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Abstract The paper considers a no-arbitrage setting for pricing and relative value
analysis of risky sovereign bonds. The typical case of an emerging market country
(EM) that has bonds outstanding both in foreign hard currency (Eurobonds) and local
soft currency (treasuries) is inspected. The resulting two yield curves give rise to a
credit and currency spread that need further elaboration.We discuss their propermea-
surement and also derive and analyze the necessary no-arbitrage conditions that must
hold. Then we turn attention to the CDS-Bond basis in this multi-curve environment.
For EM countries the concept shows certain specifics both in theoretical background
and empirical performance. The paper further focuses on analyzing these peculiari-
ties. If the proper measurement of the basis in the standard case of only hard currency
debt being issued is still problematic, the situation is much more complicated in a
multi-curve setting when a further contingent claim on the sovereign risk in the face
of local currency debt curve appears. We investigate the issue and provide relevant
theoretical and empirical input.
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1 Introduction

Local currency debt of EM sovereigns became a hot topic both for practitioners and
academics in the recent years.Major investment banks and asset managers consider it
a separate asset class and publish regularly special local currency investment reports.
A joint working group of IMF, WB, EBRD, and OECD demonstrated recently an
official interest in a thorough investigation of this market segment and support for
its development, thus forming a strict policy agenda. It was recognized that not only
do the local bonds complete the market and thus bring market efficiency, but also
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they could act as a shock absorber to the volatile capital inflows. Furthermore, they
provide flexibility to the governments in financing their budget deficit. However,
these instruments are not well understood from a no-arbitrage point of view and a
formal setting is lacking. Such a setting would provide not only a better picture for
their inherent risk-return characteristics, but would also be an indispensable tool for
market research and strategy. The aim of this paper is exactly to focus attention on
the large set of open questions the local currency debt gives rise to and lay the ground
for a formal relative value analysis with a special emphasis on the CDS-Bond basis.

The paper begins with our general modeling no-arbitrage approach under an HJM
reduced credit risk setting. It serves as a basis and gives a financial engineering intu-
ition about the nature of the problem. The default of the sovereign is represented as
the first jump of a counting process. For the dynamics of the interest rates and the
exchange rate we use jump diffusions controlling the jumps and correlations in a
suitable way, so that we have high precision in capturing the structural macrofinan-
cial effects. We derive the no-arbitrage conditions that must hold in that multi-curve
environment and then analyze their informational content. Then we turn to an appli-
cation related to correctly extracting the credit and currency spreads and measuring
the CDS-Bond basis on a broader scope. This provides basic building blocks for
relative value trades under presence of the local currency yield curve which could
serve as an additional pillar.

The literature on integrating the foreign and domestic debt of a risky sovereign
in a consistent way is at a nascent stage both from an academic and practitioners’
point of view. Related technically but different in essence is the work of Ehlers and
Schönbucher [9] who give a reduced formmodel for CDS of an obligor denominated
in different currencies which accounts for dependence between the exchange rate
and the credit spread. Eberlain and Koval [8] give a high generalization of the cross-
currency term structure models, but similarly they deal only with hard currencies.
Regarding the CDS-Bond basis, Berd et al. [2] provide a thorough analysis of the
shortcomings of the Z-spread as a risky spread metric.1 Alizalde et al. [10] further
discuss the issue and provide extensive simulations. Interesting new measures for
the basis are given in Bernhard and Mai [3] which need further elaboration and
development. However, all these references deal with the single-curve case with an
extension to the multi-curve case pending.

2 Local Currency Bonds No-Arbitrage HJM Setting

In this section we first lay the foundations in brief for pricing of risky debt in a
general reduced form setting. Then we add the local currency debt into the picture
and discuss the risky spreads. We conclude by derivation and analysis of the no-
arbitrage conditions.

1The Z-spread represents a simple shift of the discounting risk-free curve so that the price of the
risky bond is attained.
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2.1 Risky Bonds Under Marked Point Process

The first task is to model default in a suitable way. We start with the most general
formulation and then modify it appropriately. We consider a filtered probability
space (Ω, (Gt )t≥0 , P) which supports an n-dimensional Brownian motion WP =
(W1,W2, . . . ,Wn) under the objective probability measure P and a marked point
processμ : (

Ω, B(R+), ε
) → R+ withmarkers (τi , Xi ) representing the jump times

and their sizes in a measurable space (E, ε), where E = [0, 1] and by ε we denote
the Borel subsets of E . We assume that μ(ω; dt, dx) has a separable compensator
of the form:

υ : (
Ω, B(R+), ε

) → R+ and υ (ω; dt, dx) = h(ω; t)Ft (ω; dx)dt ,

where h(ω; t) = ∫
R+ υ (ω; t, dx) is a Gt measurable intensity and the marks have

a conditional distribution of the jumps of Ft (ω; dx). Thus, we have the identity∫
E Ft (ω; dx) = 1. Furthermore, we can define the total loss function L(ω; t) =∫ t
0

∫
E l(ω; s, x)μ(ω; ds, dx) and the recovery R(ω; t) = 1 − ∫ t

0

∫
E l(ω; s, x)μ

(ω; ds, dx). The function l(ω; t, x) scales the marks in a suitable way, and hav-
ing control over it, we can define it such that our model is tractable enough. We
define also the sum of the jumps by S(ω; t) = ∫ t

0

∫
E xμ(ω; ds, dx) and their number

by N (ω; t) = ∫ t
0

∫
E μ(ω; ds, dx).

Effectively, the marked point process as a sequence of random jumps (τi ,Xi ) is
characterized by the probability measure μ(ω; dt, dx), which gives the number of
jumps with size dx in a small time interval of dt. The compensator υ (ω; t, dx)
provides a full probability characterization of the process. It incorporates in itself
two effects. On one hand, we have the intensity h(ω; t)dt , which gives the condi-
tional probability of jump of the process in a small time interval of dt incorporating
the whole market information up to t . On the other hand, we have the conditional
distribution Ft (ω; dx) of the markers X in case of a jump realization.

We can look at the jumps of the marked point process as sequential defaults of
an obligor at random times τi that lead to losses Xi at each of them. They can also
be considered a set of restructuring events leading to losses for the creditors. Under
this general setting, the prices of the riskless and risky bonds are given by:

• Riskless bond:

P(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
|Gt

)
= exp

(
−

∫ T

t
f (t, s)ds

)
(1)
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• Risky bond:

P∗(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
R(ω; T )|Gt

)

= R(t) exp

(
−

∫ T

t
f ∗(t, s)ds

)
, (2)

where r(t), f (t, T ), and f ∗(t, T ) are the riskless spot, riskless forward, and risky
forward rates respectively.

Depending on how we specify the convention of recovery, we can get further
simplification of the formulas. However, this should be well motivated and come
either from the legal definitions of the debt contracts or their economic grounding.

Under a recovery of market value (RMV) setting, default is a percentage mark
down, q, from the previous recovery. So we have R(ω; τi ) = (1 − q(ω; τi , Xi ))

R(ω; τi−) and l(ω; τi ) has the form l(ω; τi ) = −q(ω; τi , Xi ) × R(ω; τi−). This
definition allows us to write:

μ(ω, dt, dx) =
∑

s>0

1{ΔN (ω,s)�=0}δ(s,ΔN (ω,s))(dt, dx)

dR(ω; t) = −R(ω; t)
∫

E
q (ω; t, x) μ(ω; dt, dx); R(ω; 0) = 1

and if we assume no jumps of the intensity and the risk-free rate at default times
(contagion effects), we have no change for the risk-free bond pricing formula and
for the risky one and as in [13] we get:

P∗RMV (t, T ) = EQ

(

exp

(

−
∫ T

t
r(s)ds

)

R(ω; T )|Gt

)

= R(t)EQ

(

exp

(

−
∫ T

t
(r(s) + h(s)

∫

E
q (ω; s, x) Fs(dx))ds

)

|Gt

)

= R(t) exp

(

−
∫ T

t
f ∗RMV (t, s)ds

)

(3)

Note that within this setting there is no “last default”. The intensity is defined for
the whole marked point process and not just for a concrete single default time, so it
does not go to zero after default realizations. This combinedwith the fact that intensity
is continuous makes the market filtration Gt behave like a background filtration in
the pricing formulas. So we can avoid using the generalized Duffie, Schroder, and
Skiadas [7] formula. Furthermore, we can denote qe(t) = ∫

E q (ω; t, x) Ft (dx) to be
the expected loss. Sowe have that the pricing formula is dependent on the generalized
intensity h(t)qe(t). Due to the multiplicative nature of the last expression, only
frommarket information, as discussed in Schönbucher (2003), we cannot distinguish
between the pure intensity effect h(t) and the recovery induced one qe(t).
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Under a recovery of par (RP) setting, in case of default, the recovery is a separate
fixed or random quantity independent of the default indicator and the risk-free rate.
So we have E = {0, 1 − R (ω)} and υ (ω; dt, dx) = h(ω; t)(1 − Re)dt with Re =
EQ(R (ω) | Gt ). Since we have just one jump, we can write:

μ(ω, dt, dx) = 1{ΔN (ω,t)�=0}δ(t,ΔN (ω,t))(dt, dx)

The bond price is:

P∗RP(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

) (
R (ω) 1{τ≤T } + 1{τ>T }

) |Gt

)

= 1{τ>t} exp
(

−
∫ T

t
f ∗RP(t, s)ds

)
(4)

In contrast to RMV, here, as discussed in Schönbucher (2003), he can distinguish
between the pure intensity and recovery induced effects.

