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Abstract. Distributed applications are evolving at a frantic pace, crit-
ically relying on each other to offer a host of new functionalities. The
emergence of the service-oriented paradigm has made it possible to build
complex applications as a set of self-contained and loosely coupled ser-
vices that work altogether in concert. However, the traditional vision of
Service-Oriented Architectures (SOA) based on web service specifications
does not meet the trend of many major service providers. Instead, they
promote microservices, a refinement of SOA focusing on lightweight com-
munication mechanisms such as HTTP. Therefore, existing approaches
for orchestrating the composition of various services become unusable in
practice.

In this paper, we introduce Medley, an event-driven lightweight plat-
form for service composition. Medley is based on a domain-specific lan-
guage for describing orchestration and a compiler that produces efficient
code. We have used Medley to develop various compositions, involving
a large number of existing services. Our evaluation shows that it scales
both on a mainstream server and an embedded device while consuming
a reasonable amount of resources.

Keywords: Web composition · Domain-specific languages · Services
orchestration · Event-driven programming · Microservices

1 Introduction

Since the early days of distributed computing there was a primitive notion of
services that took its origins from RPC mechanisms [1]. The concept of services
was significantly refined across the last decades to have a strong impact on the
distributed computing landscape, in particular, due to the emergence of the
Service Oriented Architecture (SOA) paradigm notably via the use of the Web
Service stack as defined by the WS-* specifications.
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From a higher perspective, SOA has promoted at least two major trends that
have a long term impact. First, it has promoted a standardized way to build
an application (that can itself be seen as a service) as a set of well specified,
independent, self-contained and loosely coupled services that work altogether in
concert. Second, it has proven that services act as a valuable paradigm to design
complex applications.

As a result, we live in a service-oriented world. Applications ranging from
the simplest smartphone application to the Web’s most complex one, strive,
in one way or another, to interact with value-added services, potentially made
themselves from other services. In other terms, applications are increasingly
built using the SOA paradigm and integrate a plethora of composable services.
Moreover, as services are autonomous and deployed, undeployed or upgraded
independently from each other, SOA enables application developers to have a
fine-grained control on how to smoothly update their applications and how to
make them scalable in production.

Hence, nowadays, the development of SOA-based applications comes together
with continuous service development and continuous service integration prac-
tice1. This new trend coupled with the steady proliferation of services is not
without challenges, and potentially obsoletes the traditional vision of SOA [19],
along with their classical implementations based on the WS-* specifications (such
as SOAP, WSDL, BPEL). For instance, the use of BPEL, the de facto standard,
as a workflow to compose a plethora of services may be inadequate according
to the developers’ expectations. In fact, BPEL is a low-level and verbose lan-
guage that describes how services need to be composed instead of defining what
should be realized. Consequently, the quantity of code developers have to write
in BPEL is proportional to the number of services they want to compose. There-
fore, the complexity of the code increases making most often the use of BPEL
not really suitable in practice. Furthermore, existing workflow languages typi-
cally require strongly-typed and well-defined interfaces from composed services.
However, defining such interfaces is not the trend anymore due to the fast prolif-
eration of services that most often expose their Web APIs without any contracts
(such as with REST for instance) [15]. Thus, there is a need to write some glue
code to compose services in an ad hoc and fast manner.

From another perspective, with the emergence of continuous service integra-
tion and development (often referred to as DevOps), workflow languages need
to support not only static composition of well-specified services, but also on-
the-fly integration of services that have not been previously planned at design
time [23,25]. Finally, workflow languages are usually bundled with an execution
engine such as an Enterprise Service Bus (ESB). However, ESBs are well known
to be heavyweight containers. It does not meet the trend of lightweight contain-
ers, as popularized by Docker, which enables developers to deploy their service
compositions wherever they want, such as personal clouds, according to privacy
requirements [10].

