Skip to main content
Book cover

Hearing Aids pp 181–215Cite as

Spatial Hearing and Hearing Aids

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 56))

Abstract

The questions of whether hearing-impaired listeners are also impaired for the localization of sounds and what benefits hearing aids can provide are important for understanding the wider effects of hearing impairment. We review here 29 studies published since 1983 that have measured acuity for changes in the horizontal-plane direction of sound sources. Where possible, performance is quantified by the root-mean-square error in degrees. Overall, the results demonstrate that (1) hearing-impaired listeners have poorer left–right discrimination than normal-hearing listeners, by 5° when averaged across all experiments, although there is considerable variation across listeners and experiments; (2) hearing aids lead to a deficit of just 1°; (3) directional microphones relative to omnidirectional microphones give a deficit of 3°; (4) custom form factors have no effect relative to the behind-the-ear style; (5) acclimatization gives a benefit of 1°; (6) a unilateral fitting results in a localization deficit of 5° on average, and the deficit can reach nearly 20°; and (7) hearing-impaired listeners are particularly prone to front–back confusions; hearing aids do nothing to reduce these and sometimes increase them. Although statistically significant effects of hearing aids on localization have been reported, few of them are generalizable, as they often occurred for just some source directions, stimuli, hearing aid features, or groups of listeners. Overall, there is no experimental evidence for a benefit from hearing aids for directional acuity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaronson, N. L., & Hartmann, W. M. (2014). Testing, correcting, and extending the Woodworth model for interaural time difference. The Journal of the Acoustical Society of America, 135, 817–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abel, S. M., & Hay, V. H. (1996). Sound localization: The interaction of aging, hearing loss and hearing protection. Scandinavian Audiology, 25, 4–12.

    Article  Google Scholar 

  • Akeroyd, M. A. (2014). An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners. Trends in Hearing, 18, 1–7.

    Article  Google Scholar 

  • Akeroyd, M. A., & Bernstein, L. R. (2001). The variation across time of sensitivity to interaural disparities: Behavioral measurements and quantitative analyses. The Journal of the Acoustical Society of America, 110, 2516–2526.

    Article  CAS  PubMed  Google Scholar 

  • Akeroyd, M. A., & Guy, F. H. (2011). The effect of hearing impairment on localization dominance for single-word stimuli. The Journal of the Acoustical Society of America, 130, 312–323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arlinger, S., Gatehouse, S., Bentler, R. A., Byrne, D., Cox, R. M., et al. (1996). Report of the Eriksholm Workshop on auditory deprivation and acclimatization. Ear and Hearing, 17, 87S–98S.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” The Journal of the Acoustical Society of America, 112, 1026–1036.

    Article  PubMed  Google Scholar 

  • Best, V., Kalluri, S., McLachlan, S., Valentine, S., Edwards, B., & Carlile, S. (2010). A comparison of CIC and BTE hearing aids for three-dimensional localization of speech. International Journal of Audiology, 49, 723–732.

    Article  PubMed  Google Scholar 

  • Best, V., Carlile, S. Kopčo, N., & van Schaik, A. (2011). Localization in speech mixtures by listeners with hearing loss. The Journal of the Acoustical Society of America, 129, EL210–EL215.

    PubMed  Google Scholar 

  • Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Blauert, J., Brueggen, M., Bronkhorst, A, W., Drullman, R., Reynaud, G., &; Pellieux, L. (1998). The AUDIS catalog of human HRTFs. The Journal of the Acoustical Society of America, 103, 3082.

    Google Scholar 

  • Brimijoin, W. O., & Akeroyd, M. A. (2012). The role of head movements and signal spectrum in an auditory front/back illusion. iPerception, 3, 179–181.

    Google Scholar 

  • Brimijoin, W. O., & Akeroyd, M. A. (2014). The moving minimum audible angle is smaller during self motion than during source motion. Frontiers in Neuroscience, 8, 273.

    Google Scholar 

  • Brimijoin, W. O., Boyd A. W., & Akeroyd M. A. (2013). The contribution of head movement to the externalization and internalization of sounds. PLoS ONE, 8, 1–12.

    Google Scholar 

  • Brughera, A., Dunai, L., & Hartmann, W. M. (2013). Human interaural time difference thresholds for sine tones: The high-frequency limit. The Journal of the Acoustical Society of America, 133, 2839–2855.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brungart, D. S., Rabinowitz, W. M., & Durlach, N. I. (2000). Evaluation of response methods for the localization of nearby objects. Perception and Psychophysics, 62, 48–65.

