1 Introduction

Nowadays, mobile and web applications regularly include third-party data or
functionality through web APIs; often, the application’s own back end systems
are accessed in a comparable way. Building on technologies like AJAX, run-
time environments like the Play Framework1, and research results, e.g., from
service-oriented computing, cloud computing, or mash-ups, this no longer poses
a technological challenge. Therefore, we now see thousands of public APIs as
well as applications using them [33].

In consequence, though, application developers now heavily rely on third-
party entities beyond their control sphere for core functionality of their applica-
tions. This can have impacts on applications’ user experience. For example, the
latency of web API requests may impact application response times. Response
times above 1 or 10 seconds have been shown to disrupt users’ flow of thought or
even cause loss of attention, respectively [25]. Or, a long-term experiment per-
formed by Google showed that increasing response times artificially from 100ms
to 400ms did measurably decrease the average amount of searches performed by
users [10]. User experience and, hence, application reputation is thus directly
affected by actions and non-actions of the API providers. As another example,
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APIs may be discontinued or changed without notice, thus disabling applica-
tions. A recent analysis of a set of mobile applications finds that they silently
fail and in cases even crash when confronted with mutated (e.g., adapted or
faulty) web API responses [13]. Another aspect largely ignored yet is quality of
web APIs: Due to the black-box nature of web API endpoints2, applications are
directly affected by volatile latencies, throughput limitations, and intermittent
availability without having any influence or forewarning. Furthermore, quality
of web APIs may vary depending on the geo-origin of requests.

In this work, we aim to shed some light on this issue and propose a number
of strategies for dealing with poor quality. For this purpose, we present the
following contributions:

1. A measurement approach and its prototypical proof-of-concept implementa-
tion for geo-distributed benchmarking of performance and availability of web
APIs.

2. The results of a geo-distributed 3-month experiment with 15 web APIs.
3. A number of strategies on the implementation and architecture level for deal-

ing with select observations from our experiments.

This paper is structured as follows: Initially, we give an overview of the
request flow for web API calls and discuss how different qualities can be affected
at various points in that request flow (Sect. 2). We also describe how we propose
to measure select qualities. Next, we describe our experiment design (Sect. 3)
and our observations (Sect. 4). Finally, we sketch-out how application developers
can deal with lack of quality (Sect. 5), and discuss related work (Sect. 6) before
coming to a conclusion (Sect. 7).

2 Quality of Web APIs

In this section, we give an overview of select qualities in web APIs and discuss
how they can be measured. For this purpose, we start with a description of
individual steps in performing web API requests (Sect. 2.1) and potential root
causes of failures (Sect. 2.2). Afterwards, we characterize the qualities which we
have studied for this paper (Sect. 2.3) and describe our measurement approach
and the corresponding prototypical implementation of our toolkit (Sect. 2.4).

2.1 Interaction with Web APIs

Web APIs expose data, e.g., a user profile or an image file, and functionali-
ties, e.g., a payment process or the management of a virtual machine through
a resource abstraction. This abstraction enables users to manipulate these
resources without requiring insight into the underlying implementation.

2 We denote an endpoint to be the combination of a resource, identified by a URL,
and an HTTP method as proposed in [30].
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Developers can access Web APIs through the Hypertext Transfer Protocol
(HTTP), which again uses the Transmission Control Protocol (TCP) for error-
free, complete, and ordered data transmission on the transport layer, and the
Internet Protocol (IP) at the network layer. Figure 1 illustrates the steps involved
in a typical HTTP request3.

Fig. 1. Overview of the Steps Involved in Sending an HTTP Request

The resources exposed by an API are identified by unified resource locators
(URLs), describing the scheme to be used for interaction, the server Internet
address, and the specific resource identifier. The semantics of interactions with a
resource depend upon the HTTP method, e.g., GET, POST, or DELETE. Before
a client can send a request to the server that offers the web API, client and server
need to establish a TCP connection. For this purpose, the client first sends a
lookup request for the URL of the server to a Domain Name Service (DNS) server
which returns the Internet protocol (IP) address and port number of the target
host. If available, IP address and port may be returned from a local cache (step 1);
otherwise, an external DNS authority is consulted (step 2). Afterwards, the client
opens a socket connection to the server, i.e., it initiates TCP’s three-way hand-
shake, thus, establishing a TCP connection (step 3). Based on this connection,
multiple HTTP requests with application data can be sent to the server.

