
Test-Driven Development of Ontologies

C. Maria Keet1(B) and Agnieszka �Lawrynowicz2

1 Department of Computer Science, University of Cape Town,
Cape Town, South Africa
mkeet@cs.uct.ac.za

2 Institute of Computing Science, Poznan University of Technology,
Poznań, Poland

agnieszka.lawrynowicz@cs.put.poznan.pl

Abstract. Emerging ontology authoring methods to add knowledge to
an ontology focus on ameliorating the validation bottleneck. The verifi-
cation of the newly added axiom is still one of trying and seeing what
the reasoner says, because a systematic testbed for ontology authoring is
missing. We sought to address this by introducing the approach of test-
driven development for ontology authoring. We specify 36 generic tests,
as TBox queries and TBox axioms tested through individuals, and struc-
ture their inner workings in an ‘open box’-way, which cover the OWL 2
DL language features. This is implemented as a Protégé plugin so that
one can perform a TDD test as a black box test. We evaluated the two
test approaches on their performance. The TBox queries were faster, and
that effect is more pronounced the larger the ontology is.

1 Introduction

The process of ontology development has progressed much over the past 20 years,
especially by the specification of high-level, information systems-like methodolo-
gies [8,25], and both stand-alone and collaborative tools [9,10]. But support for
effective low-level ontology authoring—adding the right axioms and adding the
axioms right—has received some attention only more recently. Processes at this
‘micro’ level of the development may use the reasoner to propose axioms with
FORZA [13], use Ontology Design Patterns (ODPs) [6], and repurpose ideas
from software engineering practices, notably exploring the notion of unit tests
[27], eXtreme Design with ODPs [3], and Competency Question (CQ)-based
authoring using SPARQL [23].

However, testing whether a CQ can be answered does not say how to add the
knowledge represented in the ontology, FORZA considers simple object proper-
ties only, and eXtreme Design limits one to ODPs that do not come out of the
blue but have been previously prepared. Put differently, there is no systematic
testbed for ontology engineering, other than manual efforts by a knowledge engi-
neer to add or change something and running the reasoner to check its effects.
This still puts a high dependency on expert knowledge engineering, which ideally
should not be in the realm of an art, but be rather at least a systematic process
for good practices.
c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 642–657, 2016.
DOI: 10.1007/978-3-319-34129-3 39



Test-Driven Development of Ontologies 643

We aim to address this problem by borrowing another idea from software
engineering: test-driven development (TDD) [2]. TDD ensures that what is added
to the program core (here: ontology) does indeed have the intended effect spec-
ified upfront. Moreover, TDD in principle is cognitively a step up from the ‘add
stuff and lets see what happens’-attitude, therewith deepening the understanding
of the ontology authoring process and the logical consequences of an axiom.

There are several scenarios of TDD usage in ontology authoring:

I. CQ-driven TDD Developers (domain experts, knowledge engineers etc.) specify
CQs. A CQ is translated automatically into one or more axioms. The axiom(s)
are the input of the relevant TDD test(s) to be carried out. The developers
who specify the CQs could be oblivious to the inner workings of the two-step
process of translating the CQ and testing the axiom(s).

II-a. Ontology authoring-driven TDD - the knowledge engineer The knowledge
engineer knows which axiom s/he wants to add, types it, which is then fed
directly into the TDD system.

II-b. Ontology authoring-driven TDD - the domain expert As there is practically
a limited amount of ‘types’ of axioms to add, one could create templates, alike
the notion of the “logical macro” ODP [22], which then map onto generic,
domain-independent tests (as will be specified in Sect. 3). For instance, a
domain expert could choose the all-some template from a list, i.e., an axiom
of the form C � ∃R.D. The domain expert instantiates it with relevant
domain entities (e.g., Professor � ∃teaches.Course), and the TDD test for the
C � ∃R.D type of axiom is then run automatically. The domain expert need
not know the logic, but behind the usability interface, what gets sent to the
TDD system is that axiom.

While in each scenario the actual testing can be hidden from the user’s view, it
is necessary to specify what actually happens during such testing and how it is
tested. Here, we assume that either the first step of the CQ process is completed,
or the knowledge engineer adds the axiom, or that the template is populated,
respectively; i.e., that we are at the stage where the axioms are fed into the TDD
test system. To realise the testing, a number of questions have to be answered:

1. Given the TDD procedure in software engineering—check that the desired
feature is absent, code it, test again (test-first approach)—then what does
that mean for ontology testing when transferred to ontology development?

2. TDD requires so-called mock objects for ‘incomplete’ parts of the code; is
there a parallel to it in ontology development, or can that be ignored?

3. In what way and where (if at all) can this be integrated as a methodological
step in existing ontology engineering methodologies that are typically based
on waterfall, iterative, or lifecycle principles?

To work this out for ontologies, we take some inspiration from TDD for
conceptual modelling. Tort et al. [26] essentially specify ‘unit tests’ for each fea-
ture/possible addition to a conceptual model, and test such an addition against
sample individuals. Translating this to OWL ontologies, such testing is possible



644 C. Maria Keet and A. �Lawrynowicz

by means of ABox individuals, and then instead of using an ad hoc algorithm,
one can avail of the automated reasoner. In addition, for ontologies, one can
avail of a query language for the TBox, namely, SPARQL-OWL [15], and most
of the tests can be specified in that language as well. We define TBox and ABox-
driven TDD tests for the basic axioms one can add to an OWL 2 DL ontology.
To examine practical feasibility for the ontology engineer and determine which
TDD strategy is the best option, we implemented the TDD tests as a Protégé
plugin and evaluated it on performance by comparing TBox and ABox TDD
tests for 67 ontologies. The TBox TDD tests outperform the ABox ones except
for disjointness and this effect is more pronounced with larger ontologies. Over-
all, we thus add a new mechanism and tool to the ontology engineer’s ‘toolbox’
to enable systematic development of ontologies in an agile way.