1 J. Lewis and M. Fowler, Microservices
http://martinfowler.com/articles/microservices.html.

http://martinfowler.com/articles/microservices.html
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Hence, the SOA paradigm has to evolve. Well known service providers such
as Netflix, SoundCloud, Amazon, Spotify, have already widely adopted a refine-
ment of the SOA paradigm named microservices. Microservices is no more than
a SOA instance constrained to the basics of HTTP, i.e. with a RESTful style,
without the WS-* specifications, and coupled with a variety of tools to promote
fast deployment and undeployment of services. However the challenge to com-
pose services stays open to microservices practitioners that are free to use the
programming language they want.

In this paper, we introduce Medley, an event-driven lightweight platform
for service composition. Medley’s architecture is specifically designed to tackle
the aforementioned four problematic issues encountered when orchestrating a
composition of various services. Additionally, Medley meets the current trends
in terms of continuous service integration and development as expected to pro-
mote a continuously evolving SOA. Our approach is based on a domain-specific
language (DSL) for describing orchestrations using high-level constructs and
domain-specific semantics. Once defined, a Medley specification is compiled
into low-level code run on top of an event-driven process-based and lightweight
platform. By providing an abstraction layer between the low-level implemen-
tation and the high-level business logic, the language allows users to express
compositions with fine-grain tuning of both control flow and data flow.

The rest of this paper is organized as follows. Section 2 presents the range of
issues that arise when orchestrating a composition of several services. Section 3
describes the Medley architecture and introduces a DSL for describing orches-
trations. Section 4 describes the main challenges in code generation, and then
presents an event-driven lightweight platform to support execution of service
compositions. Section 5 demonstrates the efficiency of Medley and its scalabil-
ity both on servers and embedded devices, and presents a comparative study of
supported features. Section 6 discusses related work. Finally, Sect. 7 concludes
and presents future work.

2 Issues in Service Composition

The composition of heterogeneous services is a daunting task for many develop-
ers. Several languages, including BPEL, have been proposed to ease the orches-
tration of service compositions. However, they all fail in the context of microser-
vices. We illustrate issues developers have to face in the remainder of this section.

Complexity of Orchestrations. An orchestration may require monitoring a ser-
vice for new events or state changes. This monitoring can be performed either
synchronously by repeatedly polling the endpoint (pull mode) or by registering
a callback for an asynchronous notification (push mode). When services only
support polling, clients have to initiate a request to the server to retrieve the
current state of the service. Then, the client compares this state with the previ-
ous one to detect any changes. Despite the advantages of push mode, developing
applications based on the asynchronous paradigm is known to be challenging for
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many developers. When data needs to be propagated between subsequent asyn-
chronous actions, the corresponding information has to be stored by the runtime
system at the point of the asynchronous call. The runtime system then passes
it back to the stored continuation function when the corresponding response
is received. Integrating services based on active polling may also be challeng-
ing for the developer. She needs to set up a reasonable frequency for polling
to avoid resources waste while preserving good responsiveness. When the same
service is used several times, its invocations could be factorized among several
clients. However, identifying such global optimization opportunities is difficult
when the orchestration code is hard-written and each composition is developed
independently from each other.

Heterogeneity of Unspecified Interfaces. Existing orchestration languages such as
BPEL require strongly-typed and well-defined interfaces from composed services.
They rely on description languages like WSDL that have been extensively and
successfully used for many years. The microservices architecture, however, pro-
motes the use of RESTful services for which such description languages do not
necessarily exist. Therefore, off-the-shelf tools are unpractical in that context. In
addition, services that provide similar content are often heterogeneous either in
the communication paradigm they rely on (synchronous vs. asynchronous) and
in the format of data they provide. As an example, consider a custom daily news
digest where a user receives an email containing information formatted to her lik-
ing about her favorite news. The developer has to specify how to interact with
these news providers, what information to retrieve and how to aggregate data to
produce a digest. As the number of services increase, this task becomes laborious.

Dynamicity of ServiceComposition. Compositions of services areusually statically
specified and make explicit the connections between the interacting composed ser-
vices. This design-time coupling prevents an orchestration to dynamically adapt
its behavior to new services being deployed, undeployed or upgraded. Microser-
vices architecture, however, promotes dynamicity although not providing insights
on how to achieve it in practice. Supporting adaptation at runtime is known to com-
plexify the task of the developer as she needs not only to focus on the orchestration
of several services but also onhow to smoothly react to service changes.As an exam-
ple, consider the customdailynewsdigest orchestration scenario.Toprevent failure
in case the mail service become unavailable for some time, the user would like to
specify a pool of mail services that can be used indifferently. However, defining such
mail service selection policy in languages such as BPEL requires explicit handling
of errors by the user.