If additional security is required, the client will typically use HTTPS which
introduces the Transport Level Security (TLS) protocol4 between HTTP and
TCP/IP. TLS has two main phases: a negotiation phase and a bulk data transfer
phase. In the negotiation phase, the server authenticates itself through his X.509
certificate. Afterwards, the client sends his list of supported cipher suites (a
combination of symmetric encryption algorithm and a message authentication
code (MAC)) to the server which then selects a cipher suite supported by both
client and server and responds accordingly. Using asymmetric encryption (e.g.,
RSA) and key exchange protocols (e.g., DHE), client and server also agree on a
symmetric key and other TLS sessions parameters.

After this TLS handshake has been completed, the server signals a change to
the bulk data transfer phase. During that phase, each HTTP request is broken
down into data packets which are – based on the agreed session parameters –
encrypted and signed before transmission over the network. Cipher suite and pro-
tocol version determine whether encrypt-then-MAC or the reverse order is used.
3 For simplicity’s sake, we do not include possible complications like proxies, keep alive

connections, caches, or gateways in this figure.
4 TLS has largely replaced its predecessor SSL which is typically supported only for

compatibility with old clients.
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The recipient can then reassemble the original request and verify its integrity
based on the received MAC.

2.2 Sources of Failures

Considering the typical HTTP request flow described in Sect. 2.1, a number of
possible breakpoints emerge at which a request may fail. As we will see, while
some of these are in control of a web API provider, others are not.

A failed DNS lookup is caused by attempting to look up a host for which no
DNS entry exists or by a network partitioning which causes the lookup request to
an authoritative DNS server to time out. The first error source is rather unlikely
for web API requests with the correct URL, as it would imply the disappearance
of the API’s host altogether. Typically, a failed lookup results in a timeout error
reported to the client. The second error source appears only in case that the
network is not available and the DNS entry is not yet cached locally.

A client connection error appears if no TCP connection can be established
between the client and the server hosting the web API. Reasons for this error
are network partitioning or that the server is in a state where it cannot accept
connections (for example, because it crashed).

In the case of HTTPS, a request can also fail if authentication of the server
is not possible due to certificate issues or if there is no cipher suite supported
by both client and server.

A client error appears if the request sent by the client cannot be processed
by the server. One reason for client errors is that the requested resource can-
not be found on the server. Furthermore, users may not be authorized to access
the requested resource. The client may not have been aware of authentication
mechanism like basic authentication or OAuth or may not own proper creden-
tials. Furthermore, providers may deny authorization for specific clients if their
usage of an API exceeds certain thresholds. A broad range of client errors are
considered by HTTP and should result in the server sending 4xx status codes.
While these errors are attested to the client, it is important to note that their
appearance can be tightly related to actions of the web API provider. For exam-
ple, many changes on the server, e.g., introducing authentication, removing or
renaming resources, or changing request formatting, cause existing clients to
malfunction, i.e., the client error is in fact caused by the web API provider.

A server error appears if the server fails to process an otherwise correct
request. Reasons for server errors may include failed lookups for resources in
databases or errors in the execution of functionalities. Server errors are, similar
to client errors, considered by HTTP and should result in the server sending 5xx
status codes.

2.3 Qualities

Systems have a number of properties. These can be functional, i.e., describe
the abilities of said system, or non-functional, i.e., describe the quality of said
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system. Quality describes how “good” or “bad” a system fulfills its tasks along
several dimensions5 – the qualities.

There is a plethora of qualities that we can see in web APIs. Examples
range from availability and performance, to security, reliability, scalability, cost,
or correctness (of results). All these qualities are inherently connected through
complex direct and indirect tradeoff relationships [3]. In this paper, we focus on
two qualities: availability and performance.

Availability. Generally, availability describes the likelihood of a system – here,
a web API – being able to respond to requests. Providing a concise definition of
availability, though, is non-trivial: Does an API have to send correct responses
or does it suffice if it is still able to tell about current problems? For this paper,
we distinguish three different kinds of availability to consider these questions:

Pingability describes whether there is anything “alive” at the API provider’s
site. This may be a load balancer or even a fault endpoint. For a single machine
deployment, pingability describes whether said machine is reachable at an oper-
ating system level. Pingability is fulfilled if, at the web API’s URL, some entity
responds to basic low level requests, e.g., ping requests (ICMP protocol).