The remainder of the paper is structured as follows. Section 2 describes
related works on TDD in software and ontology development. Section 3 sum-
marises the TDD tests and Sect. 4 evaluates them on performance with the
Protégé plugin. We discuss in Sect. 5 and conclude in Sect. 6. Data, results, and
more detail on the TDD test specifications is available at https://semantic.cs.
put.poznan.pl/wiki/aristoteles/doku.php.

2 Related Work

To ‘transfer’ TDD to ontology engineering, we first summarise preliminaries
about TDD from software engineering and subsequently discuss related works
on tests in ontology engineering.

TDD in Software Development. TDD was introduced as a software devel-
opment methodology where one writes new code only if an automated test has
failed [2]. TDD permeates the whole development process, which can be sum-
marised as: (1) Write a test for a piece of functionality (that was based on a
requirement), (2) Run all tests to check that the new test fails, (3) Write rel-
evant code that passes the test, (4) Run the specific test to verify it passes,
(5) Refactor the code, and (6) Run all tests to verify that the changes to the
code did not change the external behaviour of the software (regression testing)
[24]. The important difference with unit tests, is that TDD is a test-first approach
rather than test-last (design, code, test). TDD results in being more focussed,
improves communication, improves understanding of required software behav-
iour, and reduces design complexity [17]. Quantitatively, TDD produced code
passes more externally defined tests—i.e, better software quality—and involves
less time spent on debugging, and experiments showed that it is significantly
more productive than test-last [11].

TDD has been applied to conceptual data modelling, where each language
feature has its own test specification in OCL that involves creating the objects
that should, or ought not to, instantiate the UML classes and associations [26].
Tort and Olivé’s tool was evaluated with modellers, which made clear, among
others, that more time was spent on developing and revising the conceptual
model to fix errors than on writing the test cases [26].

https://semantic.cs.put.poznan.pl/wiki/aristoteles/doku.php
https://semantic.cs.put.poznan.pl/wiki/aristoteles/doku.php


Test-Driven Development of Ontologies 645

Tests in ontology engineering. In ontology engineering, an early explorative
work on borrowing the notion of testing from software engineering is described
in [27], which explores several adaptation options: testing with the axiom and its
negation, formalising CQs, checks by means on integrity constraints, autoepis-
temic operators, and domain and range assertions. Working with CQs has shown
to be the most popular approach, notably [23], who analyse CQs and their pat-
terns for use with SPARQL queries that then would be tested against the ontol-
ogy. Their focus is on individuals and the formalisation stops at what has to be
tested, not how that can, or should, be done. Earlier work on CQs and queries
include the OntologyTest tool for ABox instances, which specifies different types
of tests, such as “instantiation tests” (instance checking) and “recovering tests”
(query for a class’ individuals) and using mock individuals where applicable
[7]; other instance-oriented test approaches is RDF/Linked Data [16]. There is
also an eXtreme Design NeON plugin with similar functionality and ODP rapid
design [3,21], likewise with RapidOWL [1], which lacks the types of tests, and
a more basic variant exists in the EFO Validator1. Neither are based on the
principle of TDD. The only one that aims to zoom in on unit tests for TBox
testing requires the tests to be specified in Clojure and the ontology in Tawny-
Owl notation, describes subsumption tests only [28], and the tests are tailored
to the actual ontology rather than reusable ‘templates’ for the tests covering all
OWL language features.

Related notions have been proposed in methods for particular types of
axioms, such as disjointness [5] and domain and range constraints [13]. Concern-
ing methodologies, none of the 9 methodologies reviewed by [8] are TDD-based,
nor is NeON [25]. The Agile-inspired OntoMaven [20] has OntoMvnTest with
‘test cases’ only for the usual syntax checking, consistency, and entailment [20].

Thus, full TDD ontology engineering has not been proposed yet. While the
idea of unit tests—which potentially could become part of TDD tests—has been
proposed, there is a dearth of actual specifications as to what exactly is, or
should be, going on in such as test. Even when one were to specify basic tests
for each language feature, it is unclear whether they can be put together in a
modular fashion for the more complex axioms that can be declared with OWL 2.
Further, there is no regression testing to check that perhaps an earlier modelled
CQ—and thus a passed test—conflicts with a later one.

3 TDD Specification for Ontologies

First the general procedure and preliminaries are introduced, and then the TBox
and RBox TDD tests are summarised.

3.1 Preliminaries on Design and Notation of the TDD Tests

The generalised TDD test approach is summarised as follows for the default case:

1 http://www.ebi.ac.uk/fgpt/sw/efovalidator/index.html.

http://www.ebi.ac.uk/fgpt/sw/efovalidator/index.html


646 C. Maria Keet and A. �Lawrynowicz

1. input: CQ into axiom, axiom, or template into axiom.
2. given: axiom x of type X to be added to the ontology.
3. check the vocabulary elements of x are in ontology O (itself a TDD test)
4. run TDD test twice:

(a) the first execution should fail (check O � x or not present),
(b) update the ontology (add x), and
(c) run the test again which then should pass (check that O |= x) and such

that there is no new inconsistency or undesirable deduction
5. Run all previous successful tests, which should pass (i.e., regression testing).