Privacy Preservation of Execution Platforms. Orchestration languages including
BPEL rely on execution environments such as ESB. Although powerful, they are
well known to be heavyweight containers. Therefore, their deployment requires a
significant amount of resources and renders their usage in small or personal enti-
ties more difficult. Sharing an execution platform, however, implies that personal
sensitive data goes outside the boundaries of the personal network of the user.
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To preserve privacy, one would want to deploy its own execution platform in
her house or company. The emergence of low cost embedded devices such as the
Raspberry Pi makes it possible. Execution platforms targeting these constrained
devices need to be both lightweight and scale well with the increasing number
of services users want to compose.

3 Medley Platform

To abstract away the low-level details when composing heterogeneous services
from the users, we introduce Medley, a lightweight platform coupled with a
DSL that enables users to express service compositions from a more abstract
level as opposed to several other languages, such as BPEL. Overall, Medley
enables users to reason and to focus on business logic rather than be disrupted by
technical implementation details and issues. In the remainder of the section, we
introduce our approach to create composite services with the Medley platform
and we present its associated DSL.

3.1 Approach

Based on a particular set of services to compose (See Fig. 1 ➊), a user specifies,
via the use of the Medley DSL, two kinds of information: (i) how to assemble
together the services, (ii) the composition logic (See Fig. 1 ➋). In particular,
with Medley, services are mapped to processes, and the process workflow is
expressed in terms of patterns of events. Accordingly, the user is expressing in a
simpler manner which processes to invoke according to events that may occur.
The written specification is then given as input to the Medley compiler (See
Fig. 1 ➌). The compiler in turn generates the adequate low-level code enabling
communications among the assembled processes. In fact, service orchestration is
instantiated as an event-based inter-process communication, conceptually similar
to what we can encounter in traditional POSIX systems (See Fig. 1 ➍). Each
service orchestration mapped to a set of processes (e.g. C1 to Cn) is isolated

Fig. 1. Steps involved in the scenario described above
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from each other, and run in a sandbox. Hence, for instance, several users can
deploy different services orchestration without interferences among each other.

The Medley platform is lightweight, and hence can itself be run and
deployed on either resource-constrained bare metal servers like Raspberry Pi,
or on lightweight container platforms such as Docker (See Fig. 1 ➎). Finally,
the Medley platform takes charge transparently, on the behalf of the users,
of the interaction with third-party services (Fig. 1 ➏) as expected by the users
according to the Medley specifications they have written.

3.2 The Medley DSL

The Medley DSL allows users to declare and configure processes to use and
to compose. In particular, the Medley DSL enables users to express how to
compose processes altogether according to the events that can occur on their
respective output streams. Figure 2 gives an overview of a composition of a set
of processes and enables us to introduce the DSL, with the help of Fig. 3 that
gives a subset of the grammar.

Figure 2 describes a composition that periodically (line 2, 13) checks for new
high-priority issues created on a specific GitHub2 repository. If a new issue is
detected, it notifies the user by sending her an email containing the issue’s URL.
The email service is selected from a pool of interchangeable services, enabling
fault-tolerance on service unavailability. It also notifies the user if an error is
encountered with the GitHub service when polling for new issues. Furthermore,
this example enables us to highlight some key language operators of the Medley
DSL, and concepts of the Medley platform.