Accessibility describes whether the resource represented by the web API is
still accessible but not necessarily able to fulfill its task. For a single machine
deployment, accessibility describes whether the web server component is reach-
able but does not require the hosted application logic to be accessible. A web
API is accessible if it responds to HTTP requests using one of the predefined
HTTP status codes.

Successability describes whether the web API is fully functional. For a single
host deployment, it requires the application logic to be working6. Hence, we
define successability to be fulfilled if a web API responds to requests using 2xx
or 3xx status codes.

Performance. Performance has two dimensions: latency and throughput.
Latency describes the amount of time between the start of a request at the
client and the end of receiving a response, also at the client. Throughput, on
the other hand, describes the number of requests a web API is handling at a
given point in time. Typically, throughput measurements try to determine the
maximum throughput, i.e., the maximum number of requests that a web API is
able to handle without timeouts.

Usually, these two dimensions are interconnected: If the load increases
towards maximum throughput, then latency will increase. If this is not the case,
then the system behind the web API is typically referred to as elastically scal-
able [20,27].

5 It depends on the respective quality what “good” or “bad” implies.
6 Please, note, that successability does not say anything about correctness of results.
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2.4 Implementation

We have built our measurement system around the quality definitions above:
Pingability can be measured by sending a ping request to the respective end-
point; accessability and successability can be measured by sending HTTP or
HTTPS requests. This also allows us to track request latencies. Originally, we
also planned to measure throughput (and, thus, also scalability since we do not
have any insight into the API provider’s implementation) by sending large num-
bers of concurrent requests. For our experiments, we refrained from doing so since
most provider’s terms of use explicitly rule out any kind of usage which would
resemble a DDoS attack. Therefore, we also recommend strongly that applica-
tion developers who plan to roll out their application to large user groups should
contact the respective API providers about throughput limits.

Our measurement toolkit is parameterized with a list of API endpoints. Based
on this parameter list, it periodically sends ping, HTTP, and HTTPS requests.
The toolkit then logs detailed results which are analyzed when the benchmark
run has been completed. Our open source prototype for benchmarking web APIs
is publicly available.7

3 Experiment Design

In this section, we will give an overview of our experiment setup. We will start
with a description of chosen API endpoints (Sect. 3.1) before continuing with
the parameters of our experiment setup (Sect. 3.2).

3.1 Analysed Web API Endpoints

Typically, web API endpoints require clients to authenticate to interact with the
resources they expose. Authentication mechanisms include basic authentication,
where a username and password have to be sent with every request, or the more
frequently used OAuth. OAuth allows clients to access web APIs without having
to expose user’s credentials. OAuth, however, requires eventual human interac-
tion to authorize client applications for requests and involves additional requests
to establish authentication. While this may be an option for actual applications,
it is prohibitive for benchmarking purposes. One way to circumvent the need for
human interaction is to “automate” it through the use of people services [4], but
latency and availability measurements would then become entirely meaningless.
Another possibility is to make requests using API-specific software development
kits (SDKs), which hide such complexities from the client. However, SDKs are
not readily available for all APIs. Furthermore, correctly interpreting bench-
mark results obtained using SDKs would require us to fully understand their
inner workings (e.g., through code-reviews) and eventually to align them for
comparability. All in all, we, thus, decided to perform our experiments with
unauthenticated API endpoints only. Focusing on these endpoints allows us to
7 https://github.com/dbermbach/web-api-bench.

https://github.com/dbermbach/web-api-bench
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control the parameters influencing our measurements, e.g., as we avoid multiple
roundtrips (possibly to third-party entities) for authentication.

We identified unauthenticated API endpoints from a variety of different
providers with regards to company sizes, country of origin, local or global tar-
get users, public or private sector. We specifically included some of the most
well-known providers like Google, Apple, Amazon, and Twitter. Table 1 gives an
overview of the web API endpoints which we have selected for our experiments
and the respectively supported protocols.

Table 1. Benchmarked API Endpoints and Supported Protocols.

