Survey on the State of the Art

1 What Transitions in Mathematics Education?
Review of the Literature

In this section our aim is to set the scene for the following four sections and situate
them within the broad picture of mathematics education research concerning
transitions. What kinds of transitions have been considered by mathematics edu-
cation research? What research questions were studied and which theoretical
approaches and associated methods were used? Did the studies lead to the identi-
fication of continuous processes, successive steps, or discontinuities? Are difficul-
ties attached to the discontinuities identified, and does the research propose means
to reduce those difficulties in order to foster a transition? These are the questions we
study in this short literature review.

1.1 Mathematics Education: A Story of Change

We do not intend here to build a complete list of the kinds of changes considered by
researchers, but to identify central directions for our review. Yerushalmy (2005)
introduces a notion of critical transitions:

Critical transition is viewed as a learning situation that is found to involve a noticeable
change of point of view. This change could become apparent as an epistemological
obstacle, as a cognitive discontinuity or as a didactical gap. A transition would be identified
as a necessity for entering into a different type of discourse (in terms of the language,
symbols, tools and representations involved) or more broadly as changing “lenses” used to
view the concept at hand (p. 37).
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In this definition several possible kinds of transitions appear, all of them con-
cerning a learning situation and a change of point of view: epistemological, cog-
nitive, or discursive. In the literature referring to transitions, we observe all these
possibilities and even more.

The changes studied can happen within the mathematical content. Some
researchers have studied these changes from an epistemological perspective,
sometimes drawing on the history of mathematics. Research from this perspective
for the most part also studies transitions in students’ learning since transitions in
content that are not reflected in student learning are less important to instruction.
These cognitive transitions can be studied with different theoretical frameworks;
they can concern specific mathematical topics (for example, the transition from
arithmetic to algebra has been extensively researched) but also more general issues,
such as the transition between different thinking modes. We present and discuss the
corresponding research works in Sect. 1.2.

Other authors consider that mathematics is shaped by groups of people who
develop shared mathematical practices. Educational institutions are such groups:
much research considers the transition, for example, between primary and sec-
ondary school. But mathematical practices also exist outside of school, and the
transition between mathematical practices in school and in the workplace have also
been investigated, mainly by researchers with a sociocultural perspective. These
studies often identify discontinuities and sometimes design teaching experiments in
order to smooth the transition. Research works that have a sociocultural perspective
are presented in Sect. 1.3. Some authors argue that “transitions can be best
understood using a socio-cultural framework™ (Crafter and Maunder 2012). Our
aim here is not to discuss whether one or the other perspective is more appropriate,
but to show that these perspectives act as different lenses on the issue of transition
(Gueudet 2008), and to depict the main features of the results they produce (nat-
urally, sometimes the same transition has been studied with multiple perspectives,
such as the arithmetic-algebra transition (e.g., Goodson-Espy 1998; Sadovsky and
Sessa 2005; Slavit 1999).

Other kinds of transitions have been studied within mathematics education
research: for example, the changes in the available tools to do mathematics are also
associated with transitions. For example the transition from using tracers and
templates to using a compass for drawing circles, for students (Chassapis 1998) or
the transition experienced by teachers moving towards CAS-supported classrooms
(Kendal and Stacey 2002) have been studied by researchers. We did not include the
change from a given tool to another as a central kind of transition for this literature
review. Our interest in tools and technologies is more directed towards how the
available tools impact a given transition: the availability, for example, of dynamic
geometry software can impact students’ learning of deductive geometry, hence
modifying their transition processes between intuitive and deductive geometry. This
is Yerushalmy’s (2005) perspective, who gives evidence that some known transi-
tions have a different nature in technological environments.
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1.2 Epistemological and Cognitive Transitions

The history of mathematics is also a story of changes, of long-term genesis of
concepts with moments of continuity and sudden ruptures. How history can inform
research in mathematics education is a complex matter (Schubring 2011); here we
consider how research in mathematics education has used the history of mathe-
matics in studying transitions issues. For example, Dorier (2000) studies the genesis
of linear algebra and shows that this theory has emerged in particular from a need of
unification of different problems concerning functions, sequences, and so forth.
Thus linear algebra is what Robert (1998) calls a formalizing, unifying, and gen-
eralizing theory: it cannot be taught as a “natural” extension of previous contents or
a solution to a given problem. Studying the history of mathematics draws a land-
scape with gaps and long paths that do not admit shortcuts. An “epistemological
obstacle” is a form of unavoidable discontinuity which has been studied by many
researchers (e.g., Sierpifiska 1987), most often by identifying first such obstacles
with a historical perspective then studying the associated cognitive transitions.