Fig. 2. A composition example using Medley DSL

2 A Git repository hosting service.
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Language Operators. The init method (Fig. 2, line 4, 11) allows the user to
configure the process with initialization parameters. These parameters persist
throughout the lifecycle of the process instance. The invoke method (line 14,
19, 26) allows the user to invoke a process with a set of arguments. When a
process is invoked, it returns a reference to its output stream (line 14). The
events of an output stream are tagged according to their types: out for successful
executions (line 13, 17), err for erroneous executions (line 25), and close to
signal the end of stream. Thus, users can listen to these event types using the
on construct (line 13, 17, 25), then react according to the event type. Process
invocations separated by semi-colons are executed in an asynchronous manner.
As such, p1.invoke(); p2.invoke(); represents a parallel execution of
both p1 and p2 processes. If a sequential ordering is required, on blocks can
be nested (line 13, 17). Due to the intrinsic nature of the web, some requests
may never receive a response. In that case, we make sure to set a timeout on
aggregation operations, and flush the memory if the aggregated services take too
much time to respond.

Additionally, users may need to aggregate data from different sources before
performing an action. For this purpose, we introduce the and operator. It
allows users to express synchronization points when dealing with asynchronous
processes. The and operator is implemented as a built-in process that generates
an output event only when it receives an event from both its two input streams.
Incoming events are buffered in a circular FIFO memory enabling the runtime
to provide load shedding by discarding events that occur more frequently from
one source than the other. For each discarded event, an error event is generated
on the output stream allowing the composition to react to it.

The language also provides basic control flow constructs, with the if/else
keywords. These constructs provide filtering capabilities on data from output
events and can be used to conditionally execute a branch of the program. For
example, Fig. 2 (line 18) shows how to express the invocation of the sendEmail
process only when the value of the priority field is high.

Core Services. In addition to the set of operators provided by the language gram-
mar, we provide a wide range of core services to facilitate the use of the language
and enrich the expressiveness of compositions. For instance, a require function
(Fig. 2, lines 2–9) is available globally and serves as an import mechanism for
instanciating processes. require returns a new instance of the specified process.
Processes are looked up by name and loaded from Medley’s internal repository
which includes a set of predefined services. For instance, to periodically check
the existence of a new issue, a predefined process Medley/Tick is used, which
emits tick events at a predefined frequency.

Providers. In Medley, integration of third-party services is achieved through
process providers.Aprocess provider is in charge of developing the interaction logic
with the desired service, by implementing a Medley process, and then deploy-
ing it in Medley’s process repository, in a plugin-like fashion. Once deployed, the
process is indexed and becomes available for use on the platform (Fig. 2, lines 2–9).
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Fig. 3. Subset of the DSL grammar

Process Pools. We also define a construct to specify pools of interchangeable
processes, using the pool keyword. More specifically, it consists in a set of
processes that share a common interface, and are semantically equivalent (i.e.
they can fulfill the same functional need, such as sending an email. See Fig. 2 for
an example). A process pool is typically used to allow a composition to dynam-
ically adapt to service outages, all while being transparent to the developer.

3.3 Data Processing

A crucial aspect in composing multiple web services is being able to reuse and
pass data from a service to another. In our DSL, we provide the necessary mech-
anisms to have fine-grain control over the data, such as on-the-fly substitution
and evaluation expressions, as well as document traversal and templating.

Substitution. To extract data from inbound events, we use JSONPath [12]
expressions. JSONPath is the XPath [30] equivalent for JSON. It provides a
set of operators to traverse JSON documents from their root (noted as $), and
selectors to match queries on document attributes. In the snippet presented in
Fig. 2 (line 21, 28), we use the double curly braces notation {{...}} as delim-
iters for JSONPath expressions. The document root $ represents the payload
of the incoming event. At runtime, these expressions are evaluated: placehold-
ers are replaced with the corresponding values. To enrich the expressiveness of
event processing, we provide an additional set of primitive methods on JSON-
Path expressions, to perform arithmetic operations and text processing, such as
contains, startsWith, endsWith, etc.
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Evaluation. In addition to data substitution, we also provide an environment for
evaluating expressions on JSON primitive types. The evaluation environment is
accessed through <@ expr @> delimiters, where expr is the expression to eval-
uate. As such, users can easily manipulate and transform data through evaluated
expressions. At runtime, a pre-processing phase takes place, where JSONPath
expressions are first substituted with the appropriate values, and then eval envi-
ronments are evaluated.