2.2 Model Formulation

In this section we develop our HJM model for pricing of local and foreign currency
bonds of a risky country. However, before this being done formally, it is essential
to elaborate on the nature of the problem. Although we do not put here explicitly
macrofinancial structure, but just proxy it by jumps and correlations, it, by all means,
stays in the background and must be conceptually considered.

2.2.1 General Notes

A risky emerging market country can have bonds denominated both in local and
foreign currency that give rise to two risky yield curves and risky spreads—credit
and currency. Generally, the latter arise due to the possibility of the respective credit
events to occur and their severity. To investigate them, formal assumptions are needed
both on their characteristics and interdependence.

We will consider that the two types of debt have different priorities. The country
is first engaged to meeting the foreign debt obligation from its limited international
reserves. The impossibility of this being done leads to default or restructuring. In
both cases, we have a credit event according to the ISDA classification. The foreign
debt has a senior status. The spread that arises reflects the credit risk of the country.
It is a function of: (1) the probability of the credit event to occur; (2) the expected
loss given default; (3) the risk aversion of the market participants to the credit event.
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The domestic debt economically stands differently. It reflects the priority of the
payments in hard currency and it incurs instantly the losses in case of default of
the country. So this debt is the first to be affected by a default and is subordinated.
Technically, the credit event can be avoided under a flexible exchange rate regime
because the country can always make a debt monetization and pay the amounts due
in local currency taking advantage of the fact that there is no resource constraint on
it. However, the price for this is inflation pick-up and exchange rate depreciation.
This leads to real devaluation of the domestic debt. It is exactly the seigniorage and
the dilution effect that cause the loss in the value.2 This resembles the case of a firm
issuingmore equity to avoid default. The spread of the domestic debt over the foreign
one forms the currency spread. Its nature is very broad, and it is not only due to the
currency mismatch. Namely, it is a function of: (1) the probability of the credit event
to occur and the need for monetization; (2) the negative side effect of the credit event
on the exchange rate by a sudden depreciation of the latter; (3) the volatility of the
exchange rate; (4) the expected depreciation of the exchange rate without taking into
consideration the monetization; (5) the risk aversion of market participants to the
credit event and the need for monetization, the sudden exchange rate depreciation
and its size; (6) the risk aversion of the market participants to the volatility of the
exchange rate. All these effects are captured by our model.

2.2.2 Multi-currency Risky Bonds Model

We use the setting of Sect. 2.1 modified to a multi-currency debt. Firstly, we consider
the case of no monetization and then analyze the case with monetization. Secondly,
to avoid using an additional marked point process, and thus a second intensity, the
default on the foreign debt is modeled indirectly. Namely, we assume that default on
domestic debt leads to default on foreign debt, but due to the different priority of the
two, we have just different losses incurred, respectively recoveries. This means that
by controlling recoveries we control default and the inherent subordination without
imposing too much structure. If the default on the domestic debt is so strong that
it leads to a default on the foreign debt as well, we incur zero recovery on the
domestic debt and some positive one on the foreign debt. If the insolvency is mild,
we have a loss only on the domestic debt, so we incur some positive recovery on
the domestic debt and a full recovery on the foreign debt. Thirdly, for notational
purposes, we take as a benchmark Germany and EUR as the base hard currency.
Lastly, we employ the recovery of market value assumption. The reason for this is
twofold. On one hand, in that way, we are consistent with the HJM methodology of
Schönbucher [12] for a single risky curve under RMV and produce parsimonious
no-arbitrage conditions for the extension to a multi-curve environment. On the other

2This pattern can be observed historically for almost all EM countries resorting to a galloping
inflation to avoid a nominal domestic debt default. The Russian default of 1998 somehow seems to
be a partial notable exception where there was along with the inflation surge an actual default on
certain ruble (RU R) bonds—GKOs and OFZs.
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Fig. 1 Risky spreads

hand, as pointed out in Bonnaud et al. [5], for bonds denominated in a different
currency than the numerator employed in discounting, the RMV assumption should
be the working engine. Their argument is exactly as ours above, in case of default,
the sovereign would rather dilute by depreciating the exchange rate and thus the
remaining cash flows of the bond produce in essence the RMV structure. Moreover,
rather than using EUR denominated bonds, we could take advantage of the CDS
quotes and produce synthetic bonds having an RMV recovery structure. Using them
is actually preferable for empirical work since major academic studies argue that it is
the CDSmarket that first captures the market information about the credit risk stance
of the risky sovereign. Furthermore, with a few exceptions, if the EM sovereigns have
in most cases both well developed local currency treasury markets and are subject to
CDS quotation, they do have only few Eurobonds outstanding. Figure1 represents
the typical situation the risky sovereign faces.

