
AskNow: A Framework for Natural Language
Query Formalization in SPARQL

Mohnish Dubey1(B), Sourish Dasgupta2, Ankit Sharma3, Konrad Höffner4,
and Jens Lehmann1,5

1 Computer Science Institute, University of Bonn, Bonn, Germany
dubey@cs.uni-bonn.de

2 DA-IICT, Gandhinagar, India
sourish@rygbee.com

3 State University of New York, Buffalo, USA
ankitkai@buffalo.edu

4 AKSW Group, University of Leipzig, Leipzig, Germany
konrad.hoeffner@uni-leipzig.de

5 Fraunhofer IAIS, Sankt Augustin, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. Natural Language Query Formalization involves semanti-
cally parsing queries in natural language and translating them into their
corresponding formal representations. It is a key component for develop-
ing question-answering (QA) systems on RDF data. The chosen formal
representation language in this case is often SPARQL. In this paper, we
propose a framework, called AskNow, where users can pose queries in
English to a target RDF knowledge base (e.g. DBpedia), which are first
normalized into an intermediary canonical syntactic form, called Normal-
ized Query Structure (NQS), and then translated into SPARQL queries.
NQS facilitates the identification of the desire (or expected output infor-
mation) and the user-provided input information, and establishing their
mutual semantic relationship. At the same time, it is sufficiently adap-
tive to query paraphrasing. We have empirically evaluated the framework
with respect to the syntactic robustness of NQS and semantic accuracy
of the SPARQL translator on standard benchmark datasets.

1 Introduction

With the advent of massive scale knowledge bases (such as DBpedia [1],
YAGO [2], Freebase [3], Google Knowledge Vault [4], Microsoft Satori, etc.),
the need to have a user-friendly interface for querying them became relevant.
However, users usually are not deft in (and in most cases lack the knowledge
of) writing formal queries. Natural language query formalization (NLQF) is a
formal and systematic procedure of translating a user query in natural language
(NL) into a query expression in a target formal query language. In this paper,
we scope the problem of NLQF to RDF/RDF-S knowledge bases only. Within
this context, the target formal query language chosen is SPARQL [5] – the W3C
recommended and widely adopted query language for RDF data stores.
c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 300–316, 2016.
DOI: 10.1007/978-3-319-34129-3 19

AskNow: A Framework for Natural Language Query Formalization 301

NLQF into SPARQL for question-answering on RDF data stores is non-trivial.
This can be attributed to several reasons: (a) a semantic interpretation of nat-
ural language query is intrinsically complex and error-prone, (b) the schema of
the target dataset is not fixed, (c) a partial lack of rich schema structures of RDF
datasets leading to syntactic mismatches, (d) lexical mismatches of query tokens,
and (e) mismatches due to lack of explicit entailed relations in an RDF store. One
of the key linguistic challenges is the accurate identification of the query desire
(also known as query intent or answer type in the literature) of a user-query.
Another major challenge is that a query can be paraphrased into multiple forms,
thereby triggering the potential of lexico-syntactic mismatches. Also, there is no
unique way to create schemata in RDF, i.e. the same fact can be written in differ-
ent triple forms and could also be expressed using multiple triples.

In this paper, we propose an NLQF framework, called AskNow, for posing
queries in English to target RDF data stores. AskNow uses an intermediate
canonical syntactic structure, called Normalized Query Structure (NQS), into
which an NQS fitting algorithm normalizes English queries. One of the primary
objectives of the algorithm is to normalize paraphrased queries into a common
structure. Another objective is to help a SPARQL translator to easily identify
the query desire, query input (i.e. additional information provided by the user),
and their mutual semantic relation. As an example, given the query: “What is
the capital of India?”, the algorithm will be able to differentiate the query desire
(i.e. instances of class capital) and relate it to the input India via the relation
of. Here, the input plays an important role in automatically constructing the
declarative formal description of the desire. After a query is normalized into an
NQS instance, the SPARQL translator then maps the query tokens in the NQS
instance so as to entities defined in the RDF data store. This is done to solve
the potential problem of lexical and schematic mismatch mentioned earlier. We
show empirically, using QALD [6] benchmark datasets, that the devised NQS
Fitting algorithm is accurate in correctly characterizing (both in terms of syntax
and semantics) most NL queries. Our contributions in this paper is as follows:

– A novel paraphrase resilient query characterization structure (and algorithm),
called NQS, is proposed. NQS is less sensitive to structural variation. It sup-
ports complex queries, hence, serves as a robust intermediary formal query
representation.

– An NQS to SPARQL translation algorithm (and tool) is proposed that sup-
ports user queries to be agnostic of the target RDF store structure and
vocabulary.

– An evaluation of AskNow in terms of: (i) assessing robustness using the
Microsoft Encarta data set, and (ii) evaluating accuracy using a commu-
nity query dataset built on the OWL-S TC v.4.0 dataset and the QALD-4/5
datasets.

The paper is organized into the following sections: Sect. 3 Approach, where
the formal notions of NQS query is defined, Sect. 4 in which the Architectural

302 M. Dubey et al.

Pipeline of AskNow is elaborated, Sect. 5 Evaluation, where various evaluation
criteria are discussed, and Sect. 6 Related Work outlining some of the major
contributions in NL query processing.