4 Implementation

Our implementation of Medley comprises a compiler for the Medley domain-
specific language and a runtime system. The runtime system relies on Node.js, a
JavaScript runtime built on Chrome’s V8 JavaScript engine. From the Medley
specification of an orchestration, the compiler generates JavaScript code that
can then be linked with the runtime system. The generated code runs on devices
ranging from desktop computers to resource-constrained devices such as home
appliances. The runtime system defines various utility functions and amounts
to about 1,200 lines of JavaScript code. The Medley compiler is around 600
lines of code. We first describe the main challenges in code generation, and then
present the runtime system.

4.1 Code Generation

The main challenges in generating code from a Medley specification are the
propagation of data through subsequent process invocations, and the routing of
events through publishers and subscribers.

Data Propagation. An orchestration usually defines a hierarchy of handlers, the
actions inside an on clause. Code inside a handler can access not only the data
associated to its input event but also its inner events. Figure 4 shows an example of
orchestration in which a handler manipulates data (line 4) associated to one of its
inner events (line 1). Because each process invocation is asynchronous, data asso-
ciated to events must be maintained across multiple invocations, resulting into a
hierarchy of data. Maintaining data hierarchy can, however, have serious perfor-
mance penalty. Furthermore, propagating the whole payload of an event might
not be necessary when only a subset of the data is required at a later stage.

The Medley compiler implements a backward dataflow analysis to identify
data fragments that must be maintained across multiple process invocations.

Fig. 4. Hierarchy of handlers
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Fig. 5. Rewrite rules for event routing

These data fragments are implemented as an environment structure that is added
to the event payload. Processes forward this environment from their input chan-
nel to their output channel, adding information only when it may be required at
later stage. To reduce memory footprint, the environment structure contains only
references to data stored inside a global environment maintained by the runtime
system. The Medley developer does not need to be aware of these details.

Event Routing. Each process in Medley has its own input channel for listen-
ing to events and output channel for publishing events. Events associated to
a process are isolated in the namespace of the process, preventing them from
interfering with other processes. To implement the logic described in the Med-
ley specification, the compiler generates a set of rewrite rules. Rewrite rules
are used to intercept events, rename them, and publish them under a new event
name. Rewrite rules are described as inference rules with a sequence of premises
above a horizontal bar and a judgment below the bar (see Fig. 5). An event is
described as 〈l, d, δ〉, where l is the label name of the event, d the data associated
to it, and δ the environment structure of the call hierarchy. A rewrite rule of the
form e1 ⇒ e2 means that once the event e1 occurs, the runtime system raises
the event e2. A judgment of the form e � stmt means that the runtime systems
interprets the statement stmt when the event e occurs. In other words, stmt is
the callback associated to e. The second rule shows how Medley implements
the and operator by rewriting each event into the input event of the and process.
This process is provided as a builtin process. When it receives both the events
〈andin, {(l1, d1)}, δ1〉 and 〈andin, {(l2, d2)}, δ2〉 on its input channel, it generates
the event 〈andout{(l1, d1), (l2, d2)}, δ1 ∩ δ2〉 on its output channel. The third and
fourth rules are for invoking a process p. In that case, we rewrite the event e
that trigger the invocation of p as the input event of p.

4.2 Runtime System

The runtime system relies on Node.js as the backing messaging system. It
encapsulate each composition in a scoped environment by assigning it a unique
namespace. Therefore, events generated within a composition are restricted
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to their composition scope, and cannot leak over to other compositions. The run-
time system is also responsible of managing the lifecycle of a process. It provides
basic operations to initialize, start, stop and destroy a process instance. The
init operation is usually used to pass user credentials to the process instance
so as to interact with third-party services.

Our current implementation supports most of client authentication methods
ranging from HTTP Basic Auth [9], API keys, to OAuth protocols. To handle
these authentication mechanisms, Medley provides a dedicated user interface
through which users can authorize third-party services by providing their cre-
dentials. The runtime system also supports OAuth 2.0 refresh tokens (used in
Google APIs, for example). Refresh tokens are short-lived access tokens that
expire after a predefined amount of time. A process can not be started unless all
its credentials have been correctly set.