Mathematical formulation We continue with the model setup. Firstly, we give the
suitable notation and assumptions. Thenwemove to the derivation of the no-arbitrage
conditions and the pricing.

• Notation
fEU R(t, T )—nominal forward rate, EUR, Ger.
f ∗
EU R(t, T )—nominal forward rate, EUR, EM
f ∗
LC(t, T )—nominal forward rate in LC, EM

rEU R(t)—nominal short rate, EUR, Ger.
r∗
EU R(t)—nominal short rate, EUR, EM
r∗
LC(t)—nominal short rate in LC, EM
h∗
EU R(t, T ) = f ∗

EU R(t, T ) − fEU R(t, T )—credit spr., EM
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h∗
LC,EU R(t, T ) = f ∗

LC(t, T ) − f ∗
EU R(t, T )—currency spr., EM

h∗
LC(t, T ) = f ∗

LC(t, T ) − fEU R(t, T )—general currency spr., EM

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds)—bond, EUR, Ger.

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)—for. bond price., EUR, EM

P∗
d,LC (t, T ) = Rd,LC (t) exp(− ∫ T

t f ∗
LC(t, s)ds)—dom. bond price., LC, EM

BEUR(t) = exp(
∫ t
0 rEU R(s)ds)—bank account, EUR, Ger.

B∗
f,EU R(t) = R f,EU R(t) exp(

∫ t
0 r

∗
EU R(s)ds)—for. bank account, EUR, EM

B∗
d,LC(t) = Rd,LC(t) exp(

∫ t
0 r

∗
LC(s)ds)—dom. bank account, LC, EM

X (t)—exchange rate, EUR for 1 LC, X̃(t)—exchange rate, LC for 1 EUR
R f,EU R(t)—bond recovery, EUR, EM, Rd,LC(t)—bond recovery, LC, EM

We use the asterisk to denote risk, the first letter (d or f ) to denote domestic or
foreign debt, and finally the currency of denomination is shown as EU R or LC.3

• Currency denominations
P∗
d,EU R(t, T ) = X (t)P∗

d,LC(t, T )—dom. bond, EUR
P∗
f,LC (t, T ) = X̃(t)P∗

f,EU R(t, T )—for. bond, LC
B∗
d,EU R(t) = X (t)B∗

d,LC(t)—dom. bank account, EUR
B∗

f,LC (t) = X̃(t)B∗
f,EU R(t)—for. bank account, LC

• Intensities

Foreign debt, EUR:
Intensity: hEUR(t) = h(t)
Compensator: hEUR(t)qe,EU R(t) = h(t)

∫
E q f,EU R (ω; t, x) Ft (dx)

Domestic debt, LC:
Intensity: hLC(t) = h(t)
Compensator: hLC(t)qe,LC(t) = h(t)

∫
E qd,LC (ω; t, x) Ft (dx)

The compensator (generalized intensity) characterizes default. Controlling in a
suitable way the recovery, we can control the compensator and thus the default
event. We turn attention now to the dynamics of the instruments under considera-
tion.

• Forward rates
d fEU R(t, T ) = αEU R(t, T )dt + ∑n

i=1 σEU R,i (t, T )dW P
i (t)

d f ∗
EU R(t, T ) = α∗

EU R(t, T )dt + ∑n
i=1 σ∗

EU R,i (t, T )dW P
i (t)

+∫
Eδ∗

EU R(x, t, T )μ(dx, dt)

3It must be further noted that we actually used standard definitions for the risky forward rates as
in Schönbucher [12]. Namely, f ∗

EU R/LC (t, T ) = − ∂
∂T log P∗

f,EU R/d,LC (t, T ) with terminal condi-
tions P∗

f,EU R/d,LC (T, T ) = R f,EU R/d,LC (T ). The risky bank accounts economically just represent
a unit of currency invested at the respective short rates and continuously rolled over accounting for
any default losses. However, since the forward rates, resp. the bonds, are our basic modeling object,
it would be more precise to consider the bank accounts derived quantities from them similar to
Björk et al. [4] without going here deeper into the modified technical details.
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d f ∗
LC (t, T ) = α∗