2 Preliminaries

Definition 1 (Simple Query): A simple query consists of a single and uncon-
strained query-desire (explicit or implicit) and a single, unconstrained, and
explicit query-input. For example, in “What is the capital of USA?” the query-
desire (i.e. Capital) is explicit, single, and not constrained by any clausal phrase.
The query-input (i.e. USA) is also explicit, single, and unconstrained. The query-
desire can be implicit: For example, in the query “What is a tomb?”, the implicit
query-desire is the definition of tomb, while the query-input Tomb is single and
unconstrained.

Definition 2 (Complex Query): A complex query consists of a single query-
desire (explicit or implicit, constrained or unconstrained) and multiple, explicit
query-inputs (constrained or unconstrained). For example, the query “What is
the capital of USA during World War II?” is a complex query where the implicit,
unconstrained query-desire is single (Capital) while the query-input is multiple
(USA, World War II).

Definition 3 (Compound Query): A compound query consists of conjunc-
tion/disjunction operator connectives between one or more simple or complex
queries. An example of a compound query is “What are the capitals of USA and
Germany?”.

3 Approach

3.1 Motivation

Our chosen query representation language is SPARQL, in which basic graph
patterns consist of subject, predicate and object. So, the primary objective of
query parsing should be to identify the query desire/s and describe it in terms of
the query predicate/s and query input/s. The identification of such a constraint
relation is called query desire-input dependency. One of the key tasks for solving
the problem of NLQF is to do syntactic normalization of NL queries. Syntactic
normalization is the process that re-structures queries having different syntactic
structural variations into a common structure so that subsequent formalization
can be executed using a standard translation algorithm on this structure. Such
normalization is difficult to achieve through a query desire-input dependency
identification process alone. It is in this direction that we propose a chunker-
styled pseudo-grammar, called Normalized Query Structure (NQS).

AskNow: A Framework for Natural Language Query Formalization 303

3.2 Normalized Query Structure (NQS)

NQS is the proposed basis structure of natural language queries. It acts like
a surface level syntactic template for queries, defining the universal linguistic
dependencies (i.e. query desire-input dependency) between the various generic
sub-structures (i.e. chunks) of any query. The primitive sub-structures of any
query is the query token (which determines the query type), query desire, the
query input, and the dependency relation that connects them. Each of the prim-
itive sub-structures can be assigned a linguistic characterization (i.e. type). An
example characterization are POS (part-of-speech) tag based chunks (such as
noun phrase, verb phrase, etc.). For instance, desire and input can be hypothe-
sized to assume a noun form, while the dependency relation can be assumed to
be a verb form. An example of such characterization can be seen in the query:
“In which country is New York located?”. Here, the query desire is the noun
phrase country, the query input is the noun phrase New York, and the depen-
dency relation is the verb phrase located in. Since the number of query tokens is
finite and there are only three query forms (simple, complex, compound), natural
language queries can be categorized into a (finite) set of generic NQS templates.

We now introduce the NQS syntax definitions as follows:

Simple Query NQS: A simple query can be characterized according to the
following NQS structure:

[Wh] [R1] [D] [R2] [I]

here,
[D] = Q?

DM∗
DDand[I] = Q?

IM
∗
DI

where the notation is defined as follows1:

[D]: Query desire class/instance-value is restricted to the following POS tags:
NN, NNP, JJ, RB, VBG . When and where queries have [D = NULL], and NQS
automatically annotates D as TIME and LOCATION respectively.

[I]: Query input class/instance-value restricted to the POS tags: NN, NNP, JJ,
RB, VBG .

[R1]: Auxiliary relation - includes lexical variations of the set: {is, is kind of,
much, might be, does}.

[R2]: Relation that acts as (i) predicate having D as the subject and I as the
object or (ii) action role having I as the actor - value restricted to the POS tags:
VB, PP, VB-PP .

Q?
D or Q?

I : Quantifier of D or I - values restricted to the POS tag: DT. The ?
indicates that Q can occur zero or one time before D or I.

M∗
D or M∗

I : Modifier of D or I - value restricted to the POS tags: NN, JJ, RB,
VBG . The ∗ indicates that M can occur zero or multiple time before D or I.

1 All POS-tag notations follow Penn Treebank.

304 M. Dubey et al.

Characteristics of Relation Tokens: R1 serves as a good indicator for resolv-
ing several linguistic ambiguities. For example, in a how -query, if R1 is much
(or its lexical variations) then it is a quantitative query. However, in a who-query
if R1 is does (or its lexical variations) then the associated verb is an activity (i.e.
Gerund; ex: “Who does the everyday singing in the church?” - everyday singing
is an activity in this case). R2 is a relation that can either be associated with D
as the subject or I as the subject but not both. If R2 is positioned after D in the
original NL query then R2’s subject is D. For example, in the simple NL query
“What is the capital of USA?” the subject of R2 (of) is D (Capital) and the
object is I (USA). However, if R2 is positioned after I in the original query then
its subject is I. For example, in the query “Which country is California located
in?” the subject of R2 (located in) is I (California) and object is D (Country).