During its lifecycle, a composition may have to handle several kind of errors.
A process may throw an error on its output channel (events of type err) based on
its internal implementation. An error may indicate that a request to a third-party
service has failed, that authentication has failed or any other service specific
errors. These errors are reported as events and thus are accessible at the language
level. Therefore, users can describe in their orchestration their own error handling
policies. In addition, the runtime system catches errors such as network failures.
In that case, it rolls back the failed process and tries it again later, increasing the
time interval between each successive retry. When too many errors are raised by
a composition, the system may decide to kill the running instance and release
corresponding resources.

5 Evaluation

To assess our approach, we first present a performance evaluation of our imple-
mentation and then describe a comparative study of the supported features.

5.1 Performance

The Medley specification used for our experiments is depicted in Fig. 6. It con-
sists in periodically polling a stock exchange service for a quote, and notifying the
user by SMS if the value of the stock quote is above 100 USD. The period corre-
sponds to the time elapsed between two successive executions of a composition.
To measure the intrinsic scalability of our implementation, the processes used in
our experiments do not actually communicate with third-party services. Instead,
we simulate real-world latency by defining a randomized delay for response times
between 50 and 100 ms. Similarly, we mock the behavior of the stock exchange
service. The value it returns is randomized and varies between 80 and 120 USD.

We run our experiments on two different kinds of hardware platforms, from
embedded devices to mainstream servers. The server we use is powered by 2
quadcore AMD Opteron 4386 CPUs at 3 GHz and 16 GB of RAM. We configure
our runtime system to use a pool of 7 working threads, and one thread for
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Fig. 6. Medley specification of the stock exchange composition

the main process. Therefore, we allocate one thread on each physical core of
the server. We increase the memory limit of our underlying execution engine to
4 GB which is its current maximum on 64-bit systems. As an embedded system
candidate, we use the Raspberry Pi 2 model B with 1 GB RAM and 1 quadcore
BCM2836 CPU. We configure our runtime system to use a total of 4 threads,
mapping each of them on a physical core. We raise the memory limit to 1 GB,
which is the maximum of memory available on this device.

Our benchmarks measure the memory footprint of the Medley runtime when
gradually increasing the number of simultaneous compositions. We perform a
staged rollout by instanciating and starting a new composition every 10 ms, and
collect a snapshot of memory usage every second. The period used in our experi-
ments vary from 30 s to 5 min. A small period increases responsiveness but requires
much more resources as the composition needs to be executed more often.

Performance results on the server are shown in Fig. 7 while those for the
embedded device are shown in Fig. 8. On the server, the total number of simul-
taneous compositions varies from at least 22,000 with a period of 30 s to up to
125,000 with a period of 5 min. Similarly, the Raspberry Pi 2 enables at least
4,000 simultaneous compositions with a period of 30 s to up to 27,000 with

(a) Simultaneous compositions (b) Dynamic memory consumption (MB)

Fig. 7. Benchmark results on a server
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(a) Simultaneous compositions (b) Dynamic memory consumption (MB)

Fig. 8. Benchmark results on an embedded device

a period of 5 min. When the period is too small or the number of simultaneous
compositions is too high, the event queue of the runtime becomes full and no
composition can be instantiated anymore. We are currently investigating the
scheduling of the various compositions out of the main thread to significantly
increase the scalability of the runtime. As illustrated in Figs. 7b and 8b, the
memory consumption of the runtime follows the same growth as the number of
simultaneous compositions. In the worst case, the runtime consumes up to the
total of memory allocated to it. Our current implementation relies on Node.js
which limits the memory of a single process to 4 GB. However, as compositions
are independent from each others, it would be possible to increase the num-
ber of simultaneous compositions by distributing them over a cluster of several
instances of Node.js processes.