There are principally two options for the TDD tests: a test at the TBox-level
or always using individuals explicitly asserted in the ABox. We specify tests for
both approaches, where possible. For the test specifications, we use the OWL
2 notation for the ontology’s vocabulary: C,D,E, ... ∈ VC , R,S, ... ∈ VOP , and
a, b, ... ∈ VI , and SPARQL-OWL notation [15] where applicable, as it conve-
niently reuses OWL functional syntax-style notation merged with SPARQL’s
queried objects (i.e., ?x) for the formulation of the query. For instance, α ←
SubClassOf (?x D) will return all subclasses of class D. Details of SPARQL-OWL
and its implementation are described in [15].

Some TBox and all ABox tests require additional classes or individuals for
testing purposes only, which resembles the notion of mock objects in software
engineering [14,18]. We shall import this notion into the ontology setting, as
mock class for a temporary OWL class created for the TDD test, mock individual
for a temporary ABox individual, and mock axiom for a temporary axiom. These
mock entities are to be removed from the ontology after completion of the test.

Steps 3 and 4a in the sequence listed above may give an impression of epis-
temic queries. It has to be emphasised that there is a fine distinction between
(1) checking when an element is in the vocabulary of the TBox of the ontology
(in VC or VOP ) versus autoepistemic queries, and (2) whether something is log-
ically true or false versus a test evaluating to true or false. In the TDD context,
the epistemic-sounding ‘not asserted in or inferred from the ontology’ is to be
understood in the context of a TDD test, like whether an ontology has some class
C in its vocabulary, not whether it is ‘known to exist’ in one’s open or closed
world. Thus, an epistemic query language is not needed for the TBox tests.

3.2 Generic Test Patterns for TBox Axioms

The tests are introduced in pairs, where the primed test names concern the tests
with individuals; they are written in SPARQL-OWL notation. They are pre-
sented in condensed form due to space limitations. The TDD tests in algorithm-
style notation are available in an extended technical report of this paper [12].

Class subsumption, Testcs or Test′cs. When the axiom to add is of type
C � D, with C and D named classes, then O |= ¬(C � D) should be true if
it were not present. Logically, then in the tableau, O ∪ ¬(¬(C � D)) should be
inconsistent, i.e., O ∪ (¬C � D). Given the current Semantic Web technologies,
it is easier to query the ontology for the subclasses of D and to ascertain that



Test-Driven Development of Ontologies 647

C is not in query answer α rather than create and execute tailor-made tableau
algorithms:

Testcs=α ← SubClassOf(?xD). IfC /∈ α, then C � D is neither asserted nor
entailed in the ontology; the test fails. �
After adding C � D to the ontology, the same test is run, which should evaluate
to C ∈ α and therewith Testcs returns ‘pass’. The TTD test with individuals
checks whether an instance of C is also an instance of D:

Test′
cs = Create a mock object a and assert C(a). α ← Type(?x D). If a /∈ α,

then C � D is neither asserted nor entailed in the ontology. �
Class disjointness, Testcd or Test′cd. One can assert the complement, C �

¬D, or disjointness, C � D � ⊥. Let us consider the former first (test Testcdc
),

such that then ¬(C � ¬D) should be true, or T (C � ¬D) false (in the sense of
‘not be in the ontology’). Testing for the latter only does not suffice, as there are
more cases where O � C � D holds, but disjointness is not really applicable—
being classes in distinct sub-trees in the TBox—or holds when disjointness is
asserted already, which is when C and D are sibling classes. For the complement,
we simply can query for it in the ontology:

Testcdc = α ← ObjectComplementOf(C ?x). If D /∈ α, then O � C � ¬D;
hence, the test fails. �
For C � D � ⊥, the test is:

Testcdd
= α ← DisjointClasses(?x D). If C /∈ α, then O � C � D � ⊥. �

The ABox option uses a query or classification; availing of the reasoner only:
Test′

cd = Create individual a, assert C(a) and D(a). ostate ← Run the
reasoner. If ostate is consistent, then either O � C � ¬D or O � C � D � ⊥
directly or through one or both of their superclasses (test fails). Else, the ontology
is inconsistent (test passed); thus either C � ¬D or C�D � ⊥ is already asserted
among both their superclasses or among C or D and a superclass of D or C,
respectively. �
Further, from a modelling viewpoint, it would make sense to also require C and
D to be siblings. The sibling requirement can be added as an extra check in the
interface to alert the modeller to it, but not be enforced from a logic viewpoint.