LC(t, T )dt + ∑n
i=1 σ∗

LC,i (t, T )dW P
i (t)

+∫
Eδ∗

LC(x, t, T )μ(dx, dt)
We assume that in case of default there is a market turmoil leading to a jump in
both curves. At maturity T , the EU R curve jumps by a size of

∫
Eδ∗

EU R(x, t, T )μ
(dx, dt), and that of the local currency by

∫
Eδ∗

LC(x, t, T )μ(dx, dt). The terms
δ∗
EU R(x, t, T ) and δ∗

LC(x, t, T ) show the jump sizes of the respective curves for
every maturity. As indicated at the beginning of the section, everywhere we will
work under the market filtration Gt so both the Brownian motions and the point
process are adapted to it.

• Recoveries
dR f,EU R(t)
R f,EU R(t) = − ∫

E q f,EU R(x, t)μ(dx, dt)

dRd,LC (t)
Rd,LC (t) = − ∫

E qd,LC(x, t)μ(dx, dt)

After each default we have a devaluation of the respective bond by an expected
value of

∫
Eq f/d(x, t)μ(dx, dt). The stochasticity of the loss is captured by the

random jump size q(., .) as elaborated in Sect. 2.1.

• Bank accounts
dBEUR(t)
BEUR(t) = rEU R(t)dt

dB∗
f,EU R(t)

B∗
f,EU R(t) = r∗

EU R(t)dt − ∫
E q f,EU R(x, t)μ(dx, dt)

dB∗
d,LC (t)

B∗
d,LC (t) = r∗

LC(t)dt − ∫
E qd,LC(x, t)μ(dx, dt)

• Exchange rate
dX (t)
X (t) = αX (t)dt + ∑n

i=1 σX,i (t)dW P
i (t) − ∫

EδX (x, t)μ(dx, dt)
We assume that in case of default the market turmoil causes an exchange rate
devaluation by

∫
EδX (x, t)μ(dx, dt).

• Bond prices

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds) = EQ f

(exp(− ∫ T
t rEU R(s)ds)|Gt )

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)R f,EU R(T )|Gt )

P∗
d,EU R(t, T ) = P∗

d,LC (t, T )X (t) = Rd,LC(t)X (t) exp(− ∫ T
t f ∗

LC(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)Rd,LC (T )X (T )|Gt )

It must be emphasized that the effects of exchange rate, recovery, and the expected
devaluation sizes are incorporated in the respective forward rates of the bonds.
Furthermore, the expectations are taken under Q f , the foreign risk-neutral mea-
sure.
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• Arbitrage

Under standard regularity conditions, for the system to be free of arbitrage, all
traded assets denominated in euro must have a rate of return rEU R under Q f . This
means that the processes:

PEUR(t, T )

BEUR(t)
,
B∗

f,EU R(t)

BEUR(t)
,
P∗
f,EU R(t, T )

BEUR(t)
,
B∗
d,LC(t)X (t)

BEUR(t)
,
P∗
d,LC (t, T )X (t)

BEUR(t)

must be local martingales under Q f . For our purposes being martingales would
be enough.
Taking the stochastic differentials of the upper expressions, omitting the techni-
calities to the appendix, we can get the respective no-arbitrage conditions.

• Spreads:

r∗
EU R(t) − rEU R(t) = h(t)ϕq f,EU R (t) (5.1)

r∗
LC(t) − r∗

EU R(t) = −αX (t) − φ(t)σX (t)
+h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t) − ϕq f,EU R (t))

(5.2)

• Drifts:

αEU R(t, T ) = σEU R(t, T )
∫ T
t σEU R(t, v)dv − σEU R(t, T )φ(t)

α∗
EU R(t, T ) = σ∗

EU R(t, T )
∫ T
t σ∗

EU R(t, v)dv − σ∗
EU R(t, T )φ(t)

+hEUR(t)ϕ
q f,EU R ,δX
θ∗
EU R

(t)

α∗
LC(t, T ) = σ∗

LC(t, T )
∫ T
t σ∗

LC(t, v)dv − σ∗
LC(t, T )φ(t) − σ∗

LC(t, T )σX (t, T )

+hLC(t)ϕqd,LC ,δX
θ∗
LC

(t),

where we have used the notation:

θ∗
EU R = exp(− ∫ T

t δ∗
EU R(x, t, s)ds) , θ∗

LC = exp(− ∫ T
t δ∗

LC(x, t, s)ds)

ϕ
x,y,...
a.b,... (t) = ∫

E (ab . . .)((1 − x)(1 − y) . . .)Φ(t, x)Ft (dx)

and used vector notation and scalar products where necessary for simplicity.