NQS of Complex & Compound Wh-Queries: A complex Wh-query can
be characterized according to:

[Wh] [R] [D] [Cl?D] [R2] [I11] [([CC] [I12])∗]∗... [Cl?2] [R3] [I21] [([CC] [I22])]∗...
...[Cl?N]] [RN+1] [IN1] [([CC] [IN2])]∗

where:

ClD: clausal lexeme (constraining D). Example of clausal lexemes: wh-tokens,
that, as, during/while/before/after, etc. It is to be noted that clausal lexemes
generates nested sub-queries which themselves may (or may not) be processed
independently to the parent query. An example where the sub-query (in bold)
has a dependency is: “Which artists where born on the same date as Rachel
Stevens?”

Cl2: second clausal lexeme (constraining I1)

Clk: clausal lexeme associated with k -th sub-structure

[CC]: conjunctive/disjunctive lexeme for I

[D]: query desire - value restricted to POS tags: {NN, NNP, JJ, RB, VBG}
[Ikl]: l-th query input for k-th structure - value restricted to POS tags: {NN,
NNP, JJ, RB, VBG}
[Rk+1]: relation associated with the k-th clause that acts as (i) predicate of D
as the subject and I as the object or (ii) action role of I as the actor - value
restricted to POS tags: {VB, PP, VB-PP}.

Notation with ? may occur zero or one time.

Notation with ∗ may occur zero or multiple time.
In the given complex NQS, we see the possible repetition of the struc-

ture: [Ik1][([CC][Ik2])]. Within this structure, there is an optional substructure
[([CC][Ik2])] that may add to the number of inputs within each of such struc-
tures. A clausal lexeme in a complex clausal wh-query is always associated with
such a structure. The number of clausal lexemes is the same as the number
of such structures in a given query. It should be noted that there must be at

AskNow: A Framework for Natural Language Query Formalization 305

least two such structures for a query to qualify as complex. Clausal lexemes are
optional and hence, the NQS also works for complex non-clausal wh-queries. We
name the following structure as clausal structure (CS):

[Cl?D] [R?
2] [I11] [([CC][I12])∗]?...[Cl?2] [R?

3] [I21] ([CC] [I22])?...
...([Cl?N][R?

N+1][I
N
1]([CC][IN2])∗[?].

A compound Wh-query can then be characterized according to:

[Wh1] [R1?
1] [D1?

1] [Cl?D] [R?
2] [I11] ([CC] [I12])∗ [Cl?2][R

?
3][I

2
1]([CC][I22])∗....

([Cl?N][R?
N+1][I

N
1]([CC][IN2])∗)∗[?].

4 AskNow Architectural Pipeline

We have outlined the architectural pipeline of AskNow, in Fig. 1 with two basic
components: the NQS Instance Generator and the NQS to SPARQL converter.

4.1 NQS Instance Generation

As mentioned in the previous section, the objective of NQS is not to propose yet
another grammar but rather to provide a modular format to the internal sub-
structures of a query. Therefore, an efficient template-fitting algorithm that can
parse the natural language query, identify the sub-structures (using a standard
POS tagger), and then fit them into their corresponding cells within the larger
generic NQS template is required. Our proposed template-fitting algorithm is
called NQS Instance Generator. Through the fitting process the query-desire,
query-input, and other relevant information can be extracted. A fitted NQS is
called an NQS instance. The fitting process automatically leads to normaliza-
tion. Also, it is resilient to paraphrasing of queries since the sub-structures in
a paraphrase typically remain unaffected2. The change is only in the inter sub-
structure positioning (e.g.: “New York is located in which country?” vs. “Which
is the country where New York is located?”)3. Note that the original NL query
may lose its syntactic structure during the NQS instance generation process and
also, it does not guarantee the grammatical correctness of the normalized query.

In summary, the flexibility of NQS modeling is to be attributed to the NQS
Instance Generator algorithm. All internal components of the NQS Instance
Generator are described as follows:

Query Processor: This module initiates the NQS query processing system by
initializing other modules. It calls the POS-tagger (in our case we used Stanford
coreNLP4) so as to tag every query token. Then it breaks the query text into
2 In certain cases minor splitting has to be handled in the dependency relation, where

the query starts with a preposition, e.g.: “In which country is New York located?”.
3 Paraphrasing may include lexical substitution of synonymous query tokens and mor-

phological changes of the tokens.
4 http://nlp.stanford.edu/software/tagger.shtml.

http://nlp.stanford.edu/software/tagger.shtml

306 M. Dubey et al.

Fig. 1. Architectural pipeline of AskNow

individual POS-tagged query tokens. Subsequently, the Syntactic Normalizer
transforms original queries to have a common syntactic structure. For example,
it normalizes each query to start with wh-token, handling apostrophe, etc.

Auxiliary Relation Handler: The module to extract R1. More details regard-
ing the utility of the auxiliary relation is given in previous section.

Token Merger: This module merges (or chunks) tokens that together form a
single meaningful lexeme. Based on the POS tags of the tokens in the original NL
query, the token merging module can guess the possible tokens to be combined
so that they can fit the NQS. For example, when the query, “Who is the Prime
Minister of India?” is passed to the POS-Tagger we get the resulting answer:
“WhoWP isV BZ theDT PrimeNNP MinisterNNP of IN IndiaNNP ?”. Then two
consecutive tokens are taken at a time and checked, using a token-merging map,
whether they can be combined or not. We have manually bootstrapped the token-
merging map on different types of token-pair lexico-syntactic patterns, using the
M.S. Encarta 98 query dataset. The map keeps getting updated as and when
other valid token-pairs are identified in future.