Class equivalence, Testce and Test′ce. When the axiom to add is of the form
C ≡ D, then O |= ¬(C ≡ D) should be true before the edit, or O � C ≡ D
false. The latter is easier to test—run Testcs twice, once for C � D and once
for D � C—or use one SPARQL-OWL query:

Testce = α ← EquivalentClasses(?x D). If C /∈ α, then O � C ≡ D ; the test
fails. �
Note that D can be complex here, but C cannot. For class equivalence with
individuals, we can extend Test′cs:

Test′
ce = Create a mock object a, assert C(a). Query α ← Type(?x D). If

a /∈ α, then O � C ≡ D and the test fails; delete C(a) and a. Else, delete C(a),
assert D(a). Query α ← Type(?x C). If a /∈ α, then O � C ≡ D, and the test
fails. Delete D(a) and a. �

Simple existential quantification, Testeq or Test′eq. The axiom pattern is C �
∃R.D, so O � ¬(C � ∃R.D) should be true, or O |= C � ∃R.D false (or: not



648 C. Maria Keet and A. �Lawrynowicz

asserted) before the ontology edit. One could do a first check that D is not a
descendant of R but if it is, then it may be the case that C ′ � ∃R.D, with C a
different class from C ′. This still requires one to confirm that C is not a subclass
of ∃R.D. This can be combined into one query/TDD test:

Testeq = α ← SubClassOf(?x ObjectSomeValuesFrom(R D)). If C /∈ α, then
O � C � ∃R.D, hence the test fails. �
If C /∈ α, then the axiom is to be added to the ontology, the query run again,
and if C ∈ α, then the test cycle is completed.

From a modelling viewpoint, desiring to add a CQ that amounts to C �
∃R.¬D may look different, but ¬D ≡ D′, so it amounts to testing C � ∃R.D′,
i.e., essentially the same pattern. This also can be formulated directly into a
SPARQL-OWL query, encapsulated in a TDD test:

Testeqnd
= α ← SubClassOf(?x ObjectSomeValuesFrom(R ObjectComple-

mentOf(D))). If C /∈ α, then O � C � ∃R.¬D ; hence, the test fails. �
It is slightly different for C � ¬∃R.D. The query with TDD test is as follows:

Testeqnr
= α ← SubClassOf(?x ObjectComplementOf(ObjectSomeValues-

From(R D))). If C /∈ α, then O � C � ¬∃R.D, and the test fails. �
The TDD test Test′eq with individuals only is as follows:

Test′
eq = Create mock objects a, assert (C � ¬∃R.D)(a). ostate ← Run

the reasoner. If ostate is consistent, then O � C � ∃R.D ; test fails. Delete
(C � ¬∃R.D)(a), and a. �
This holds similarly for C � ∃R.¬D (Test′eqnd

). Finally, for C � ¬∃R.D:
Test′

eqnr
= Create two mock objects, a and b; assert C(a), D(b), and R(a, b).

ostate ← Run the reasoner. If ostate is consistent, then O � C � ¬∃R.D, hence,
the test fails. Delete C(a), D(b), R(a, b), a, and b. �

Simple universal quantification, Testuq or Test′uq. The axiom to add is of the
pattern C � ∀R.D, so then O � ¬(C � ∀R.D) should hold, or O |= C � ∀R.D
false (not be present in the ontology), before the ontology edit. This has a similar
pattern for the TDD test as the one for existential quantification,

Testuq = α ← SubClassOf(?x ObjectAllValuesFrom(R D)). If C /∈ α, then
O � C � ∀R.D, hence, the test fails. �
which then can be added and the test ran again. The TDD test for Test′uq is
alike Test′eq, but then the query is α ← Type(?x, ObjectAllValuesFrom(R D).

3.3 Generic Test Patterns for Object Properties

TDD tests for object properties (the RBox) do not lend themselves well for TBox
querying, though the automated reasoner can be used for the TDD tests.

Domain axiom, Testda or Test′da. The TDD needs to check that ∃R � C
that is not yet in O, so O |= ¬(∃R � C) should be true, or O |= ∃R � C
false. There are two options with SPARQL-OWL. First, one can query for the
domain:

Testda = α ← ObjectPropertyDomain(R ?x) If C /∈ α, then O � ∃R � C;
test fails. �
Alternatively, one can query for the superclasses of ∃R (it is shorthand for ∃R.�),
where the TDD query is: α ← SubClassOf(SomeValuesFrom(R Thing) ?x). Note



Test-Driven Development of Ontologies 649

that C ∈ α only will be returned if C is the only domain class of R or when
C � C ′ (but not if it is C � C ′, which is a superclass of C). The ABox test is:

Test′
da = Check R ∈ VOP and C ∈ VC . Add individuals a and topObj, add

R(a, topObj). Run the reasoner. If a /∈ C, then O � ∃R � C (also in the strict
sense as is or with a conjunction); hence the test fails. Delete a and topObj. �
If the answer is empty, then R does not have any domain specified yet, and if
C /∈ α, then O � ∃R � C, hence, it can be added and the test run again.

Range axiom, Testra or Test′ra. Thus, ∃R− � D should not be in the ontology
before the TDD test. This is similar to the domain axiom test:

Testra = α ← ObjectPropertyRange(R ?x). If D /∈ α, then O � ∃R− � D;
test fails. �
Or one can query α ← SubClassOf(SomeValuesFrom(ObjectInverseOf(R) Thing)
?x). Then D ∈ α if O |= ∃R− � D or O |= ∃R− � D�D′, and only owl:Thing
∈ α if no range was declared for R. The test with individuals:

Test′
ra = Check R ∈ VOP and D ∈ VC . Add individuals a and topObj, add

R(topObj, a). If a /∈ D, then O � ∃R− � D. Delete R(topObj, a), a, topObj. �
Object property subsumption and equivalence, Testps and Testpe, and Test′ps

and Test′pe. For property subsumption, R � S, we have to test that O |= ¬(R �
S), or that R � S fails. This is simply:

Testps = α ← SubObjectPropertyOf(?x S) If R /∈ α, then O � R � S; test
fails. �
Regarding the ABox variant, for R � S to hold given the OWL semantics, it
means that, given some individuals a and b, that if R(a, b) then S(a, b):