Cognitive transitions are also observed outside of specific mathematical con-
tents. Concerning the learning of proof in particular, several kinds of transitions
have been investigated. In the transition from phases of conjectures to phases of
proof continuities and discontinuities appear, and this leads to the introduction of
the concept of cognitive unity of theorems (continuity existing between the pro-
duction of a conjecture and the possible construction of its proof; see Garuti et al.
1996). Other researchers have identified structural discontinuities in the transition
between argumentation and proof (Arzarello and Sabena 2011).

General models of transitions taking place in mathematical thinking also exist; in
particular, different theories propose models for the “transition from process to object”
(Tall et al. 1999). This transition is sometimes called “encapsulation” and sometimes
“reification”; several authors claim that it is composed of a sequence of steps. Sfard
(1991) considers the transition from computational operations to abstract objects to be
accomplished in three steps: interiorization, condensation, and reification. Dubinsky
(1991) in the APOS theory also considers conceptualization processes as transitions
composed of three successive steps: from action to process, from process to object
(encapsulation), and from object to schema. Each of the steps, or sub-processes, is seen as
continuous, while the change from one step to the next can be interpreted as a discon-
tinuity. Nevertheless, the process-object transition is not discussed by these authors in
terms of continuity/discontinuity. In contrast, Tall (2002), referring to Skemp (1962) for
a study of “long-term learning schemas” discusses the process-object transition in terms
of discontinuity. The author claims that long-term cognitive development in mathe-
matics always faces discontinuities. He gives various examples concerning negative
numbers, algebra, limits, and so forth. These discontinuities, according to him, cannot be
avoided in the curriculum, and they require cognitive reconstruction on the part of the
student. It is thus important for teachers to be aware of these discontinuities. Should we
then maintain that cognitive development is generally a discontinuous process or merely
a concatenation of continuous sub-processes? This issue is discussed in Sect. 2.
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1.3  Sociocultural Transitions

Researchers adopting a sociocultural perspective have also studied transitions.
Different groups of people share a common mathematical practice; a transition
happens when an individual, such as a student, moves from one group to another.
The research questions can address the characteristic features of the relevant
mathematics and mathematical practices in each group: What are these character-
istic features? What are the similarities (continuity) and differences (discontinuity)
between the mathematics and mathematical practices of different groups?

The more precise formulation of the questions, the methods employed, and the
results obtained depend on several factors, including the groups considered. Those
groups can be of different natures. For example, the ICMI Pipeline project
(Hodgson 2015) whose aim was to “study issues associated with the supply and
demand for mathematics students and personnel in educational institutions and the
workplace” focused on what they called four “transition points”:

1. School to undergraduate courses,

2. Undergraduate courses to postgraduate courses,
3. University into employment, and

4. University into teaching.

In this case we observe two kinds of transition points: between two schooling
institutions (which are here two successive levels) and between a schooling insti-
tution (namely university) and a workplace, with a distinction between a general
workplace (employment) and working as a teacher. Section 3 in this survey con-
cerns this last case.

Other groups are considered in other research: transition between mathematics
teaching in different languages (Riorddin and O’Donoghue 2011) and between
mathematics learned at school and at home (Crafter and De Abreu 2011). We notice
that these two last kinds of groups can lead to a different sort of transition. While
transition from primary to secondary school is a non-reversible process corre-
sponding to a temporal progression, students can simultaneously take courses in
two languages and can certainly experience their families and schools simultane-
ously. These continuous interactions between different contexts can be seen as
permanent transitions between two aspects of a student’s mathematical practices;
here continuity means a kind of connectedness.

Which are the theoretical approaches used to study the transitions between all
these different groups? We here briefly survey the main approaches and associated
work.