ByΦ(t, x) andφ(t)we denoted the Girsanov’s kernels of the counting process and
the Brownian motion respectively when changing the probability measure from P
to Q f . The term ϕ(t) represents the scaled expected jump sizes of the counting
process. We can give the interpretation that φ(t) is the market price of diffusion
risk and ϕ(t) is the market price of jump risk. Parametrizing the volatilities and
the market prices of risk, as well as imposing suitable dynamics for h(t), we give a
full characterization of our system. Furthermore, the intensity could be a function
of the underlying processes of the rates, so we could get correlation between the
intensity, the interest rates, and the exchange rate.
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Spreads diagnostics from a reduced form point of view It is important to give a deeper
interpretation of the no-arbitrage conditions and see which factors drive the credit
and currency spreads. Despite the heavy notation, the analysis actually goes fluently.
The drift equations give the modified HJM drift restrictions. The slight change from
the classical riskless case is due to the jumps that arise. Equation (5.1) shows that the
credit risk is proportional to the intensity of default and the scaled expected LGD by
the coefficient controlling the risk aversion. The higher they are, the higher the spread
is. Equation (5.2) gives the currency spread. It arises due to twomain reasons. Firstly,
the intensity of default and the difference between the two LGDs in local currency
and euro, scaled by the coefficient for the risk aversion, act as in the previous case.
They also make explicit the subordination. Secondly, the expected local currency
depreciation, its volatility, and the risk aversion to diffusion risk act similarly to
the standard uncovered interest parity (UIP) relationship. The higher they are, the
higher the spread is. It is both important and interesting to note that inflation does not
appear directly and it influences the spreads, as the next section shows, only through
a secondary channel.

Monetization The analysis so far considered a loss of 1 − Rd,LC(T ) on default of
the domestic debt. However, if a full monetization is applied, then we would have
Rd,LC(T ) = 1 and thus ϕqd,LC (t) = 0 and ϕqd,LC ,δX (t) = 0. If such a monetary injec-
tion is neutral to nominal values, it is certainly not to real ones. Devaluation arises
due to the negative market sentiment following the default and the higher amount of
money in circulation. Its effect can be measured differently based on what we take
as a base—the price index or the exchange rate. Most naturally, we can expect both
of them to depreciate due to the structural macrolinks that exist between these vari-
ables. For quantifying the amount we would need a macromodel which is beyond the
scope of the reduced form model presented. The latter only shows what characteris-
tics the market prices in general without imposing concrete macrolinks among them.
Depending on what the base is, we would have a direct estimation of certain type of
indicators and an indirect one of the rest up to their structural influence on the former.
If the inflation is taken as a base, then we would have the comparison of inflation
indexed bonds to the non-indexed ones. The spread between them would give an
estimate for the expected inflation. Unfortunately, such an analysis is unrealistic due
to the fact that such bonds are issued very rarely by emerging market countries. If
the exchange rate is taken as a base, then we would have the comparison of domestic
debt bonds to foreign debt bonds. The spread between them would give an estimate
for the currency risk and the devaluation effect. The estimate for the inflation would
be indirect and based on hypothetical structural links.

Whether the country would monetize or declare a formal default is based on
strategic considerations. It is a matter of structural analysis which option it would
take. By all means, its decision is priced. In case of default, the pricing formula is
Eq. (5.2). In case of monetization, we would have a jump in the exchange rate. Let
us denote its size by δ̂X . It will be different from the no-monetization one, δX , due
to the different regimes that are followed, and we would thus get:



326 V. Yordanov

r∗
LC(t) − r∗

EU R(t) = h(t)(ϕδ̂X
(t) − ϕq f,EU R (t)) − αX (t) − φ(t)σX (t) (6)

There is no a priori no-arbitrage argument that ϕδ̂X
(t) = ϕδX (t) − ϕqd,LC ,δX (t) +

ϕqd,LC (t) must hold so that the two scenarios are equivalent.4 The only information
we get from the market is an estimate for the generalized intensity being h(t)ϕδ̂X

(t)
or h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t)) but not knowing which possible scenario
will be realized.

3 CDS-Bond Basis

3.1 General Notes

The setting we built gives us an alternative for evaluating the CDS-Bond basis. This
is represented in Fig. 1. There the LC zero-coupon yield curve is built by employing
local currency treasuries and an appropriate smoothing method. The EUR zero-
coupon yield curve is built by employing CDS quotes with the maths represented in
the sequel. Along with the curves, there are few Eurobonds represented in light blue
colored dots. Both credit and currency spreads can be computed for them employing
a standard Z-spread methodology. Despite its various shortcomings, as discussed in
Berd et al. [2] and Elizalde et al. [10], it allows us to have a certain measure for the
spreads and it is widely accepted by practitioners. Subtracting from the yield curves’
implied credit and currency spreads the bond implied spreads, we get two alternative
specifications for the CDS-Bonds basis. Several things need a comment.