Test′
ps = Check R,S ∈ VOP . Add individuals a, b, add R(a, b). Run the

reasoner. If S(a, b) /∈ α, then O � R � S; test fails. Delete R(a, b), a, and b. �
Upon the ontology update, it should infer S(a, b). There is no guarantee that
R � S was added, but R ≡ S instead. This can be observed easily with the
following test:

Test′
pe = Check R,S ∈ VOP . Add mock individuals a, b, c, d, add R(a, b)

and S(c, d). Run the reasoner. If S(a, b) ∈ α and R(c, d) /∈ α, then O |= R � S
(hence the ontology edit was correct); test fails. Else, i.e. {S(a, b), R(c, d)} ∈ α,
so O |= R ≡ S; test passes. Delete R(a, b) and S(c, d), and a, b, c, d. �
For object property equivalence at the Tbox level, i.e., R ≡ S, one could use
Testps twice, or simply use the EquivalentObjectProperties:

Testpe = α ← EquivalentObjectProperties(?x S) If R /∈ α, then O � R ≡ S;
test fails. �

Object property inverses, Testpi and Test′pi. There are two options since
OWL 2: explicit inverses (e.g., teaches with its inverse declared as taught by)
or ‘implicit’ inverse (e.g., teaches and teaches−). For the failure-test of TDD,
only the former case can be tested. Also here there is a TBox and an ABox
approach; their respective tests are:

Testpi = α ← InverseObjectProperties(?x S) If R /∈ α, then O � R � S−;
test fails. �

Test′
pi = Check R,S ∈ VOP . Assume S is intended to be the inverse of

R (with R and S having different names). Add mock individuals a, b, and add



650 C. Maria Keet and A. �Lawrynowicz

R(a, b). Run the reasoner. If O � S(b, a), then O � R � S−; hence, the test fails.
Delete a, b. �

Object property chain, Testpc or Test′pc. The axiom to be added is one of
the permissible chains (except for transitivity; see below), such as R ◦ S � S,
S◦R � S, R◦S1◦...◦Sn � S (with n > 1). This is increasingly more cumbersome
to test, because many more entities are involved, hence, more opportunity to have
incomplete knowledge represented in the ontology and thus more hassle to check
all possibilities that lead to not having the desired effect. Aside from searching
the owl file for owl:propertyChainAxiom, with the relevant properties included
in order, the SPARQL-OWL-based TDD test is:

Testpc, for R ◦ S � S = α ← SubObjectPropertyOf(ObjectPropertyChain(R
S) ?x). If S /∈ α, then O � R ◦ S � S, and the test fails. �
and similarly with the other permutations of property chains. However, either
option misses three aspects of chains: (1) a property chain is pointless if the
properties involved are never used in the intended way, (2) this cannot ascertain
that it does only what was intended, and (3) whether the chain does not go
outside OWL 2 due to some of them being not ‘simple’. For O |= R ◦ S � S
to be interesting for the ontology, also at least one O |= C � ∃R.D and one
O |= D � ∃S.E should be present. If they all were, then a SPARQL-OWL query
α ← SubClassOf(?x ObjectSomeValuesFrom(S E)) will have C ∈ α. If either of
the three axioms are not present, then C /∈ α. The ABox TDD test is more
cumbersome:

Test′
pc, for R ◦ S � S = Check R,S ∈ VOP and C,D,E ∈ VC . If C,D,E /∈

VC , then add the missing class(es) (C, D, and/or E) as mock classes. Run the
test Testeq or Test′eq, for both C � ∃R.D and for D � ∃S.E. If Testeq is false,
then add C � ∃R.D, D � ∃S.E, or both, as mock axiom. If O |= C � ∃S.D,
then the test is meaningless, for it would not test the property chain. Then add
mock class C ′, mock axiom C ′ � ∃R.D. Verify with Testeq or Test′eq. α ←
SubClassOf(?x ObjectSomeValuesFrom(S E)). If C ′ /∈ α, then O � R ◦ S � S; test
fails. Else, i.e., O � C � ∃S.D: α ← SubClassOf(?x ObjectSomeValuesFrom(S E)).
If C /∈ α, then O � R ◦ S � S; test fails. Delete all mock entities. �
Assuming that the test fails, i.e., C /∈ α (resp. C ′ /∈ α) and thus O � R ◦ S � S,
then add the chain and run the test again, which then should pass (i.e., C ∈ α).
The procedure holds similarly for the other permissible combinations of object
properties in a property chain/complex role inclusion.

Object property characteristics, Testpx
. TDD tests can be specified for the

ABox approach, but only transitivity and local reflexivity have a TBox test.
R is functional, Test′pf

, i.e., an object has at most one R-successor:
Test′

pf
= Check R ∈ VOP and a, b, c ∈ VI ; if not present, add. Assert mock

axioms R(a, b), R(a, c), and b �= c, if not present already. Run reasoner. If O is
consistent, then O � Func(R), so the test fails. (If O is inconsistent, then the
test passes.) Remove mock axioms and individuals, as applicable. �

R is inverse functional, Test′pif
. This is as above, but then in the other

direction, i.e., R(b, a), R(c, a) with b, c declared distinct. Thus:
Test′

pif
= Check R ∈ VOP and a, b, c ∈ VI ; if not present, add. Assert mock



Test-Driven Development of Ontologies 651

axioms R(b, a), R(c, a), and b �= c, if not present already. Run reasoner. If O
is consistent, then O � InvFun(R), so the test fails. (If O is inconsistent, then
InvFun(R) is true.) Remove mock axioms and individuals, as applicable. �

R is transitive, Testpt
or Test′pt

. As with object property chains (Testpc),
transitivity is only ‘interesting’ if there are at least two related axioms so that
one obtains a non-empty deduction; if the relevant axioms are not asserted, they
have to be added. The TBox and ABox tests are as follows:

Testpt
= Check R ∈ VOP and C,D,E,∈ VC . If C,D,E, /∈ VC , then add

the missing class(es) (C, D, and/or E as mock classes). If C � ∃R.D and
D � ∃R.E are not asserted, then add them to O. Query α ← SubClassOf(?x
ObjectSomeValuesFrom(R E)). If C /∈ α, then O � Trans(R), so the test fails.
Remove mock classes and axioms, as applicable. �

Test′
pt

= Check R ∈ VOP , a, b, c ∈ VI . If not, introduce mock a, b, c, R(a, b),
and R(b, c), if not present already. Run reasoner. If R(a, c) /∈ α, then O �

Trans(R), so the test fails. Remove mock entities. �
R is symmetric, Test′ps

, Sym(R), so that with R(a, b), it will infer R(b, a).
The test-to-fail—assuming R ∈ VOP—is as follows:

Test′
ps

= Check R ∈ VOP . Introduce a, b as mock objects (a, b ∈ VI). Assert
mock axiom R(a, b). α ← ObjectPropertyAssertion(R x? a). If b /∈ α, then O �

Sym(R), so the test fails. Remove mock assertions and individuals. �
Alternatively, one can check in the ODE whether R(b, a) is inferred.

R is asymmetric, Test′pa
. This is easier to test with its negation, i.e., assert

objects symmetric and distinct, then if O is not inconsistent, then O � Asym(R):
Test′

pa
= Check R ∈ VOP . Introduce a, b as mock objects and assert mock

axioms R(a, b) and R(b, a). Run reasoner. If O is not inconsistent, then O �

Asym(R), so the test fails. Remove mock axioms and individuals. �
R is reflexive, Test′prg

or Test′prg
. The object property can be either globally

reflexive (Ref(R)), or locally (C � ∃R.Self). Global reflexivity is uncommon,
but if the modeller does want it, then the following test should be executed:

Test′
prg

= Check R ∈ VOP . Add mock object a. Run the reasoner. If
R(a, a) /∈ O, then O � Ref(R), so the test fails. Remove mock object a. �
Adding Ref(R) will have the test evaluate to true. Local reflexivity amounts to
checking whether O |= C � ∃R.Self . This is essentially the same as Testeq but
then with Self cf. a named D, so there is a TBox and an ABox TDD test:

Testprl
= α ← SubClassOf(?x ObjectSomeValuesFrom(R Self)). If C /∈ α,

then O � C � ∃R.Self , so the test fails. �
Test′

prl
= Check R ∈ VOP . Introduce a as mock objects (a ∈ VI). Assert

mock axiom C(a). α ← Type(?x C), PropertyValue(a R ?x). If a /∈ α, then
O � C � ∃R.Self , so the test fails. Remove C(a) and mock object a. �

R is irreflexive, Test′pir
. As with asymmetry, the TDD test exploits the con-

verse:
Test′

pi
= Check R ∈ VOP , and add a ∈ VI . Add mock axiom R(a, a). Run

reasoner. If O is consistent, then O � Irr(R); test fails. (Else, O is inconsistent,
and Irr(R)) is true. Remove mock axiom and individual, as applicable. �



652 C. Maria Keet and A. �Lawrynowicz

This concludes the basic tests. While the logic permits that a class on the
left-hand side of the inclusion axiom is an unnamed class, we do not consider
this here, as due to the tool design of the most widely used ODE, Protégé, the
class on the left-hand side of the inclusion is typically a named class.

4 Evaluation with the Protégé Plugin for TDD

In order to support ontology engineers in performing TDD, we have implemented
a Protégé plugin, TDDOnto, which provides a view where the user may specify
the set of tests to be run. After their execution, the status of the tests is displayed.
One also can add a selected axiom to the ontology (and re-run the test).

The aim of the evaluation is to answer Which TDD approach—queries or
mock objects—is better?, as performance is likely to affect user opinion of TDD.
To answer this question, we downloaded the TONES ontologies from OntoHub
[https://ontohub.org/repositories], of which 67 could be used (those omitted were
either in OBO format or had datatypes incompatible with the reasoner). The
ontologies were divided into 4 groups, based on the number of axioms: up to 100
(n=20), 100–1000 axioms (n=35), 1000–10,000 axioms (n=10), and over 10,000
(n=2) to measure effect of ontology size. The tests were generated randomly,
using the ontology’s vocabulary, and each test kind was repeated 3 times to
obtain more reliable results as follows. For each axiom kind of the basic form
(with C and D as primitive concepts) there is a fixed number of “slots” that can
be replaced with URIs. For each test, these slots were randomly filled from the set
of URIs existing in the ontology taking into account whether an URI represents
a class or a property. The tested axioms with the result of each test are published
in the online material. The test machine was a Mac Book Air with 1.3 GHz Intel
Core i5 CPU and 4 GB RAM. The OWL reasoner was HermiT 1.3.8, which is
the same that is built-in into OWL-BGP to ensure fair comparison.