API Name ICMP HTTP HTTPS Request Meaning

Amazon S3 - X X Get file list for the 1000 genomes public
data set

Apple iTunes X X X Get links to resources on artists

BBC - X - Get the playlist for BBC Radio 1

ConsumerFinance X X X Retrieve data on consumer complaints
on financial products in the US

Flickr X X X Get list of recent photo and video
uploads

Google Books X - X Get book metadata by ISBN

Google Maps X X X Query location information by address

MusicBrainz X X X Retrieve information about artists and
their music

OpenWeatherMap X X - Get weather data by address

Postcodes.io X X X Get location information based on UK
zip codes

Police.uk.co - X X Retrieve street level crime data from
the UK

Spotify X X X Get information on a given artist

Twitter X X - Get the number of mentions for a given
URL

Wikipedia X X X Retrieve a Wikipedia article

Yahoo X X X Get weather data by address

Please, note: In this work, we want to highlight unexpected behavior and
unpredictability of web API quality but we do not aim to discredit individual
API providers. For this reason, we decided to anonymize our results and will,
for the remainder of this paper, only refer to these API endpoints as API-1 to
API-15. There is no correlation between the identifiers and the order of API
endpoints in Table 1. However, we will reveal this mapping information upon
request if we are convinced that the information will not be used to discredit
individual providers.
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3.2 Experiment Setup

To analyze whether API quality varies depending on the geo-origin of the request,
we deployed our toolkit in several locations. For this purpose, we used one Ama-
zon EC2 instance in each of the following Amazon regions: US East (Virginia),
US West (Oregon), EU (Ireland), Asia (Singapore), Asia (Sydney), Asia (Tokyo),
and South America (Sao Paulo).

We configured our toolkit to send ping, HTTP, and HTTPS requests every
5 min but each starting at a different timestamp for the first request to avoid
interference. Ping was configured to use 5 packets per request and we disabled
local caching for HTTP and HTTPS requests.

Our test started on August 20th, 2015 (16:00h CEST) and was kept running
for exactly three months; due to detailed logging and extensive prior testing, we
can rule out crashes and other issues happening in our prototype.

4 Observations

Within this section, we present select results of our quality benchmarks. First, we
summarize findings regarding availability and latency (Sect. 4.1). The partially
poor quality revealed by these findings motivates our discussion of mitigation
strategies in Sect. 5. Second, we present select cases of observations that reveal
interesting behavior and correlations in qualities (Sect. 4.2).

We have uploaded our collected raw data on GitHub so that other researchers
can use it as well.8

4.1 General Observations

Figure 2 summarizes our findings with regard to collected availability measures.
For every API endpoint, all measurements from all regions were aggregated
to derive the illustrated successability values. Results regarding ping requests
allow statements regarding the pingability of the web APIs (cf. Sect. 2.3). For
ping requests, the results presented in Fig. 2 reflect the mean values for all ping
requests performed (we performed 5 attempts to ping a server per measurement).
In cases where no data is presented, the server did not allow ping requests with
the ICMP protocol. Results regarding HTTP and HTTPS requests allow state-
ments regarding the accessibility and successability of requests (cf., Sect. 2.3).
The results presented in Fig. 2 focus on successability, that is, the success rates
relate to the number of requests that return an HTTP status code between 200
and 399. On the other hand, we do not differentiate here between requests fail-
ing due to failed DNS lookups, client connection errors, client errors, or server
errors. Thus, Fig. 2 reflects the perspective of an application user for whom it
is more important if a request fails rather than why it does. In cases where no
HTTPS data is available, the endpoint did not support TLS.

8 https://github.com/ErikWittern/web-api-benchmarking-data.

https://github.com/ErikWittern/web-api-benchmarking-data
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Fig. 2. Aggregated Availability Results.

Table 2. Availabilities of Benchmarked API Endpoints.