    Article  CAS  PubMed  Google Scholar 

  • Brungart, D. S., Cohen, J., Cord, M., Zion, D., & Kalluri. S. (2014). Assessment of auditory spatial awareness in complex listening environments. The Journal of the Acoustical Society of America, 136, 1808–1820.

    Google Scholar 

  • Bushby, K. M., Cole, T., Matthews, J. N., & Goodship, J. A. (1992). Centiles for adult head circumference. Archives of Diseases in Childhood, 67, 1286–1287.

    Article  CAS  Google Scholar 

  • Byrne, D., & Noble, W. (1998). Optimizing sound localization with hearing aids. Trends in Amplification, 3, 51–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne, D., Noble, W., & LePage, B. (1992). Effects of long-term bilateral and unilateral fitting of different hearing aid types on the ability to locate sounds. Journal of the American Academy of Audiology, 3, 369–382

    CAS  PubMed  Google Scholar 

  • Byrne, D., Noble, W., & Glauerst, B. (1996). Effects of earmold type on ability to locate sounds when wearing hearing aids. Ear and Hearing, 17, 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, D., Sinclair, S., & Noble, W. (1998). Open earmold fittings for improving aided auditory localization for sensorineural hearing losses with good high-frequency hearing. Ear and Hearing, 19, 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Chung, K., Neuman, A. C., & Higgins, M. (2008). Effects of in-the-ear microphone directionality on sound direction identification. The Journal of the Acoustical Society of America, 123, 2264–2275.

    Article  PubMed  Google Scholar 

  • Dawes, P., Munro, K. J., Kalluri, S., & Edwards, B. (2014). Acclimatization to hearing aids. Ear and Hearing, 35, 203–212.

    Article  PubMed  Google Scholar 

  • Drennan, W. R., Gatehouse, S., Howell, P., Van Tassell, D., & Lund, S. (2005). Localization and speech-identification ability of hearing-impaired listeners using phase-preserving amplification. Ear and Hearing, 26, 461–472.

    Article  PubMed  Google Scholar 

  • Durlach, N. I., & Colburn, H. S. (1978). Binaural phenomena. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception, Vol. IV: Hearing (pp. 365–466). New York: Academic Press.

    Google Scholar 

  • Durlach, N. I., Thompson, C. L., & Colburn, H. S. (1981). Binaural interaction in impaired listeners. A review of past research. Audiology, 20, 181–211.

    Google Scholar 

  • Feddersen, W. E., Sandel, T. T., Teas, D. C., & Jeffress, L. A. (1957). Localization of high‐frequency tones. The Journal of the Acoustical Society of America, 29, 988–991.

    Article  Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 222, 309–368.

    Article  Google Scholar 

  • Freigang, C., Schmiedchen, K., Nitsche, I., & Rubsamen, R. (2014). Free-field study on auditory localization and discrimination performance in older adults. Experimental Brain Research, 232, 1157–1172.

    Article  PubMed  Google Scholar 

  • Füllgrabe, C., Moore, B. C. J., & Stone, M. A. (2015). Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 6, 347.

    PubMed  PubMed Central  Google Scholar 

  • Gabriel, K.J., Koehnke, J., & Colburn H. S. (1992). Frequency dependence of binaural performance in listeners with impaired binaural hearing. The Journal of the Acoustical Society of America, 91, 336–347.

    Article  CAS  PubMed  Google Scholar 

  • Gallun, F. J., McMillan, G. P., Molis, M. R., Kampel, S. D., Dann, S. M., & Konrad-Martin, D. L. (2014). Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity. Frontiers in Neuroscience, 8, 172.

    PubMed  PubMed Central  Google Scholar 

  • Gardner, W. G., & Martin, K. D. (1995). HRTF measurements of a KEMAR. The Journal of the Acoustical Society of America, 97, 3907–3908.

    Article  Google Scholar 

  • Geary, R. C. (1935). The ratio of the mean deviation to the standard deviation as a test of normality. Biometrika, 27, 310–332.

    Article  Google Scholar 

  • Grantham, D. W. (1984). Interaural intensity discrimination: Insensitivity at 1000 Hz. The Journal of the Acoustical Society of America, 75, 1191–1194.