The first observation during our experiments was that not all the features
of OWL 2 are covered by OWL-BGP, in particular the RBox axioms (e.g.,
subPropertyOf and property characteristics). Therefore, we only present the
comparative results of the tests that could be run in both settings: ABox tests
and TBox tests with use of the SPARQL-OWL query answering technology
implemented in the OWL-BGP tool.

The performance results per group of ontologies are presented in Fig. 1. Each
box plot has the median m (horizontal line); the first and third quartile (bottom
and top line of the box); the lowest value above m − 1.5 · IQR (horizontal line
below the box), and the highest value below m+1.5 ·IQR (horizontal line above
the box), where IQR (interquartile range) is represented with the height of the
box; outliers are points above and below of the short lines. It is evident that
TBox (SPARQL-OWL) tests are generally faster than the ABox ones, and these
differences are larger in the sets of larger ontologies. A comparison was done
also between two alternative technologies for executing a TBox test—based on
SPARQL-OWL and based on OWL API with the reasoner—showing even better
performance of the TBox based TDD tests versus ABox based ones (results

https://ontohub.org/repositories


Test-Driven Development of Ontologies 653

Fig. 1. Performance times by ontology size (four groups, with lower and upper number
of the axioms of the ontologies in that group), and classification and test type for each.

available in the online material). Before running any test on an ontology, we also
measured ontology classification time, which is also included in Fig. 1: it is higher
on average in comparison to the times of running the test. Performance by TDD
test type and the kind of axiom is shown in Fig. 2, showing the better general
performance of the TBox approach in more detail, except for disjointness.

5 Discussion

The current alternative to TDD tests is browsing the ontology for the axiom.
This is problematic, for then one does not know the implications it is responsible
for, it results in cognitive overload that hampers ontology development, and one
easily overlooks something. Instead, TDD can manage this in one fell swoop. In
addition, the TDD tests also facilitate regression testing.

On Specifying and Implementing a TDD Tool. TBox tests can be imple-
mented in different ways; e.g., in some instances, one could use the DL query tab
in Protégé; e.g., Tcs’s as: D and select Sub classes, without the hassle of unnamed
classes (complex class expressions) on the right-hand-side of the inclusion axiom
(not supported by BGP [15]). However, it lacks functionality for object property
tests (as did all others, it appeared during evaluation); one still can test the
sequence ‘manually’ and check the classification results, though.



654 C. Maria Keet and A. �Lawrynowicz

Fig. 2. Test computation times per test type and per the kind of the tested axiom.

The core technological consideration, however, is the technique to obtain the
answer of a TDD test: SPARQL SELECT-queries, SPARQL-OWL’s BGP (with
SPARQL engine and HermiT), or SPARQL-DL with ASK queries and the OWL
API. Neither could do all TDD tests in their current version. Regarding perfor-
mance, the difference between the ABox and TBox tests are explainable—the
former always modifies the ontology, so requires an extra classification step—
though less so for disjointness or the difference being larger (subsumption, equiv-
alence) or smaller (queries with quantifiers). Overall performance is likely to vary
also by reasoner [19], and, as observed, by ontology size. This is a topic of further
investigation.

A related issue is the maturity of the tools. Several ontologies had datatype
errors, and there were the aforementioned RBox tests limitations. Therefore, we
tested only what could be done with current technologies (the scope is TDD
evaluation, not extending other tools), and infer tendencies from that so as to
have an experimentally motivated basis for deciding which technique likely will
have the best chance of success, hence, is the best candidate for extending the
corresponding tool. This means using TBox TDD tests, where possible.

A Step Toward a TDD Ontology Engineering Methodology. A method-
ology is a structured collection of methods and techniques, processes, people
having roles possibly in teams, and quality measures and standards across the
process (see, e.g., [4]). A foundational step in the direction of a TDD ontology
development methodology that indicates where and how it differs from the typi-
cal waterfall, iterative, or lifecycle-based methodologies is summarised in Fig. 3,
adapting the software development TDD procedure. One can refine these steps,



Test-Driven Development of Ontologies 655

Fig. 3. Sketch of a possible ontology lifecycle that focuses on TDD, and the typical,
default, sequence of steps of the TDD procedure summarised in key terms.

such as managing the deductions following from the ontology update and how
to handle an inconsistency or undesirable deduction due to contradictory CQs.
Refactoring could include, e.g., removing an explicitly declared axiom from a
subclass once it is asserted for its superclass. These details are left for future
work. Once implemented, a comparison of methodologies is also to be carried
out.

6 Conclusions

This paper introduced 36 tests for Test-Driven Development of ontologies, speci-
fying what has to be tested, and how. Tests were specified both at the TBox-level
with queries and for ABox individuals, using mock entities. The implementation
of the main tests demonstrated that the TBox test approach performs better,
which is more pronounced with larger ontologies. A high-level 8-step process for
TDD ontology engineering was proposed.

Future work pertains to extending tools to also implement the remaining
tests, elaborate on the methodology, and conduct use-case evaluations.

Acknowledgments. This research has been supported by the National Science Cen-
tre, Poland, within the grant number 2014/13/D/ST6/02076.