Successability [%] Days with HTTP/HTTPS Successability <50%

End- Ping HTTP HTTPS Ireland Oregon Sao Singa- Sydney Tokyo US Sum

point Paulo pore East

API-1 99.97 97.80 69.73 11/11 -/72 -/- -/- 3/29 -/- 83/- 14/195

API-2 99.35 54.16 - 43/- 43/- 43/- 43/- 43/- 43/- 43/- 301/-

API-3 99.83 99.98 99.98 -/- -/- -/- -/- -/- -/- -/- -/-

API-4 99.86 29.43 31.08 64/64 64/64 78/64 64/64 64/64 64/67 64/64 462/451

API-5 - 99.97 99.40 -/4 -/- -/- -/- -/- -/- -/- -/4

API-6 99.88 92.59 92.58 49/49 -/- -/- -/- -/- -/- -/- 49/49

API-7 99.96 99.98 99.98 -/- -/- -/- -/- -/- -/- -/- -/-

API-8 99.33 99.96 99.96 -/- -/- -/- -/- -/- -/- -/- -/-

API-9 99.75 85.79 81.90 -/- -/- -/89 -/- 6/- 57/- -/- 63/89

API-10 99.94 91.37 92.56 49/49 -/- -/- -/- -/- -/- -/- 49/49

API-11 - 89.44 99.13 -/- 66/- -/- -/- 3/6 -/- -/- 69/6

API-12 99.79 98.86 - -/- -/- -/- -/- -/- -/- -/- -/-

API-13 99.77 63.81 66.17 -/- 92/92 -/- -/- 70/70 3/58 71/- 236/220

API-14 - 43.75 - -/- 91/- 92/- -/- 92/- 88/- 4/- 367/-

API-15 99.23 - 99.96 -/- -/- -/- -/- -/- -/- -/- -/-

Sum 216/177 356/228 213/153 107/64 281/169 255/125 265/64 1610/1063

We furthermore depict corresponding figures in the columns “success rates”
in Table 2. We find that availability rates, indicated by ping requests, are above
99% for all APIs that support the ICMP protocol. With respect to successability,
indicated by HTTP and HTTPS GET requests, a different picture emerges.
Of the 14 endpoints tested with HTTP GET requests, 8 have a successability
of 90% or higher, 6 have a successability of 95% or higher, and only 4 have
a successability of 99% or higher. On the bottom, 4 endpoints even show a
successability below 65%. On average, the 12 endpoints tested with HTTPS
GET requests performed slightly better than their HTTP counterparts. 6 out of
12 endpoints have a successability of 99%, and 8 have a successability of 90%
or higher.

To obtain a more precise picture about the distribution of the availability
of API endpoints across regions, we determined for every API in every region
the number of days in which successability is below 50%. Note that overall,
our experiments ran for 92 days. The results of this analysis are presented
in the columns “Days with HTTP/HTTPS Successability <50 %” in Table 2.
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The results show that even if overall successability is above 90%, there can be
considerable outages across a day in a subset of regions. For example, tested
endpoints of API-6 and API-10 are not available for 49 days via HTTP from
region Ireland. Furthermore, differences in the overall successability between dif-
ferent regions become visible. Oregon has overall the most and Singapore the
least days in which web API calls fail for over 50% of all requests. Interestingly,
considering the successability observations of the 11 API endpoints that accept
requests both via HTTP and HTTPS, we find that on average in 73.53% of all
situations where either HTTP or HTTPS requests fail, the other request does
succeed during the same time frame.

Next, we also assess latency figures for the tested API endpoints. In Fig. 3,
we present box plots of the measured latencies for HTTPS requests across
regions. We decided to present HTTPS requests only since HTTPS seems to
be becoming the default in the web.

Fig. 3. Summary of HTTPS Request Latencies Across Regions in Milliseconds.

We consider two observations especially significant from the presented figures.
First, for a single web API endpoint, latencies can vary tremendously depending
on the geographic region from which requests originate. On average per API,
the highest mean latency in a region is approximately 9 times higher than the
lowest mean latency in another region. Even for the endpoint of API-7, whose
performance is the most consistent one, the average latency in Singapore is 1.64
times higher than in Ireland. For 10 out of the 12 presented web API endpoints,
the difference between the lowest and highest average latency is above 300%,
for 7 it is above 500%, and for 4 endpoints, it is even above 1000%. At the
top end, for API-5, the highest average latency is over 27 times higher than
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the lowest average latency in another region. Second, even within individual
regions, latencies can vary tremendously. For example, calls to the endpoint of
API-1 from region Sydney have a standard deviation of 6943.63 around a mean
value of 1411.61ms. Or, also from region Sydney, calls to the endpoint of API-7
have a standard deviation of 2410.95 around a mean value of 487.39ms. Both
cases feature significant outliers (up to 498, 246ms respectively 120, 035ms). So
while these endpoints may technically be available, their response times render
them unusable in some cases from a practical point of view.