NQS Instance Generator: After the individual chunks have been identified,
the query then goes through the NQS Instance Generator (see Fig. 1). It uses
the following two hypothesis about the generic structure of a query (which was
observed to be empirically true when tested on Microsoft Encarta 98, which is
a large-scale query dataset).

Hypothesis 1: The query desire is always a noun phrase.

Hypothesis 2: The query desire always precedes the query input in the nor-
malized NL query.

The algorithm also utilizes the characteristics of desire-input dependency
relations, as discussed in the previous section. Every time it encounters a noun
phrase chunk it treats it as a candidate desire. Depending upon the availability
of conjunctive connectives, it then does a conflict resolution among all candi-
date desires by verifying the positioning of the verb phrase. As an example, the
query “Desserts from which country contain fish?” has three candidate desires:
dessert, country, fish (based on Hypothesis 1). The main relation contain is posi-
tioned after country. Therefore, the potential subject of contain is identified to

AskNow: A Framework for Natural Language Query Formalization 307

Table 1. QALD-5 example on AskNow

NL Query List down all the Swedish holidays
NQS values [WH = What], [R1 = is], [D = list], [R2 = of], [M = Swedish], [I = holiday]
Type List

SPARQL
SELECT DISTINCT ?uri WHERE { ?uri rdf:type dbo:Holiday. ?uri
dbo:country res:Sweden }

NL Query In which country is Mecca located?
NQS values [WH = which], [R1 = is], [D = country], [R2 = located In], [I = Mecca]
Type Property Value
SPARQL SELECT ?num WHERE { res:Mecca dbo:country ?num . }
NL Query How many ethnic groups live in Slovenia

NQS values
[WH = How many], [R1 = null], [D = count(ethnic group)], [R2 = live in], [I =
Slovenia]

Type Count

SPARQL
SELECT COUNT(DISTINCT ?uri) WHERE { res:Slovenia dbo:ethnicGroup
?uri . }

NL Query Who is the heaviest player of the Chicago Bulls?

NQS values
[WH =Who], [R1 = is], [M = heaviest], [D = player], [R2 = of], [I = the Chicago
Bulls]

Type Ranking

SPARQL
SELECT DISTINCT ?uri WHERE { ?uri rdf:type dbo:Person . ?uri dbo:weight
?num . ?uri dbp:team res:ChicagoBulls} ORDER BY DESC(?num) OFFSET 0
LIMIT 1

be country5. Now according to Hypothesis 2, the desire must precede the input
in the NQS instance. So fish is resolved not to be a candidate desire any more,
but rather an input. Now, the query has another main relation from, the subject
being dessert and the object being a query token which. Thus, the algorithm
resolves that country is the desire while dessert is another input. Finally, the
algorithm analysizes that country being the desire, and also having the inverse
relation from to the input dessert, cannot have the relation contain to the sec-
ond input fish. Therefore, it is the input dessert which is the true subject of the
relation contain to the object (i.e. the second input) fish. The final NQS will
be: [wh = which][R1 = null][D = country][R2 = from][I1 = dessert][R3 =
contain][I2 = fish]. It is to be noted that there is an implicit nested depen-
dent sub-query: “Which desserts contain fish?” because of the clausal connective
whose (Which country whose desserts . . .) that is an inverse of the relation from.
This example illustrates that the previously outlined NQS syntax definitions are
not static templates, but rather dynamically fitted.

5 A standard dependency parser could also be used to understand the subject of the
relation contain.

308 M. Dubey et al.

input : NQS instance ℵ, knowledge base KB
output: SPARQL query results
// Step 1: NQS analysis

1 D ←− queryDesire(ℵ);
2 wh ←− getWhQuestionType(ℵ);
3 t ←− determineQueryType(D, wh);
4 I ←− queryInput(ℵ);
// Step 2: SPARQL preparation

5 i ←− mapInput(I);
6 S = {(p, v)|(i, p, v) ∈ KB}; // construct predicate object map
7 init pmatch;
8 foreach (p, v) ∈ S do

// label matching
9 if lm(p)==D then pmatch = p; break;

// WordNet synonyms of desire
10 if wns(D) ==p then pmatch = p; break;

// BOA library
11 if BOA(D) ==p then pmatch = p; break;

// Step 3: SPARQL generation and retrieval
12 q ←− generateQuery(i, pmatch, KB);
13 R ←− executeQuery(q, KB);
14 return R

Algorithm 1. NQS to SPARQL Algorithm.

4.2 NQS to SPARQL Conversion

Given an NQS instance, the NQS2SPARQL module translates it to a SPARQL
query and returns the result from the SPARQL endpoint. There are four main
steps in this module as shown in Algorithm1.

NQS Analysis: Once we have an NQS instance for a query, the system treats
it as per its category. The categories are the expected query types, specifically:
(i) Boolean (ii) Ranking (iii) Count (iv) Set (List) and (v) Property Value. In
a Boolean query a user asks whether a specific statement is True of False. For
instance “Is Barack Obama a democrat?” A Ranking query requires ranking the
answers based on some entity dimensions, e.g. “Which is the highest mountain in
Asia?”. In a Count query the user intent is to get the number of times a certain
condition is repeated. A Set query will generate a list of items which satisfy
a required condition. In a Property value query the user intent is to ask for
the value of a property of the given input. As an example, in the query “What
is the capital of India?” the user intents to extract the value of the property
“capital” given the input “India”. Query-types are chosen based on desire (D)
and wh-type (wh) of the NQS instance. Each category is processed by a different
SPARQL query syntax converter.