References

1. Auer, S.: The RapidOWL methodology-towards agile knowledge engineering. In:
Proceedings of WETICE 2006. pp. 352–357. IEEE Computer Society, June 2006

2. Beck, K.: Test-Driven Development: By Example. Addison-Wesley, Boston (2004)
3. Blomqvist, E., Seil Sepour, A., Presutti, V.: Ontology testing - methodology and

tool. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin,
M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS,
vol. 7603, pp. 216–226. Springer, Heidelberg (2012)



656 C. Maria Keet and A. �Lawrynowicz

4. Cockburn, A.: Selecting a project’s methodology. IEEE Softw. 17(4), 64–71 (2000)
5. Ferré, S., Rudolph, S.: Advocatus diaboli – exploratory enrichment of ontologies

with negative constraints. In: ten Teije, A., Völker, J., Handschuh, S., Stucken-
schmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.)
EKAW 2012. LNCS, vol. 7603, pp. 42–56. Springer, Heidelberg (2012)

6. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 221–243. Springer, Berlin (2009)

7. Garćıa-Ramos, S., Otero, A., Fernández-López, M.: Ontologytest: a tool to evaluate
ontologies through tests defined by the user. In: Omatu, S., Rocha, M.P., Bravo,
J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009,
Part II. LNCS, vol. 5518, pp. 91–98. Springer, Heidelberg (2009)

8. Garcia, A., O’Neill, K., Garcia, L.J., Lord, P., Stevens, R., Corcho, O., Gibson,
F.: Developing ontologies within decentralized settings. In: Chen, H., et al. (eds.)
Semantic e-Science. Annals of Information Systems, vol. 11, pp. 99–139. Springer,
New York (2010)

9. Gennari, J.H., et al.: The evolution of Protégé: an environment for knowledge-based
systems development. Int. J. Hum Comput Stud. 58(1), 89–123 (2003)

10. Ghidini, C., Kump, B., Lindstaedt, S., Mahbub, N., Pammer, V., Rospocher, M.,
Serafini, L.: Moki: the enterprise modelling wiki. In: Aroyo, L., et al. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 831–835. Springer, Heidelberg (2009)

11. Janzen, D.S.: Software architecture improvement through test-driven development.
In: Companion to ACM SIGPLAN 2005, pp. 240–241. ACM Proceedings (2005)

12. Keet, C.M., �Lawrynowicz, A.: Test-driven development of ontologies (extended
version). Technical report 1512.06211, arxiv.org, December 2015. http://arxiv.org/
abs/1512.06211

13. Keet, C.M., Khan, M.T., Ghidini, C.: Ontology authoring with FORZA. In: Pro-
ceedings of CIKM 2013, pp. 569–578. ACM Proceedings (2013)

14. Kim, T., Park, C., Wu, C.: Mock object models for test driven development. In:
Proceedings of SERA2006. IEEE Computer Society (2006)

15. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over owl ontologies.
In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leen-
heer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 382–396. Springer,
Heidelberg (2011)

16. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J.,
Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proc.
of WWW’2014. pp. 747–758. ACM Proceedings (2014)

17. Kumar, S., Bansal, S.: Comparative study of test driven development with tradi-
tional techniques. Int. J. Softw. Comput. Eng. 3(1), 352–360 (2013)

18. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: unit testing with mock
objects. In: Extreme Programming Examined, pp. 287–301. Addison-Wesley,
Boston (2001)

19. Parsia, B., Matentzoglu, N., Goncalves, R., Glimm, B., Steigmiller, A.: The OWL
Reasoner Evaluation (ORE) 2015 competition report. In: Proceedings of SSWS
2015. CEUR-WS, Bethlehem, USA, vol. 1457, 11 October 2015

20. Paschke, A., Schaefermeier, R.: Aspect OntoMaven - aspect-oriented ontology
development and configuration with OntoMaven. Technical report 1507.00212v1,
Free University of Berlin, July 2015. http://arxiv.org/abs/1507.00212

21. Presutti, V., Daga, E., et al.: Extreme design with content ontology design patterns.
In: Proceedings of WS on OP 2009, CEUR-WS, vol. 516, pp. 83–97 (2009)

http://arxiv.org/abs/1512.06211
http://arxiv.org/abs/1512.06211
http://arxiv.org/abs/1507.00212


Test-Driven Development of Ontologies 657

22. Presutti, V., et al.: A library of ontology design patterns: reusable solutions for col-
laborative design of networked ontologies. NeOn deliverable D2.5.1, NeOn Project,
ISTC-CNR (2008)

23. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 752–767. Springer, Heidelberg (2014)

24. Shrivastava, D.P., Jain, R.: Metrics for test case design in test driven development.
Int. J. Comput. Theory Eng. 2(6), 952–956 (2010)

25. Suárez-Figueroa, M.C., et al.: NeOn methodology for building contextualized ontol-
ogy networks. NeOn Deliverable D5.4.1, NeOn Project (2008)

26. Tort, A., Olivé, A., Sancho, M.R.: An approach to test-driven development of
conceptual schemas. Data Knowl. Eng. 70, 1088–1111 (2011)

27. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari,
Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1012–1020.
Springer, Heidelberg (2006)

28. Warrender, J.D., Lord, P.: How, What and Why to test an ontology. Technical
report 1505.04112, Newcastle University (2015). http://arxiv.org/abs/1505.04112

http://arxiv.org/abs/1505.04112

	Test-Driven Development of Ontologies
	1 Introduction
	2 Related Work
	3 TDD Specification for Ontologies
	3.1 Preliminaries on Design and Notation of the TDD Tests
	3.2 Generic Test Patterns for TBox Axioms
	3.3 Generic Test Patterns for Object Properties

	4 Evaluation with the Protégé Plugin for TDD
	5 Discussion
	6 Conclusions
	References