    Article  CAS  PubMed  Google Scholar 

  • Grantham, D. W., Hornsby, B. W. Y., & Erpenbeck, E. A. (2003). Auditory spatial resolution in horizontal, vertical, and diagonal planes. The Journal of the Acoustical Society of America, 114, 1009–1022.

    Article  PubMed  Google Scholar 

  • Hafter, E. R., & Dye, R. H. (1983). Detection of interaural differences of time in trains of high-frequency clicks as a function of interclick interval and number. The Journal of the Acoustical Society of America, 73, 644–651.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, W. M. (1983). Localization of sound in rooms. The Journal of the Acoustical Society of America, 74, 1380–1391.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, W. M., & Constan, Z. A. (2002). Interaural level differences and the level-meter model. The Journal of the Acoustical Society of America, 112, 1037–1045.

    Article  PubMed  Google Scholar 

  • Häusler, R., Colburn, S., & Marr, E. (1983). Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests. Acta Oto-Laryngologica (Supplementum), 400, 1–62.

    Google Scholar 

  • Hawkins, D. B., & Wightman, F. L. (1980). Interaural time discrimination ability of listeners with sensorineural hearing loss. Audiology, 19, 495–507.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2010). The importance of temporal fine structure information in speech at different spectral regions for normal-hearing and hearing-impaired subjects. The Journal of the Acoustical Society of America, 127, 1595–1608.

    Article  PubMed  Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2011). The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. The Journal of the Acoustical Society of America, 130, 334–349.

    Article  PubMed  Google Scholar 

  • Humes, L. E., & Wilson, D. L. (2003). An examination of changes in hearing-aid performance and benefit in the elderly over a 3-year period of hearing-aid use. Journal of Speech, Language, and Hearing Research, 46, 137–145.

    Article  PubMed  Google Scholar 

  • Jensen, N. S., Neher, T., Laugesen, S., Johannesson, B. J., & Kragelund, L. (2013). Laboratory and field study of the potential benefits of pinna cue-preserving hearing aids. Trends in Amplification, 17, 171–188.

    PubMed Central  Google Scholar 

  • Jiang, D., & Oleson, J. J. (2011). Simulation study of power and sample size for repeated measures with multinomial outcomes: An application to sound direction identification experiments (SDIE). Statistics in Medicine, 30, 2451–2466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keidser, G., Rohrseitz, K., Dillon, H., Hamacher, V., Carter, L., et al. (2006). The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers. International Journal of Audiology, 45, 563–579.

    Article  PubMed  Google Scholar 

  • Keidser, G., Carter, L., Chalupper, J., & Dillon, H. (2007). Effect of low-frequency gain and venting effects on the benefit derived from directionality and noise reduction in hearing aids. International Journal of Audiology, 46, 554–568.

    Article  PubMed  Google Scholar 

  • Keidser, G., O’Brien, A., Hain, J. U., McLelland, M., & Yeend, I. (2009). The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users. International Journal of Audiology, 48, 789–803.

    Article  PubMed  Google Scholar 

  • King, A., Hopkins, K., & Plack, C. J. (2014). The effects of age and hearing loss on interaural phase difference discrimination. The Journal of the Acoustical Society of America, 135, 342–351.

    Article  PubMed  Google Scholar 

  • Klump, R. G., & Eady, H. R. (1956). Some measurements of interaural time difference thresholds. The Journal of the Acoustical Society of America, 28, 859–860.

    Article  Google Scholar 

  • Köbler, S., & Rosenhall, U. (2002). Horizontal localization and speech intelligibility with bilateral and unilateral hearing aid amplification. International Journal of Audiology, 41, 395–400.

    Article  PubMed  Google Scholar 

  • Kramer, S. E., Kapteyn, T. S., Festen, J. M., & Tobi, H. (1996). The relationships between self-reported hearing disability and measures of auditory disability. Audiology, 35, 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Kreuzer, W., Majdak, P., & Chen, Z. (2009). Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. The Journal of the Acoustical Society of America, 126, 1280–1290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn, G. F. (1977). Model for the interaural time differences in the azimuthal plane. The Journal of the Acoustical Society of America, 62, 157–167.

    Article  Google Scholar 

  • Kuhn, G. F. (1987). Physical acoustics and measurements pertaining to directional hearing. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing (pp. 3–5). New York: Springer-Verlag.

    Google Scholar 

  • Kuk, F., Korhonen, P., Lau, C., Keenan, D., & Norgaard, M. (2013). Evaluation of a pinna compensation algorithm for sound localization and speech perception in noise. American Journal of Audiology, 22, 84–93.