4.2 Select Examples

The first example of interesting behavior is that two API endpoints, the ones of
API-2 and API-4, became unavailable in all regions during our experiments and
remained that way until we concluded our tests. Figure 4 shows observed status
codes of HTTP requests to the endpoint of API-2 over time. For the chart, we
assigned a status code of 600 to requests for which the server never returned a
response. Possible error sources are failures in the DNS lookup, client connection
errors, or network partitionings (cf. Sect. 2.2), which typically result in a timeout
of the request. The figure shows that requests predominantly succeed in the first
half of our experiments, except for eventual server errors or requests for which
we received no answer. At a certain point, however, requests consistently start to
return a status code of 401, indicating that the client failed to authenticate, and
some infrequent lost requests with status code 600. In this case, it seemed the
provider turned the originally open endpoint into an authenticated one, requiring
clients to adapt correspondingly to continue working.

Fig. 4. Availability of API-2 over
Time.

Fig. 5. Availability of API-4 over
Time.

Figure 5 shows the status codes for HTTP requests to the endpoint of API-4
over time. Here, requests start to fail from one region, Oregon, at first. Then,
as in the case of the endpoint of API-2, all regions receive status codes of 401
indicating unauthorized calls, however, shortly after turning into status codes of
600 throughout. This behavior is at odds with the fact that pingability of API-2
succeeded throughout the experiment.
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Fig. 6. Daily Latencies by Region
(API-9).

Fig. 7. Daily Latencies by Region
(API-8).

Another interesting observation from our experiments is the possibility to
infer data center locations. Figures 6 and 7 plot the average daily latency for
the endpoints of API-9 and API-8 over the period of our experiment. Figure 6
is an example for a case where latency values across regions follow one pat-
tern. The region from which requests feature the consistently lowest latencies is
Oregon, indicating that API-9’s endpoints are served from close to that region.
There are still differences in latency due to the distance from that region, but
the uniformity in the behavior of latencies indicates that all global requests are
served from a single geographical location. On the other hand, in Fig. 7, the
latencies from the different regions are much less clearly related. Notably, laten-
cies for the regions Sao Paulo and Sydney are significantly higher than in the
other five regions. Apart from that, the API seems to serve requests in different
regions from different data centers, as there are little notable similarities between
latencies.

4.3 Discussion and Threats to Validity

We rule out network partitionings that would disconnect a region completely
for a longer period of time. As we see from the results of very well performing
APIs (e.g.,. API-8, API-3), successful requests were performed from all regions
throughout the duration of our experiments.

Our experiments target select endpoints. The findings from our experiments
can, thus, not necessarily be generalized to the overall API from which the
endpoint stems. For example, providers may choose to remove an endpoint we
benchmarked, while the majority of the API is still available. Another aspect is
that we only used GET requests – due to caching, actual availabilities may be
worse. Nonetheless, we deem our results valid examples of how web API qualities
can impact applications, which ultimately rely on specific endpoints.

We, furthermore, limited our experiments to endpoints that do not require
authentication. One might argue that these endpoints may be of less importance
to their providers and may, thus, undergo less scrutiny than other endpoints.
Nonetheless, these endpoints may well be used by applications and the here
presented findings can, hence, be considered relevant to application developers.
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5 Implications for Application Engineering

Based on the surprising measurement results we reported in Sect. 4, we now
describe implications for application engineering. First, we outline how concrete
observed behaviors impact applications and present possible measures to directly
address them (Sect. 5.1). Second, we discuss how different architecture options
are able to deal with fluctuations in web API quality (Sect. 5.2).

5.1 Observed Behaviors and Direct Measures

Highly volatile latencies and temporary unavailabilites: All of our benchmarked
web APIs show highly volatile latencies and temporary unavailabilities, even
for requests originating from the same region. These behaviors lead to equally
volatile application non-functionalities, whose impact depends upon the role the
web API requests play in the application. If web API requests are a central
part of an application’s functionality, e.g., showing the user’s location based on
a maps API, the whole user experience will suffer. On the other hand, some
web API calls perform mere supportive functionalities, e.g., advertising APIs, in
which cases the perceived experience does not suffer.