Some research employs the anthropological theory of didactics (ATD,
Chevallard 2006), which posits that institutions shape mathematical practices. ATD
has mostly been used to research transition between different school levels (e.g.,
Winslegw 2014). Section 4 presents a survey of work using this approach.

Other researchers focus on the change in the mathematical discourse between
different groups. The commognitive approach (Sfard 2007) is such a discursive
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approach, which considers mathematical learning as initiation into—or transition
to—a mathematical discourse, characterized by word use, visual mediators, en-
dorsed narratives, and routines shared by a community. As with ATD research,
these characteristics can be identified for a given community and compared with
another, and the acculturation of a student can be followed. Such research can also
identify students’ difficulties. However, in contrast to ATD, this approach probably
offers a more continuous perspective on transition that is less focused on discon-
tinuities or gaps.

The concept of community has been especially developed within the theory of
communities of practice (CoPs, Wenger 1998), which has also been used to
investigate transitions. According to this theory, learning takes place through
interactions within a community sharing a common practice; it also takes place in the
evolution from a legitimate peripheral participation to a full participation as member
of the community. For example, first-year students at university participate in the
mathematics undergraduate student community, which has its own rules for studying
and communicating about mathematics (Biza et al. 2014). The process of transition
corresponds here with the process of becoming a member of this community, and the
theory of CoPs interprets it as a learning process. In the theory of CoPs, it is also
common for a subject to belong simultaneously to two different communities. In this
case of co-existing communities, the concepts of boundary crossings and boundary
objects permit understanding the permanent transitions experienced by the subject
(see e.g., Crafter and de Abreu 2011): they constitute the continuous aspect of these
transitions. Such perspectives are used to study in particular the transitions between
school and out-of-school mathematics, which are the focus of Sect. 5.

The following sections propose a more detailed view of the questions studied
and of the results obtained by selected mathematics education research on transi-
tions using diverse perspectives.

2  Continuity Versus Discontinuity in Learning Difficult
Concepts

2.1 Setting the Scene

This brief survey attends to a certain kind of transition—that between naive or
novice knowledge and the knowledge of an expert. My perspective is largely
cognitive, hence learning is construed as change in conceptual structure. In addi-
tion, I focus on one particular issue concerning transitions in conceptual structure,
whether they should be regarded as continuous or discontinuous (abbreviated as
CvD——Continuous vs. Discontinuous).
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CvD has had an interesting history in mathematics education. A primary locus of
attention is the idea of “epistemological obstacles” in learning. Epistemological
obstacles are unavoidable difficulties in learning that manifest as persistent wrong
or inappropriate interpretations by learners. Simple examples include the
non-sensibility of negative numbers (what can negative four cows mean!), and, in
more advanced mathematics, a slew of misconceptions about the concept of limit
(e.g., confusion between an infinite set and properties of a never-ending process:
Zeno’s Paradox—a hare can never catch a tortoise because it has to endlessly half
the distance to the tortoise). Researchers such as Tall (e.g., 2002) and Sierpinska
(e.g., 1990) have advanced the idea of epistemological obstacles in mathematics
learning. Broadly, I believe it is fair to say that the idea of epistemological obstacles
favors discontinuity in learning; “ruptures” or “breaks” occur precisely at the point
of surpassing obstacles.

Before returning to mathematics, I will take a detour through the history of CvD
in science education. I do this because (1) I know science better, and (2) some
important issues concerning CvD are better highlighted in science education, and
(3) some CvD-focused empirical strategies are better represented in science.

2.2 Misconceptions and Discontinuities

In the early 1980s, science education researchers noted the striking phenomenon of
“naive conceptions.” Students are not blank slates when it comes to learning
important topics such as Newton’s laws (mechanics), the focus of much early study.
Instead, students possess intuitive ideas that were seen almost exclusively as blocks
to learning. In fact, the most visible point of view was that there is an essential gap
or discontinuity between naive ideas and normative ones.