Entity Mapping: The basic operation here is to retrieve the knowledge base
entity matching the spotted query desire, query input and their relation. For
the QALD experiments described later, we annotated the query using DBpedia

AskNow: A Framework for Natural Language Query Formalization 309

Spotlight [7]. As a result of the mapping, we get the knowledge base entity
equivalent of the query input I which has been identified in the NQS instance.
We denote this entity as i. The mapping approach then collects properties related
to i (where i is a resource) and their values in set (denoted S).

Subsequently, each element (a pair of property and value) of S is observed.
The next goal is to identify the entity which matches the desire (itself denoted
as D) and denote it as d. This is done using three mapping functions as follows:
The first test is made by a simple label matching function(lm). If this fails,
then the second test for mapping(D → d) is through the WordNet synonym
(wns)function. It finds the synonym of user desire using WordNet [8] within set
S. If this test fails we move to next test. Here we use BOA pattern library [9]
for the same purpose. When this is unsuccessful, then we declare that the query
is unprocurable by the system.

SPARQL Generation: This component creates the final SPARQL query using
information provided by above two steps. NQS analysis basically gives the
SPARQL pattern possible. Where as i, d provide the key DBpedia information
(vocabulary) required for SPARQL. Examples are given in Table 1. Currently
NQS2SPARQL is functional for DBpedia only. However, we can plugin any other
RDF store using suitable corresponding entity mapping module.

5 Evaluation

5.1 Evaluation Goal and Metric

Goal I. Syntactic Robustness: Syntactic robustness of NQS measures its
structuring capacity after normalization. Ideally, the NQS algorithm should be
correct By correct structuring we mean that there should not be any mismatch
between the POS tag of a linguistic constituent and its corresponding NQS cell.
At the same time, the algorithm should be complete (i.e. there should not be any
valid English query that is not accepted by the algorithm, either fully or par-
tially). To evaluate robustness we decided on a simple measure called Structuring
Coverage (SC). We measure SC in the following three different perspectives:

(i) SC-Precision: Given a test set of NL queries, SC-Precision is calculated
as the ratio of the number of correct NQS-structured queries (NCI) and the
total number of NQS-structured queries in the test set (NI). It largely depends
upon the accuracy of the POS tagger used.
(ii) SC-Recall: Given a test set of NL queries, SC-Recall is calculated as the
ratio of the number of correct NQS-structured queries (NCI) and the total
number of queries in the test set (N).
(iii) SC-F1: The Simple Harmonic Mean of SC-Precision and SC-Recall.

Goal II. Sensitivity to Structural Variation: Sensitivity to structural vari-
ation of NQS measures the degree to which NQS can correctly fit queries hav-
ing same desire (and its relationship with input) yet different syntactic struc-
tures. To evaluate sensitivity to structural variation we introduce following two
measures:

310 M. Dubey et al.

(i) Variational-Precision (VP): Given a test set of NL queries, the VP is
calculated as the ratio of the number of correct NQS-structured queries (i.e.
without any of their variations getting incorrectly fitted) (NV I) and the total
number of identified queries in the test set (NI).
(ii) Variational-Recall (VR): Given a test set of NL queries, the VR is
calculated as the ratio of NV I and total number of queries in the test set (N).

Goal III. Semantic Accuracy: Semantic accuracy of NQS measures the
degree to which the query desire and its relation with query inputs has been
properly identified. To evaluate this we use the following measures:

(i) Semantic-Precision (SP): Given a test set of NL queries, the SP is
calculated as the ratio of the number of correctly identified queries (i.e. in
terms of desire-identification, input-identification, and desire-input relation
identification) (NSI) with respect to a human-judgement benchmark, and
the total number of identified queries in the test dataset (NI).
(ii) Semantic-Recall (SR): Given a test set of NL queries, the SR is cal-
culated as the ratio of NSI with respect to a human-judgement benchmark,
and the total number of queries in the test dataset (N).

Here are examples to give a better understanding of purpose of each measure:
Failed NQS (i.e. no instance): [Wh = NULL] [R1 = is] [D = Berlin] [R2 = NULL]
[I = country][?]
Incorrectly structured NQS instance: [Wh = In which country] [R1 = is] [D =
Berlin] [R2 = located] [I = NULL]. This will be considered as identified query
(i.e. one in NI).
Correctly structured NQS instance (i.e. in NCI): [Wh = Which] [R1 = is] [D =
Berlin] [R2 = located in] [I = country]. We use SC (and also VP, VR) to test
NCI with respect to NI and total queries (N).
Correctly “identified” NQS instance (i.e. in NSI): [Wh = Which] [R1 = is] [D
= country] [R2 = located in] [I = Berlin][?]. We use SP and SR to test this.

Goal IV Accuracy of the AskNow System: The final goal of the evaluation
is to test the system on the QALD-5 [10] benchmark (Multilingual question
answering over DBpedia). Here, we have queries in English language which are
answered with NQS translated SPARQL.