    Article  PubMed  Google Scholar 

  • Litovsky, R. Y., Colburn, H. S., Yost, W.A., & Guzman, S. J. (1999). The precedence effect. The Journal of the Acoustical Society of America, 106, 1633–1654.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi, C., Gatehouse, S., & Lever, C. (1999a). Sound localization in noise in normal-hearing listeners. The Journal of the Acoustical Society of America, 105, 1810–1820.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi, C., Gatehouse, S., & Lever, C. (1999b). Sound localization in noise in hearing-impaired listeners. The Journal of the Acoustical Society of America, 105, 3454–3463.

    Article  CAS  PubMed  Google Scholar 

  • Macaulay, E. J., Hartmann, W. M., & Rakerd, B. (2010). The acoustical bright spot and mislocalization of tones by human listeners. The Journal of the Acoustical Society of America, 127, 1440–1449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills, A. W. (1958). On the minimum audible angle. The Journal of the Acoustical Society of America, 30, 237–246.

    Article  Google Scholar 

  • Moore, B. C. J. (2013). An introduction to the psychology of hearing. Leiden, The Netherlands: Brill.

    Google Scholar 

  • Moore, B. C. J. (2014). Auditory processing of temporal fine structure: Effects of age and hearing loss. Singapore: World Scientific.

    Book  Google Scholar 

  • Munro, K. J. (2008). Reorganization of the adult auditory system: Perceptual and physiological evidence from monaural fitting of hearing aids. Trends in Amplification, 12, 85–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neher, T., Laugesen, S., Jensen, N. S., & Kragelund, L. (2011). Can basic auditory and cognitive measures predict hearing-impaired listeners’ localization and spatial speech recognition abilities? The Journal of the Acoustical Society of America, 130, 1542–1558.

    Article  PubMed  Google Scholar 

  • Noble, W., & Byrne, D. (1990). A comparison of different binaural hearing aid systems for sound localization in the horizontal and vertical planes. British Journal of Audiology, 24, 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Noble, W., & Byrne, D. (1991). Auditory localization under conditions of unilateral fitting of different hearing aid systems. British Journal of Audiology, 25, 237–250.

    Article  CAS  PubMed  Google Scholar 

  • Noble, W., Byrne, D., & Lepage, B. (1994). Effects on sound localization of configuration and type of hearing impairment. The Journal of the Acoustical Society of America, 95, 992–1005.

    Article  CAS  PubMed  Google Scholar 

  • Noble, W., Byrne, D., & Ter-Horst, K. (1997). Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners. The Journal of the Acoustical Society of America, 102, 2343–2352.

    Article  CAS  PubMed  Google Scholar 

  • Noble, W., Sinclair, S., & Byrne, D. (1998). Improvement in aided sound localization with open earmolds: Observations in people with high-frequency hearing loss. Journal of the American Academy of Audiology, 9, 25–34.

    CAS  PubMed  Google Scholar 

  • Picou, E. M., Aspell, A., & Ricketts, T. A. (2014). Potential benefits and limitations of three types of directional processing in hearing aids. Ear and Hearing, 35, 339–352.

    Article  PubMed  Google Scholar 

  • Rayleigh, L. (1894). Theory of sound. London: Macmillan.

    Google Scholar 

  • Recanzone, G., Makhamra, S. D. D. R., & Guard, D. C. (1998). Comparison of relative and absolute sound localization ability in humans. The Journal of the Acoustical Society of America, 103, 1085–1097.

    Article  CAS  PubMed  Google Scholar 

  • Ross, B., Fujioka, T., Tremblay, K. L., & Picton, T. W. (2007). Aging in binaural hearing begins in mid-life: Evidence from cortical auditory-evoked responses to changes in interaural phase. Journal of Neuroscience, 27, 11172–11178.

    Article  CAS  PubMed  Google Scholar 

  • Seeber, B. U., Eiler, C., Kalluri, S., Hafter, E. R., & Edwards, B. (2008). Interaction between stimulus and compression type in precedence situations with hearing aids (A). The Journal of the Acoustical Society of America, 123, 3169.

    Article  Google Scholar 

  • Shinn-Cunningham, B. G., Santarelli, S., & Kopco, N. (2000). Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America, 107, 1627–1636.