A philosophical debate about the nature of science preceded the debate among
educators. That debate defined a lot of the terrain for later discussions, including
those in education. The far more famous position was taken by Kuhn (1970) in his
book on “scientific revolutions.” Everyone agrees that creating new science—or, in
the educational case, achieving deep understanding of existing science—is difficult
and may take a long time. But how should one view the transition and the reasons
for difficulty? Kuhn’s position was that science before a revolution is flatly dis-
continuous (“incommensurable”) with that afterward. The reason for difficulty of
change is not just in the differences between views before and after the revolution,
but that science, at any point in time, is a coherent whole. If change is to happen,
basically everything must change at once. He likened the change to a gestalt switch,
such as illustrated in the “duck/rabbit,” which Wittgenstein used in his philo-
sophical investigations (Fig. 1). The “duck/rabbit” can be seen as either a duck or as
a rabbit, but not both at the same time. Changing from one interpretation to the
other constitutes a holistic change.

Kuhn’s less well-known competitor was Toulmin (e.g., 1972). Toulmin made
two central points. First, he believed that science is much less coherent than Kuhn
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Fig. 1 The “duck/rabbit”
used by Wittgenstein

assumed; he disparaged Kuhn’s ideas as those of a “cult of systematicity.” Gestalt
switches are thus not plausible. Second, he observed that before/after “snapshot”
studies of science are very likely to promote an illusion of discontinuity. To make
an analogy, one is very likely to see a pile of materials—bricks, boards, nails, bags
of cement—as categorically distinct from the house constructed of those materials.
The way to understand continuity is to imagine the intervening small steps of
construction, which Toulmin described as a “moving picture” account.

A comparable philosophical pre-history in mathematics involves Bachelard
(1938). He developed the ideas of “epistemological obstacle” and “epistemological
rupture” that were picked up by Tall, Sierpifiska and others. Epistemological
obstacles in education are roughly the equivalent of “misconceptions” in science.
While Kuhn and Bachelard’s ideas seem very similar with respect to CvD, his-
torical accounts suggest they were developed independently.

2.3 Conceptual Change

Carey (e.g., 1985) brought Kuhn’s ideas forcibly into the study of difficult learning,
called “conceptual change.” To this day, Carey’s work (e.g., Carey 2009) remains a
landmark in this field. And other prominent current work shares assumptions with
Carey, although in perhaps weakened form. Vosniadou (e.g., 2013) moves the real
resistance to learning from the misconceptions themselves to “framework theories,”
which lie in the background but strongly constrain conceptions; framework theories
embody our deepest assumptions about how the world works. Despite differences
between her and Carey, Vosniadou is still committed to fairly strong assumptions of
coherence in students’ ideas (for a review, see diSessa 2013). Despite its importance
in the CvD debate, the issue of coherence is much less visible in some other modern
views of conceptual change (e.g., Chi 1992, 2013).

Even while Carey was championing Kuhn, other researchers took Toulmin’s
side, favoring continuity. Minstrell (1989), for example, likened learning to
selecting and weaving naive strands of thought into a different, more systematic
fabric. A line of conceptual change study known as Knowledge in Pieces (KiP;
diSessa 1982) began by identifying, both theoretically and empirically, some of
Minstrell’s strands of understanding that need to be woven or rewoven. At that
time, despite this competing research, claims of high systematicity and gestalt
switches (ruptures and revolutions) were dominant.
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2.4 Steps Toward Resolving the Conflict

To resolve the contest between gestalt switches and moving picture accounts, one
needs two things: (1) One needs to understand the pieces involved in the change.
For the building-a-house case, one needs to know about nails, boards, and so on.
(2) Then one needs an array of processes that can transform those materials into a
house. Nails bind boards; cement, with added water, transforms itself gradually into
a hard and shape-permanent material. Unfortunately, and perhaps shockingly,
careful accounts of the “materials” involved in conceptual change—much less
empirically precise tracking of processes involving them—has been and is still rare.
Much more common are before-and-after studies, with little or no process data in
between. The relatively recent trend toward microgenetic (moment-by-moment)
studies of learning (Parnafes and diSessa 2013) shows great promise in answering
Toulmin’s call for “moving picture” accounts of conceptual change, and therefore
definitively settling the CvD dispute: Will we see revolutions and ruptures, or not?

Since it highlights a search for pieces and processes and attempts to build detailed
“pieces and processes” accounts of learning, contemporary KiP research is posi-
tioned well to help resolve the CvD dispute. I mentioned before that early work in the
KiP line developed accounts of relevant pieces (naive knowledge). More recently,
theoretical and empirical emphasis has shifted to the processes of conceptual change.
The conceptual equivalent of pounding nails, mixing cement, and intermediate and
temporary constructions such as scaffolding may be coming into view.