5.2 Datasets

In order to evaluate syntactic robustness (for goal-I), we have used the Microsoft
Encarta 986 query test set. The test set contains 1365 usable English wh-queries.
There are total 522 queries of procedural how and why that have been excluded.
We also created an extensive query set based on OWLS-TC v47 for evaluation

6 http://research.microsoft.com/en-us/downloads/88c0021c-328a-4148-a158-a42d73
31c6cf/.

7 http://projects.semwebcentral.org/projects/owls-tc/.

http://research.microsoft.com/en-us/downloads/88c0021c-328a-4148-a158-a42d7331c6cf/
http://research.microsoft.com/en-us/downloads/88c0021c-328a-4148-a158-a42d7331c6cf/
http://projects.semwebcentral.org/projects/owls-tc/

AskNow: A Framework for Natural Language Query Formalization 311

Table 2. SC evaluation on different datasets

QALD 5 M.S. Encarta OWL-S TC Total Result

N NI NCI N NI NCI N NI NCI N NI NCI SCR SCP SCF1

How 31 31 31 165 158 158 4 4 2 200 193 191 95.50 98.96 97.20

What 37 37 37 406 392 392 1711 1709 1608 2154 2138 2037 94.57 95.28 94.92

When 12 12 12 39 35 35 0 0 0 51 47 47 92.16 100 95.92

Where 5 5 5 85 82 82 20 20 19 110 107 106 96.36 99.07 97.70

Which 81 81 81 5 5 5 316 316 308 402 402 394 98.01 98.01 98.01

Who 48 48 48 143 143 143 166 166 166 357 357 357 100 100 100

Total 214 214 214 843 815 815 2217 2215 2215 3274 3244 3226 98.53 99.45 98.99

of both sensitivity to structural variation (goal-II) and semantic accuracy (goal-
III). Three research assistants independently formulated wh-queries for every
web service of OWLS-TC v4 dataset, such that the query desire matches the
given service output, and the query input matches the required service input.
We had 1083 services to make three different query versions for each service.
Similar syntactic structure queries were excluded resulting in a total of 2217
queries It is to be noted that the goal of the experiment (cf.: Goal II) was to
test the robustness of an NQS Instance Generator, in terms of POS-tag pat-
tern fitting (i.e. syntactic accuracy), over different syntactic variations of the
same query. 90 % of the queries were complex or compound queries. Ideally, the
extracted query desire by NQS should be semantically equivalent to the output
parameter of the corresponding web service specification. Based on this notion,
we have calculated SC-accuracy, VP/VR, and SP/SR for each of the three ver-
sions of query dataset. We also used the QALD-5 [10] datasets for Goal-IV and
QALD-4 [11] for evaluating Goal-II.

5.3 Results

Result I. Syntactic Robustness: We first performed the evaluation of struc-
tural robustness in terms of SC-Accuracy over different query-types on Microsoft
Encarta 98 dataset. We observe 100 % SC-Precision for all types of wh-queries,
which shows that the NQS is theoretically sound. The SC-Recall came out to
be 96.68 %. We then performed the same experiment over different wh-types
on 2 more datasets: Training set of QALD-5’s Multilingual tract (only english
queries) and OWLS-TC. We observed a high overall SC-F1 of 98.99 %. The
evaluation results are given in Table 2.

Result II. Sensitivity to Structural Variation: We performed evaluation
of sensitivity to structural variation of NQS over the OWL-S TC query dataset
(three versions) and the QALD-4 dataset (three versions). NQS was able to
correctly fit 919 out of the 1083 OWLS-TC queries (along with all their syntactic
variation), giving high VP of 96.43 %. All 24 out of 24 QALD-4 queries, with all
there syntactic variations, were correctly fitted in NQS, giving a high sensitivity
to structural variation.

312 M. Dubey et al.

Table 3. Evaluation of sensitivity to structural variation and semantic accuracy

Dataset NWh NI NV I NSI V R% V P % SR% SP %

OWL S TC 1083 953 919 876 84.85 96.43 80.88 91.92

QALD-4 24 24 24 21 100 100 87.50 87.50

Total 1107 977 943 897 85.18 96.51 81.03 91.81

Result III. Semantic Accuracy: We observed an SP of 91.92 % for the
OWL-S TC query dataset. For QALD-4 dataset, it was observed that 21 out of
24 queries (with their variations) were correctly fitted in NQS. Analysis of the
fail case clearly indicates that NQS failure is dependent upon syntactic and POS
Tag failures (Tables 3 and 4).