5.2 Features

We present a comparative study of the features supported by Medley compared
to Bite [27], S [3] and the WS-BPEL standard [20]. We select these solutions
because they address the problem of composing web services and provide a
language to describe such compositions. We rely on the work of Sheng et al. [28]
to identify the following features:

– Dynamic typing : the ability to manipulate arbitrarily-typed data structures.
– Dynamic service selection: the ability to select and bind services at runtime.
– Exception handling : the ability to handle and respond to runtime errors.
– Hybrid service support : the ability to compose services of different types

(REST, SOAP, etc.).
– Language extensibility : the ability to extend the language and provide new

features.
– Scoping : the ability to define and use nested blocks and localized variables.
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Table 1. Comparison of features

Medley Bite S WS-BPEL

Dynamic typing + + + −
Dynamic service selection + − − −
Exception handling + ∼ ∼ +

Hybrid service support + − − ∼
Language extensibility + + − −
Scoping + − + +

(+) Supported, (−) Not supported, (∼) Partial support.

Table 1 summarizes the results of our comparative study. All approaches sup-
port dynamic data typing except for BPEL, where data types are defined by their
corresponding WSDL interface. Furthermore, even though all solutions enable
static binding of services, Medley also provides a construct to handle pools of
services, enabling dynamic binding based on user-defined strategies. All four solu-
tions also support handling runtime exceptions, although at different levels. For
instance, Bite enables defining exception handlers at the activity and composition
levels, while S just relies on standard error handlers provided by the JavaScript
language. On the other hand, Medley enables reacting to error events from the
output streams of the invoked processes. As for the supported types of web ser-
vices, they all enable composing RESTful services except BPEL, even though
recent works aim to address this aspect by proposing extensions to BPEL. More-
over, since services are wrapped and exposed as processes in Medley, we can
easily integrate other types of web services such as SOAP. Since the adaptation
is handled at the process level (by the process provider), it is transparent at the
language level, enabling the composition of hybrid services. Regarding language
extensibility, Medley can be easily extended by implementing new processes,
whereas the same can be achieved in Bite by implementing new activity types,
allowing further customization of these languages. This aspect is not covered in
S and BPEL. Table 1 also shows that scoping is supported by all solutions except
Bite, since it relies on a lightweight composition model.

6 Related Work

Ever since service-oriented architectures (SOA) emerged, the aspect of compos-
ing web services became prevalent and necessary. To this end, several languages
and tools have been developed [28]. Among them, the most popular is WS-BPEL
(Business Process Execution Language) [20]. It provides a model for describing
the behavior of a composition based on its interactions with the composed ser-
vices. BPEL is standardized by the OASIS organization since 2004 and relies
heavily on WSDL [4] interfaces to define links with partner services. However,
not all web services are exposed through a WSDL interface.
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Nowadays legacy web services are rapidly decaying, in favor of the more flex-
ible REST architecture style [7]. Although REST became the building block for
major service providers, it lacks an official standard for describing interfaces.
Some initiatives including Swagger [29], WADL [11] and RAML [26] have been
proposed for describing REST interfaces but they are all far from wide adop-
tion by the majority of service providers. A consortium of several major API
vendors came together to found the OpenAPI Initiative [21] (founded in Novem-
ber 2015), as an effort to standardize how REST APIs are described. Therefore,
there is a fundamental mismatch between the REST architectural style and SOA
orchestration solutions, since these solutions are not directly applicable [32].

Several efforts have been made to support composition of RESTful services.
Some approaches such as Bite [5,27] and S [3] define a domain-specific language
to express compositions. Bite follows a workflow model while S is an extension
of JavaScript. Both of them require services to be statically binded and pro-
vide limited support for error handling. As opposed, Medley has the notion
of pool of services that enables dynamic binding based on user-defined strate-
gies. This mechanism also improves robustness by providing fault-tolerance to
service unavailability. Other approaches propose to extend BPEL by addition
new activities to manipulate REST resources as first-class entities [22,24]. How-
ever, in practice, popular BPEL orchestration engines have limited support for
composing REST services.

Among existing solutions, some tackle service composition using a goal-driven
semantic approach [13,16,31]. They rely on ontologies and on reasoning engines
to dynamically select services that fulfill the user-provided requirements. How-
ever, very few REST services have a well-defined semantic description thus lim-
iting the applicability of these techniques in practice.