Prominent advocates of continuity and “pieces and processes” research are rarer
in mathematics education research compared to science, which is one of the main
reasons for the diversion to science. Unfortunately, space does not permit a com-
parative review.

2.5 Empirical Work

Here are two brief descriptions of recent “pieces and processes” (microgenetic)
studies of learning and conceptual change.

2.5.1 The Construction of Causal Schemes

This work (diSessa 2014) is based on an early KiP study that identified intuitive
knowledge elements behind “misconceptions” in science learning. In particular a
subset of those previously identified elements (two key ones, and a few that are
more peripheral) became involved in the learning event at issue.

That learning event seemed, in some respects, remarkable. A class of high school
students—with minimal scaffolding, no direct instruction, and in less than an hour’s
time—managed to construct on their own a version of the targeted scientific idea,
“Newton’s laws of thermal equilibration”: Two objects in contact each change



2 Continuity Versus Discontinuity in Learning ... 9

temperature at a rate proportional to the difference in temperatures between them.
Six independent mechanisms (basic processes) were identified in the case study.
Several of these processes seemed “discrete,” such as developing a chain of causal
links (A causes B; B causes C; ...), the totality of which was precisely the causality
behind Newton’s thermal laws. The chain was primed by one previously identified
intuitive idea, and contained at its core another very important and previously
identified intuitive causal link. Other parts of the construction seemed less “logical
and scientific.” For example, the central intuitive causal link was expressed in
overtly anthropomorphic ways (“the objects in contact want to be in equilibrium,
and are freaking out because they are so far apart”). Remarkably, the anthropo-
morphism (“wanting” and “freaking out”) gradually disappeared from the students’
talk, and, in the end, they had a very professional-sounding version of Newton’s
laws: The rate of temperature change is proportional to the difference in tempera-
tures. The anthropomorphism seemed to be a scaffold and not a permanent part of
the construction, just like scaffolds are critical, but they come and go in the con-
struction of a house (and may, thus, never be seen in before-and-after studies!).

2.5.2 A Mathematical Example: The Law of Large Numbers

I mentioned earlier that “pieces and processes” study of mathematical learning is
rarer than for science. This example is an exception. (For a related example, see
Pratt and Noss 2002.) While it is too early to generalize to all of mathematics
learning the example suggests that, at the microgenetic grain-size, there is no
substantial discontinuity in learning.

Wagner (2006) used clinical interviews to study learning of the statistical law of
large numbers. One of the theoretical tools developed by KiP shows how concepts
may not be monolithic, but actually composed of many pieces each of which works
only in certain contexts. Then, learning may proceed incrementally, one context at a
time. In Wagner’s study a student gradually linked in intuitive schemes (similar to
the science example, above) that were approximations of normative ideas. The idea
that “larger samples are more accurate” occurred to her specifically in the context of
surveys, and demonstrably changed the range of contexts in which she could
effectively apply the law of large numbers. In general, context-specific intuitive
ideas seemed necessary to extend her capacity to apply the law of large numbers
across new contexts, and it appeared that linking those ideas in was distributed in
time, with no categorical breakthroughs (gestalt switches).

2.6 Implications for Teachers and Other Educational
Professionals

Let me discuss a list of properties that describe what I take to be key components of
the misconceptions/revolutions/epistemological obstacles points of view, in contrast
to a more continuist point of view.
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Misconceptions/epistemological obstacles are:
e Manifest as persistent wrong or inappropriate interpretations by students.

But, recognizing a large number of intuitive pre-existing ingredients, many of
them will find “happy homes” in more advanced scientific thinking. Both the sci-
entific and mathematical case studies, above, found this to be true in specific details
of learning. Although it tends not to be noticed, consistently easy accomplishments,
not just blocks, arise because of the existence of pre-instruction knowledge. We need
most definitely to study the general nature and specifics of “things that may help,”
not just mark occasions where help may seem beyond our grasp.

o Unavoidable.