Results IV. Accuracy of AskNow: We used the benchmark data set of the
5th Workshop on Question Answering over Linked Data (QALD), which defines
50 questions to DBpedia and their answers. Here we compare the our results
with the result published by QALD-5 [10]. Out of 50 questions provided by
the benchmark we have successfully answered 16 correct and 1 partially correct.
There were 5 questions where NQS algorithm fails to correctly identify the Inputs
and Desire hence they could not be answered by translating them into SPARQL.
The failure analysis of Result IV are as follows:

NQS failure: Queries where NQS failed were not further processed suc-
cessfully. NQS failed only 5 times, which was due to incorrect dependency
analysis.
Entity Mapping: There are 13 questions where AskNow could not map the
DBpedia equivalent of correctly identified input and desire. In some cases,
the correct mapping was presented but insufficient to answer the query. As an
example, the query “Who killed John Lennon?” is correctly processed by NQS
and forwarded to DBpedia Spotlight for annotation. It maps JohnLennon
to http://dbpedia.org/resource/John Lennon which is a correct mapping in
general terms. But we can not answer the question based on this resource. For
that we would require http://dbpedia.org/resource/Death of John Lennon.
Relation Mapping: In some cases, system could not resolve the R2 (relation
between input and desire) to the correct DBpedia property. Relations such
as study and graduated were not mapped to the required DBpedia property
almaMater.

6 Related Work

Over the last decade, several NLQF approaches have been proposed. Several of
them attempt to translate NL queries into SPARQL-like formalisms. Early works
in this direction includes GiNSENG [12]. It is a guided input NL search engine,
that does not understand NL queries, but uses menus to formulate NL queries in

http://dbpedia.org/resource/John_Lennon
http://dbpedia.org/resource/Death_of_John_Lennon

AskNow: A Framework for Natural Language Query Formalization 313

Table 4. Results on the QALD 5 benchmark.

Processed Right Partial Recall Precision F1 F1 Global

Xser 42 26 7 0.72 0.74 0.73 0.63

AskNow 27 16 1 0.63 0.60 0.61 0.33

QAnswer 37 9 4 0.35 0.46 0.40 0.30

APEQ 26 8 5 0.48 0.40 0.44 0.23

SemGraphQA 31 7 3 0.32 0.31 0.31 0.20

YodaQA 33 8 2 0.25 0.28 0.26 0.18

small and specific domains and allow users to query OWL knowledge bases in a
controlled language akin to English. Subsequently, Semantic Crystal [13] was pro-
posed, which is also a guided and controlled graphical query language. Systems
such as AquaLog [14] and its advancement, PowerAqua [15], are based on map-
ping linguistic structures to ontology-compliant semantic triples. PowerAqua is
the first system to perform QA over structured data, providing a single NL query
interface for integrating information from heterogeneous resources. The limita-
tion of PowerAqua is the lack of support for query aggregation functions. Along
the same lines, FREyA [16] allows users to enter queries in any form, and uses
ontology reasoning to learn more generic rules. It also provides a better handling
of ambiguities over heterogeneous domains. But FREyA requires some level of
effort in KB structure understanding to efficiently clarify disambiguation. Also,
it highly depends on modeling and vocabulary of the data at the user-end, mak-
ing it inadequate for a naive user. Other works such as NLPReduce [17] allow
users to pose questions in full or slightly controlled English. NLPReduce is a
domain-independent system, which leverages the lexico-syntactic pattern struc-
tures of query input to find better matches in the KB. It maps query tokens with
synonym enhanced triple stores in the target corpus, based on which it generates
SPARQL statements for those matches. QTL [18] is a feedback mechanism for
question answering using supervised machine learning on SPARQL. TBSL [19]
uses so called BOA patterns as well as string similarities to fill the missing URIs
in query templates and bridge the lexical gap.

Recently, Question Answering over Linked Data (QALD) has become a
popular benchmark. In QALD-3 [20], SQUALL2SPARQL [21] achieved the
highest precision in the QA track. SQUALL2SPARQL takes an inputs query
in SQUALL, which is a special English based language, and translates it to
SPARQL. Since no linguistic resource is required, it results in a high perfor-
mance. But on the other hand, it makes the SQUALL query unnatural to the end-
user and requires manual annotations of the URIs. In QALD-4 [11], GFMed [22]
achieved the highest precision in the biomedical track. It is based on Gram-
matical Framework (GF) [23] and a Description Logics based methodology and
proposes an algorithm to translate a query in natural language into SPARQL
queries using GF resources. It can support complex queries, but only works with
controlled languages and biomedical datasets. In POMELO [24], predicates of

314 M. Dubey et al.

the RDF triples are mapped to frame predicates while the subjects and objects
are mapped to core frame elements. Then after a question abstraction step, the
final SPARQL query is generated. POMELO is based on closed environment
(biomedical) and fails to relate the disconnected semantic entities. gAnswer [25]
proposes a graph mining algorithm to map natural language phrases to top-k
possible predicates to form a paraphrase dictionary. It also proposes a novel
approach to perform disambiguation in query evaluation phase, which improves
the precision and speed up query processing time greatly.

Xser [26], the most successful system in QALD-4 and QALD-5, uses a two-
step architecture. It first understands the NL query by extracting phrases and
labeling them as resource, relation, type or variable to produce a Directed Acyclic
Graph (DAG). This semantic parser works independent of any Knowledge Base
(KB). Then these semantic entities are instantiated with the given KB. How-
ever, it requires too much human involvement in manually annotating the ques-
tions with phrase dependency DAG to train the system. In comparison to Xser,
AskNow requires no training data. The NQS instance generation step is indepen-
dent of both the query dataset and the target knowledge base (KB). Xser uses
semantic parser with DAG as linguistic analyzer. AskNow use POS-tag and NER
to find the main entity of the query. As linguistic analyzer an NQS instance has
ability to further distinguish between query desire (D), query input (I) and their
relation (R) apart from spotting the main entity only. Xser uses wikipedia miner
tool to generate the candidate set of DBpedia entities, AskNow uses DBpedia
Spotlight for annotating the query Input to DBpedia entities Xser uses PATTY
to map phrases to predicates and categories of DBpedia whereas, AskNow do
this by mapping query relation or query desire to DBpedia equivalent using
WordNet and BOA pattern library.