Without detailed monitoring, an application provider may not even become
aware of these quality problems and will only notice decreasing usage numbers
(cf. [10]). While some web APIs expose monitored past and current availability
and response times9, the usefulness of this information is limited because it only
focuses on the availability from a API provider perspective. Similarly, web API
monitoring services like Runscope10 only measure the availability of the server.
However, unavailability may also be an effect of network partitioning between
client and server, which is especially relevant for availability across geographic
regions and/or from mobile clients.

In cases where a small degree of data staleness is acceptable, client-side caching
can be used to address volatile latencies or unavailabilities, e.g., standard HTTP
client-side caching or HTML 5’s offline web storage. Recently, Google proposed a
service to queue web API requests in case of temporary unavailability of mobile
devices [1]. While the device is unavailable, the service queues web API requests
and executes them once availability is back. This pattern could be adopted to com-
pensate for temporary unavailability of web APIs in cases where the user does not
need the results of the API call, e.g., status posts on social networks will work but
requests for coordinates based on a given address will not.

Differences in latency and availability based on geo-origin of requests: Another
set of observed behaviors is that some APIs denote stark differences in latency
and availability across regions. Thus, developers rolling out globally accessible
applications should not expect that web API qualities observed locally are true
for every user. One approach to address this issue is, as we do in this paper,

9 For example, http://status.ideal-postcodes.co.uk/.
10 https://www.runscope.com/.

http://status.ideal-postcodes.co.uk/
https://www.runscope.com/
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to perform geographically distributed benchmarking of qualities as part of the
API selection process. Existing performance monitoring tools targeting website
or web API providers could be used for this purpose11. However, the resulting
efforts and costs might still render this solution inadequate, especially, since
observed behavior may change at any time and without warning. Interestingly,
we find that in many cases HTTP endpoints were accessible while HTTPS ones
were not and vice versa (cf. Sect. 4.1). If the nature of the resource to interact
with permits it, one approach to increase availability is, thus, to simply switch
protocol if an API becomes unavailable. An alternative is using another API
with comparable functionality as backup, i.e., choosing a strategy comparable
to horizontal SaaS federation as proposed in [22].

Long-Lasting Unavailabilities and Disappearance of Endpoints: Finally, we have
observed long-lasting unavailabilities or even the disappearance of endpoints
based on discontinued or changed APIs in our experiments (cf. Sect. 4.2). This
behavior causes a serious risk for application developers as functionalities their
application rely on might disappear entirely, potentially even only in regions
that developers do not have direct access to. Again, developers can rely on
continuous, distributed monitoring of APIs to detect such cases, if they can
justify the efforts and cost. A recent service12 addresses the issue of (parts of)
web APIs disappearing by allowing developers to register for notifications in case
of API changes.

All in all, developers should not assume that web APIs are a given in their
(then) current form or that their performance remains anything close to stable.
Sending API requests asynchronously is, from a user experience perspective,
probably a good idea for most scenarios.

5.2 Considering Web API Quality at Architecture Level

Since quality of web APIs is highly volatile, it needs to be considered in engi-
neering of web or mobile applications. We have already discussed some direct
measures like client-side caching or geo-distributed benchmarking during the
API selection process. However, web API quality can also be considered on an
architectural level. Figure 8 gives an overview of three different options.

The first option, on the left, is probably the state of the art for most mobile
applications but also for many web applications. Whenever the API is needed,
the application directly invokes the API and is, thus, highly dependent on it and
mirrors experienced quality to the end user. This architectural style, hence, does
not account for variations in quality but is the easiest to implement.

The second option, in the middle, uses a backup API in case of problems
(unavailability or high latency) with the original one. To our knowledge, this is
not yet done in practice (at least not on a large scale) but may become more and
more feasible as dynamic service substitution techniques which have been well

11 For example, https://www.pingdom.com.
12 https://www.apichangelog.com/.

https://www.pingdom.com
https://www.apichangelog.com/
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researched in service-oriented computing (e.g., [14]) can leverage the increased
use of machine-readable API descriptions (e.g., Swagger) and corresponding
research efforts [30]. This architectural style offers some degree of resilience to
API-based problems but obviously introduces additional complexity (and, thus,
development cost). For mobile applications, it may also be difficult to account
for permanent API changes as new versions will never reach all users and will,
in any case, take some time.