    Article  CAS  PubMed  Google Scholar 

  • Simon, H. J. (2005). Bilateral amplification and sound localization: Then and now. Journal of Rehabilitation Research and Development, 42, 117–132.

    Article  PubMed  Google Scholar 

  • Smith-Olinde, L., Koehnke, J., & Besing, J. (1998). Effects of sensorineural hearing loss on interaural discrimination and virtual localization. The Journal of the Acoustical Society of America, 103, 2084–2099.

    Article  CAS  PubMed  Google Scholar 

  • Stern, R. M., Slocum, J. E., & Phillips, M. S. (1983). Interaural time and amplitude discrimination in noise. The Journal of the Acoustical Society of America, 73, 1714–1722.

    Article  PubMed  Google Scholar 

  • Stevens, S. S., & Newman, E. B. (1936). The localization of actual sources of sound. American Journal of Psychology, 48, 297–306.

    Article  Google Scholar 

  • Strelcyk, O., & Dau, T. (2009). Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. The Journal of the Acoustical Society of America, 125, 3328–3345.

    Article  PubMed  Google Scholar 

  • Tattersall, I. (2008). An evolutionary framework for the acquisition of symbolic cognition by Homo sapiens. Comparative Cognition & Behavior Reviews, 3, 99–114.

    Article  Google Scholar 

  • Tobias, J. V., & Zerlin, S. (1959). Lateralization thresholds as a function of stimulus duration. The Journal of the Acoustical Society of America, 31, 1591–1594.

    Article  Google Scholar 

  • Treeby, B. E., Pan, J., & Paurobally, R. M. (2007). The effect of hair on auditory localization cues. The Journal of the Acoustical Society of America, 122, 3586–3597.

    Article  PubMed  Google Scholar 

  • Vaillancourt, V., Laroche, C., Giguère, C., Beaulieu, M. A., & Legault, J. P. (2011). Evaluation of auditory functions for Royal Canadian mounted police officers. Journal of the American Academy of Audiology, 22, 313–331.

    Article  PubMed  Google Scholar 

  • van den Bogaert, T., Klasen, T. J., Moonen, M., Van Deun, L., & Wouters, J. (2006). Horizontal localization with bilateral hearing aids: Without is better than with. The Journal of the Acoustical Society of America, 119, 515–526.

    Article  PubMed  Google Scholar 

  • van den Bogaert, T., Carette, E., & Wouters, J. (2011). Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna. International Journal of Audiology, 50, 164–176.

    Article  PubMed  Google Scholar 

  • van Esch, T. E. M., Kollmeier, B., Vormann, M. Lyzenga, J., Houtgast, T., et al. (2013). Evaluation of the preliminary auditory profile test battery in an international multi-centre study. International Journal of Audiology, 52, 305–321.

    Article  PubMed  Google Scholar 

  • Wallach, H. (1940). The role of head movements and vestibular and visual cues in sound localization. Journal of Experimental Psychology, 27, 339–368.

    Article  Google Scholar 

  • Whitmer, W. M., Seeber, B. U., & Akeroyd, M. A. (2012). Apparent auditory source width insensitivity in older hearing-impaired individuals. The Journal of the Acoustical Society of America, 132, 369–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitmer, W. M., Seeber, B. U., & Akeroyd, M. A. (2014). The perception of apparent auditory source width in hearing-impaired adults. The Journal of the Acoustical Society of America, 135, 3548–3559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiggins, I. M., & Seeber, B. U. (2011). Dynamic-range compression affects the lateral position of sounds. The Journal of the Acoustical Society of America, 130, 3939–3953.

    Article  PubMed  Google Scholar 

  • Woodworth, R. S. (1938). Experimental psychology. New York: Holt.

    Google Scholar 

  • Yost, W. A., Loiselle, L., Dorman, M., Burns, J., & Brown, C. A. (2013). Sound source localization of filtered noises by listeners with normal hearing: A statistical analysis. The Journal of the Acoustical Society of America, 133, 2876–2882.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Council (grant number U135097131) and by the Chief Scientist Office of the Scottish Government.

Conflict of interest Michael Akeroyd declares he has no conflict of interest.William Whitmer declares he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Akeroyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akeroyd, M.A., Whitmer, W.M. (2016). Spatial Hearing and Hearing Aids. In: Popelka, G., Moore, B., Fay, R., Popper, A. (eds) Hearing Aids. Springer Handbook of Auditory Research, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-33036-5_7

Download citation

Publish with us

Policies and ethics