APEQ [10], from QALD-5 [10], uses a graph traversal based approach, where
it first extracts the main entity from the query and then tries to find its relations
with the other entities using the given KB. APEQ uses Graph traversal technique
to determine the main entity by graph exploration. Finally, the graph with the
best scoring entities is returned as the answer.

7 Conclusion

In this paper, we propose AskNow, a NLQF framework, based on a novel syn-
tactic structure Normalized Query Structure (NQS). We empirically show, using
benchmark datasets, that NQS is robust in terms of syntactic variation, and also
highly accurate in identifying the query desire (along with its relationship to the
query input). Hence, we show that NQS serves as a strong intermediary model
for translating NL queries into formal queries. We empirically demonstrated this
by converting NQS to SPARQL.

Acknowledgements. This work was supported by a grant from the EU H2020 Frame-
work Programme provided for the project Big Data Europe (GA no. 644564).

AskNow: A Framework for Natural Language Query Formalization 315

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, pp.
697–706. ACM (2007)

3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
pp. 1247–1250. ACM (2008)

4. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 601–610. ACM (2014)

5. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

6. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating question answering over
linked data. Web Semant. Sci. Serv. Agents World Wide Web 21, 3–13 (2013)

7. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, pp. 1–8. ACM (2011)

8. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

9. Gerber, D., Ngonga Ngomo, A.-C.: Bootstrapping the linked data web. In: 1st
Workshop on Web Scale Knowledge Extraction @ ISWC (2011)

10. Unger, C., Forascu, C., Lopez, V., Ngomo, A.-C.N., Cabrio, E., Cimiano, P.,
Walter, S.: Question answering over linked data (QALD-5). In: Working Notes
for CLEF Conference (2015)

11. Unger, C., Forascu, C., Lopez, V., Ngomo, A.-C.N., Cabrio, E., Cimiano, P.,
Walter, S.: Question answering over linked data (QALD-4). In: Working Notes
for CLEF Conference (2014)

12. Bernstein, A., Kaufmann, E., Kaiser, C.: Querying the semantic web with ginseng:
a guided input natural language search engine. In: 15th Workshop on Information
Technologies and Systems, Las Vegas, NV, pp. 112–126. Citeseer (2005)

13. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 281–294. Springer, Heidelberg (2007)

14. Lopez, V., Uren, V., Motta, E., Pasin, M.: Aqualog: an ontology-driven question
answering system for organizational semantic intranets. Web Semant. Sci. Serv.
Agents World Wide Web 5(2), 72–105 (2007)

15. Lopez, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: supporting users in
querying and exploring the semantic web. Semant. Web 3(3), 249–265 (2012)

16. Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: an interactive way of
querying linked data using natural language. In: Garćıa-Castro, R., Fensel, D.,
Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 125–138. Springer,
Heidelberg (2012)

316 M. Dubey et al.

17. Kaufmann, E., Bernstein, A., Fischer, L.: NLP-reduce: a naıve but domain-
independent natural language interface for querying ontologies. In: ESWC, Zurich
(2007)

18. Lehmann, J., Bühmann, L.: AutoSPARQL: let users query your knowledge
base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79.
Springer, Heidelberg (2011)

19. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C, Gerber, D.,
Cimiano, P.: Template-based question answering over RDF data. In: Proceedings of
the 21st International Conference on World Wide Web, pp. 639–648. ACM (2012)

20. Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngonga Ngomo, A.-C., Walter, S.:
Multilingual question answering over linked data (QALD-3): lab overview. In:
Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS,
vol. 8138, pp. 321–332. Springer, Heidelberg (2013)

21. Ferré, S.: squall2sparql: a translator from controlled English to full SPARQL 1.1.
In: Working Notes of Multilingual Question Answering over Linked Data (QALD-3)
(2013)

22. Marginean, A.: GFMed: question answering over biomedical linked data with gram-
matical framework. In: CLEF (2014)

23. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

24. Hamon, T., Grabar, N., Mougin, F., Thiessard, F.: Description of the pomelo
system for the task 2 of QALD-2014. In: CLEF (2014)

25. Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language
question answering over RDF: a graph data driven approach. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 313–324.
ACM (2014)

26. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via
phrasal semantic parsing. In: Zong, C., Nie, J.-Y., Zhao, D., Feng, Y. (eds.) NLPCC
2014. CCIS, vol. 496, pp. 333–344. Springer, Heidelberg (2014)

	AskNow: A Framework for Natural Language Query Formalization in SPARQL
	1 Introduction
	2 Preliminaries
	3 Approach
	3.1 Motivation
	3.2 Normalized Query Structure (NQS)

	4 AskNow Architectural Pipeline
	4.1 NQS Instance Generation
	4.2 NQS to SPARQL Conversion

	5 Evaluation
	5.1 Evaluation Goal and Metric
	5.2 Datasets
	5.3 Results

	6 Related Work
	7 Conclusion
	References