In the commercial world, several SaaS (Software-as-a-Service) solutions and
integration platforms have been built around the concept of composing these
emerging services, providing user-friendly web applications in which users can
describe simple orchestration scenarios. For instance, Zapier3 and IFTTT4 allow
end-users to express compositions as pairs of (trigger, action), such as “on trig-
ger do action”. However, action is limited to one per trigger, which hinders
the expression of more complex scenarios. Workato5, Azuqua6, Node-RED7 and
NoFlo8 on the other hand do not have this restriction, and enable users to
express more complex compositions. However, these platforms do not provide
error handling mechanisms to the users; they merely log the errors encountered.
Node-RED provides a generic “catch all errors” node, that serves as a single
access point for all errors. On the other hand, Medley provides error out-
put streams on a per-process basis, which allows for localized error handling.

3 https://zapier.com/.
4 https://ifttt.com/.
5 https://www.workato.com/.
6 http://azuqua.com/.
7 http://nodered.org/.
8 http://noflojs.org/.
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Additional processes can be attached to these error streams to execute error
handling logic, such as invoking other services.

Nonetheless, most of these solutions may not be suitable for large businesses
or organizations which handle sensitive and business-critical data. Instead, the
emergence of private personal clouds [18] enables these actors to deploy a secure
environment, where sensitive data is not exposed over external services. Further
works investigate how to enforce access-control levels on data at a fine grain [2].
Medley being lightweight and embeddable enables these actors to deploy pri-
vate orchestration platforms, granting them control over the confidentiality of
data and business processes.

As for the existing aforementioned orchestration languages, Medley draws
its inspiration from several existing concepts, such as flow-based programming,
and process algebras. Medley applies both of these concepts to the particu-
lar context of microservice composition. The notion of Flow-Based Program-
ming (FBP) was first introduced by John Paul Morrison in the early 1970s [17].
FBP introduces the concepts of processes, bounded buffers, information packets,
named ports, and separate definition of connections. FBP views an application
as a network of asynchronous processes communicating by means of streams of
structured data chunks known as information packets. Information packets are
passed between the inputs and outputs of processes. Each process may have
multiple inputs and outputs, and multiple processes may be connected to a spe-
cific inport or outport. FBP encourages loose coupling of components, relying on
linking black boxes in order to build microservice architectures. This approach
is applied in Medley, complemented by an event-driven communication layer.

Process algebras are abstract languages used to specify the execution of
concurrent processes. Languages like FSP, CSP, LOTOS provide the necessary
semantics to express interactions (emission, reception) between two or more
processes [6,8,14]. These formalisms are founded on algebraic laws, enabling one
to reason formally on a system and perform various model-checking techniques to
verify properties, variants and invariants of said system. Medley reuses process
algebra principles in a more concrete manner to express dataflow between third-
party services. Medley defines the required mapping between the user-provided
input and the system input, and enables reasoning on data types and type com-
patibility, which is otherwise not possible.

7 Conclusion and Future Work

In this paper, we have presented Medley, an event-driven lightweight plat-
form for service composition. Medley is based on a domain-specific language
for describing orchestration and a compiler that produces efficient code. We
have used Medley to develop various compositions, involving a large number
of existing services. Generated compositions consume a reasonably low amount
of resources and the platform scales well both on a mainstream server and an
embedded device such as a Raspberry Pi. Compared to traditional approaches
based on BPEL or ESB, Medley enables smooth adaptation at run-time of
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compositions of services based on their availability. In addition, we show through
several examples that Medley raises the level of abstractions enough to hide to
the programmer intricacies of underlying communication paradigms. The Med-
ley platform is currently under beta test and will be shortly distributed as a
product of CProDirect. We are working on a visual editor on top of the Medley
language for defining orchestrations.

There are a number of interesting avenues of future work. The first is to
extend the language to specify when a change of a remote resource has to be
reported as a new event in the case of polling. In this regard, we are currently
defining new algorithms to efficiently compute diffs of XML or JSON documents.
Complementary to this, we are investigating dataflow analyses of orchestrations
to detect compositions that may expose sensitive data to unauthorized users.
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