When using this architectural style, we propose to add a monitoring compo-
nent to the app which tracks latency and availability of the API calls based on
the current location of the client and periodically forwards aggregations of this
information to a back end component of the app developer. Otherwise, it may
take really long for the developer to become aware of permanent API changes
or long-lasting unavailabilities in some geographical regions.

Fig. 8. High-Level Architecture Options for Web and Mobile Applications

The third option, on the right, uses a (geo-distributed) back end controlled
by the application provider. Client devices do not invoke APIs directly. Instead,
they direct their requests to the back end system which acts as a proxy, making
actual API requests on behalf of the application. While this option certainly
introduces an additional layer of complexity and cost (operating an additional
back end), it also offers a set of unique benefits with regards to dealing with web
API quality and resulting user experience:

1. Changing the API which is used becomes rather trivial and can be rolled
out quickly on the back end. This is especially helpful as the back end will
also be the entity to primarily detect API quality problems and is, through
communication with other back end components, also able to interpret these
problems (i.e., whether a problem is a temporary or regional issue).

2. Unavailabilities in some regions can be accounted for by tunneling API
requests through another region. For instance, in case of problems with API
availability for EU clients, the EU back end could send all its API requests
through the US back end – at least if higher latencies are preferable over
unavailability.

3. This architecture will typically improve user-perceived performance: Client-
side caching can be used on both the client device and the back end, thus,
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resulting in an additional speed-up and the back end may prefetch data by
anticipating future API requests from the client device.

4. The API may not be a perfect fit for the requirements of the application, e.g.,
by returning excess amounts of data. At least for mobile applications data
traffic is often expensive and, depending on the current location, slow. An
additional back end can preprocess API call results (e.g., scale down images
based on the needs of the client device) and can use custom, highly optimized
protocols and data formats for communication with the client device.

All in all, the positive advantages outlined above should always be compared
against the required efforts and cost both for building and for operating the
back end. Still, the back end-based architecture will be a good solution for many
application scenarios.

6 Related Work

To our knowledge, this is the first paper to address quality of web APIs through
long-term benchmarking experiments, especially considering geo-distribution.
There is, however, a lot of work quantifying quality in other application domains:

Beyond the classical TPC13 benchmarks, a new set of benchmarks has recently
been developed for various kinds of database and storage systems, e.g., [2,5–
8,12,17,19,26,27,31,34]. There is also a number of dedicated cloud benchmarks
that treat various (cloud) services as black boxes as we have done in our exper-
iments, e.g., [9,15,18,21,23,35], or many SPEC14 benchmarks, e.g., [28]. There
are also a number of approaches trying to measure security or security overheads,
e.g., TLSBench [24] for NoSQL databases, [16] for web services, and [11] for web
servers.

Some works have studied how web APIs evolve [29] and how this evolution
impacts client applications [32]. Others assess how well clients, e.g., mobile appli-
cations, are capable of dealing with web API changes [13]. We present specific
cases in which web API endpoints changed to require authentication or eventu-
ally disappeared in Sect. 4.2. Our work, hence, provides an empirical motivation
for these related works and more generally motivates a discussion about how
clients can deal with web API imperfections as presented in Sect. 5 – no matter
if these imperfections are caused by API evolution or other effects.

7 Conclusion

As the number of web APIs and their usage grows, their quality increasingly
impacts application behavior and user experience. In this work, we presented
the means to benchmark select qualities of web APIs in a geo-distributed way.
Our 3-month study of 15 API endpoints reveals serious quality issues: Avail-
ability varies considerably between APIs, ranging from temporary outages to
13 http://www.tpc.org.
14 https://www.spec.org/.

http://www.tpc.org
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the complete disappearance of tested endpoints. Furthermore, average latencies
vary across regions by a factor of 9. In some cases, the observed latency of
requests was so high that it virtually resembles unavailability. These findings
show that application developers need to be aware of these issues and need to
mitigate them if possible. For that reason, we presented ways for application
developers to detect and handle web API unavailabilities and deal with volatile
performance.
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