Firstly, the two basis measures are not equal by default. The one representing
the credit spread is subject to Z-spread measurement based on a parallel shift of the
benchmark curve. So it depends on the whole benchmark curve and has nothing to do
with the LC one. Vice versa, the basis implied by the LC curve is subject to Z-spread
measurement based on a parallel shift of the LC curve. So it depends on the whole
LC curve, but has nothing to do with the benchmark one. This provides intuition
how the introduction of the LC curve brings additional information in the picture and
provides more market completeness that must be utilized in relative value trades.

Secondly, as mentioned above, the EUR curve is built by utilizing CDS quotes. As
shown below, in the procedure employed, an assumption is needed for the recovery
scheme. What it should be depends on our purposes. On one hand, if we would like
to just extract the credit and currency spreads from the yield curves and calibrate a
reduced form model,5 it would be convenient to employ the setting from Sect. 2. So

4This is a delicate issue. As indicated, a further structural analysis is needed for a complete answer.
The crucial point is that the two scenarios affect in a different way the monetary base. It will have
a neutral effect on the macro variables in general and the risky spreads in particular only in case
the economy is at the macro potential. Exactly when that is not the case, we can expect that the
two scenarios will not be equivalent. A further elaboration on these issues from a structural point
of view could be found in Yordanov [15, 16].
5We postpone the factors to build realization of the model from Sect. 2 so that it becomes operative
for calibration and consequent further analysis to the forthcoming follow-up paper of Yordanov
[17].
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an RMV assumption for the EUR curve is the most appropriate one since the same
assumption is imposed also for the LC curve and when subtracting the corresponding
zero yields, we subtract apples from apples. On the other hand, if we like to extract the
basis, we must be careful since the Eurobonds are priced under a firmly established
RP assumption. So for a standard calculation via a Z-spread based on the benchmark
curve we need an RP built EUR curve to be consistent. With the many problems of
the Z-spread, it would be definitely bad to add further ones coming from a recovery
assumption inconsistency which would only further contribute to an imprecise basis
measurement. For a calculation via a Z-spread based on the LC curve, we should not
use the RMV LC curve but a modified one. From the RMV LC curve we need to
build an RP one and then compute the Z-spread and the basis to be consistent.

3.2 Technical Notes

Here we provide the technical notes regarding the above discussion.

• EUR curve
Using OIS differential discounting as in Doctor and Goulden [6], we could mod-
ify6 the standard CDS bootstrap procedure of ISDA and extract at time t the
T−maturity default probabilities pR

EU R(t, T ) under a recovery assumption of R.
Then we would get in a straightforward way the EU R zero coupon yields (ytm)
and credit spreads (spr ) under RMV and RP:

– RMV:

sprRMV,R
EU R (t, T ) = − (1−R) log(1−pR

EU R(t,T ))

T−t

ytmRMV,R
EU R (t, T ) = sprRMV,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t))

– RP:

sprRP,R
EU R (t, T ) = − log(RpR

EU R(t,T )+1−pR
EU R(t,T ))

T−t

ytmRP,R
EU R (t, T ) = sprRP,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t)),

where yEU R(t, T ) is the T−maturity zero yield of the riskless benchmark curve
(e.g. German bunds).

• LC curve

– RMV:

ytmRMV,R
LC (t, T )–observed from the market

6The OIS discounting should be given a special comment since there is still no consensus on how to
bootstrap OIS swaps to form the discount factors for the CDS swap bootstrap. The problem comes
from the presence of gaps for certain maturities. A possible specification is given in West [14].



328 V. Yordanov

sprRMV,R
LC,EU R(t, T ) = ytmRMV,R

LC (t, T )−ytmRMV,R
EU R (t, T )

pR
LC(t, T ) = 1 − exp(− sprRMV,R

LC,EU R(t,T )

1−R (T − t))

– RP:

sprRP,R
LC,EU R(t, T ) = − log(RpR

LC (t,T )+1−pR
LC (t,T ))

T−t

ytmRP,R
LC (t, T ) = sprRP,R

LC,EU R(t, T )+ytmRP,R
EU R (t, T )

Note that similarly to the EUR curve procedure, the LC curve one relies on the
premise that both the RMV and RP cases must share the same pR

LC(t, T ), which
stands for the probability of default on the LC debt. However, according to the
analysis we had in Sect. 2 on the no-arbitrage conditions, due to the monetization,
such probability actually does not formally exist. Here it is only a derived quantity
since althoughwe assume the same point process as a driver of default on both the LC
and EUR debt, we can control the compensator by changing the recoveries. However,
we could just take the formulas above for the RP spread as definitions. Taking the
limit case of zero EUR debt, they would be entirely consistent to the RP in case of
EUR debt, thus providing a justification for our method.

3.3 CDS-Bond Basis Empirics

For illustration we provide visualization of the Z-spread measured basis according
to the two alternative ways for a set of European EM countries. They are chosen
so that they have both Eurobonds outstanding in EUR and a liquid LC curve. The
data sources are: Bloomberg, Datastream, and CBonds. We build the LC curves by
employing the Bloomberg BFV curves. Since they are par curves, see Lee [11],
we transform them to zero-coupon yield ones. For spreads extraction we use both
EUR and USD denominated CDS. We give preference to the former, but in case of
missing quotes we use USD quotes instead by making a quanto adjustment using
cross currency basis swaps. The countries under focus are: Bulgaria (BGN), Czech
Rep. (CZK), Hungary (HUF), Lithuania (LTL), Poland (PLN), Romania (RON), and
Slovakia (SKK).

Since there are plenty of bonds outstanding, aggregate measures are presented
based on duration weighting. The events: 1—GM turmoil of May 09, 2005, 2—
Liquidity crisis of August 09, 2007, 3—Bear Sterns default of March 14, 2008,
4—Lehman default of September 15, 2008, 5—Greek turmoil of April 23, 2010,
6—August 5, 2011—the US rating downgrade, 7—06 May, 2012—ECB refi-rate
woes are marked by the vertical dashed lines.
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Fig. 2 CDS-Bond basis across countries

The short conclusion from the patterns in Fig. 2 is that the bonds provide impor-
tant input for extracting the credit and currency spreads. The two alternative basis
formulations preserve general shape similarity, but still give different results that
should not be underestimated. This is not surprising since the outcome is driven by
the difference in shapes between the benchmark and the LC curves.Market strategists
and arbitrage traders have a large scope for interpretations and trades design.

4 Conclusion

The paper considers the credit and currency spreads of a risky EM country. The
necessary no-arbitrage conditions are derived and their informational content is ana-
lyzed. An application of the setting is made to proper building of the foreign and local
currency yield curves of a sovereign as well as to providing ideas for relative value
diagnostics in a multi-currency framework. In that direction, an alternative measure
for the CDS-Bond basis is discussed when the local currency curve is employed as a
pillar. The aim of the paper is both to point out the rich opportunities the setting gives
for market-related research that could be of use to strategists and policy officers and
to make the first several steps toward investigating such opportunities.
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Appendix

Here we briefly elaborate on the derivation of Eqs. (5.1) and (5.2). Applying the
Girsanov’s theorem and the Ito’s Lemma for jump diffusions to Eq. (2), we get the
dynamics:

dP∗
f,EU R(t, T )

P∗
f,EU R(t, T )

=
(

−
∫ T

t
α∗
EU R(t, s)ds + r∗

EU R(t) + 1

2
||

∫ T

t
σ∗
EU R(t, s)ds||2

)
dt

−
(∫ T

t
σ∗
EU R(t, s)ds

)
dW P (t)

+
∫

E
(1 − q f,EU R(x, t))

(
exp

(
−

∫ T

t
δ∗
EU R(x, t, s)ds

)
− 1

)
μ(dx, dt)

−
∫

E
q f,EU R(x, t)μ(dx, dt)

dP∗
d,LC (t, T )

P∗
d,LC (t, T )

=
(

−
∫ T

t
α∗
LC (t, s)ds + r∗

LC (t) + 1

2
||

∫ T

t
σ∗
LC (t, s)ds||2

)

dt

−
(∫ T

t
σ∗
LC (t, s)ds

)

dW P (t)

+
∫

E
(1 − qd,LC (x, t))

(

exp

(

−
∫ T

t
δ∗
LC (x, t, s)ds

)

− 1

)

μ(dx, dt)

−
∫

E
qd,LC (x, t)μ(dx, dt)

Furthermore, we have the dynamics of the exchange rate:

dX (t)

X (t)
= αX (t)dt +

∑n

i=1
σX,i (t)dW

P
i (t) −

∫

E
δX (x, t)μ(dx, dt)

So using the no-arbitrage conditions and equating the expected local drifts to the
risk-free rate, we get the results shown.
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