There are many routes to constructing a house. What was found with thermal
equilibrium is a very different avenue of learning than that stipulated by Carey and
colleagues (e.g., Wiser and Carey 1983; Wiser 1995), based on assuming a coherent
naive conception of thermal phenomena and consequent revolutionary changes in
conceptions. In general, unless we have an encompassing map of potentially rel-
evant naive knowledge, it is unwise to assume that we cannot find more productive
pathways from naive to expert understanding than we know at present.

o  Monolithic.

All conceptual change researchers agree that some things are difficult to learn
and thereby take time. But, consider: If you don’t know how to do it, building a
house may seem almost impossible. Even knowing the ingredients (boards, nails,
cement)—which may not at all be securely in place for conceptual change—may
not be enough. When one gets down to pounding nails, one by one, however, one
can see how many little steps can accumulate. One promise of continuist approa-
ches to learning is that we may always need time to teach difficult ideas, but the
path may not need to be opaque or painful.

e Homogeneous.

Studies such as those above suggest that the ingredients and processes of change
may be different from concept to concept. Cases of “overcoming obstacles,”
therefore, may also look very different from one another. Calling everything an
“epistemological rupture” (or a “naive theory” or even a “misconception”) paints
change with too broad a brush so that it is unhelpful in guiding us toward success in
individual cases of conceptual change.

To sum up, the continuist point of view sees learning and conceptual change as
complex, but open to possibilities that have simply not been pursued very much,
owing to the historical dominance of discontinuity as a core assumption. From the
continuist perspective, we can (we must!) explore more widely to search out pro-
ductive paths to expertise. Even if some blocks to learning are fairly characterized
as “obstacles,” they may be better conceptualized as long journeys, rather than
walls to scale right here and right now, or chasms to somehow jump over.
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2.7 Final Words

While it is tempting to believe that the CvD dispute might be settled by which
community can produce the best instruction, I believe that the issue is best con-
strued as, and will only be settled as, a scientific difference of opinion. Instruction is
too complex an affair (respecting cognitive, but also social, affective, cultural, and
institutional issues) to serve as a likely arbiter in the short term. As for making
progress on the science, as I have anticipated, my view is that what is necessary is
better understanding of the diverse elements that learners bring to bear in their
learning, and also in much more and more careful micro-analyses of the interme-
diate steps and learning mechanisms.

3 Double Discontinuity Between Secondary School
Mathematics and University Mathematics: Focusing
on Mathematical Knowledge for Teaching

The transition from secondary school to university and the backwards transition
from university to secondary school are challenges for school teachers in their life
trajectories to becoming professional teachers. Each transition involves changes of
the teaching-learning culture and in the relevant type of mathematics. The chal-
lenges of these bi-directional transitions are what Felix Klein (1908/1939) referred
to as a “double discontinuity.”

The first discontinuity deals with the well-known problems that students face as
they enter university, a main theme in research on university mathematics education
(e.g., Gueudet 2008). The second discontinuity deals with those who return to
school as a teacher and the transformation of disciplinary mathematics at university
to school mathematics. In general, these discontinuities can be traced back to the
difference between the mathematical paradigms prevalent at school and university.
Even nowadays, the two discontinuities still seem to persist, and future teachers
often believe that the topics of university mathematics simply do not fit the
demands of their later profession in school. Winslew and Grenbak (2014) distin-
guished three dimensions of Klein’s double discontinuity: the institutional context
(of university vs. school), the difference in the subject’s role within the institution (a
student in university or school vs. a teacher of school mathematics), and the dif-
ference in mathematical content (scientific vs. elementary). Bosch (this volume,
Sect. 4) discusses aspects of the institutional context for the forward transition from
secondary to university. This section aims to provide an overview of the current
state of the art in the context of teacher education from an international perspective
in order to provide a deeper understanding of double discontinuity phenomena, with
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a special focus on mathematical knowledge. Specifically, we maintain that tax-
onomies of mathematical knowledge for teaching constitute attempts to locate,
characterize, and say exactly why there is a discontinuity between university
learning and teachers’ experience returning to schools.

3.1 Theorizing Teacher Knowledge

Understanding teacher knowledge of mathematics and its impact on teaching and
learning is difficult and has become increasingly difficult as the complexity and
dynamic nature of knowledge has become recognized. The theoretical constructs of
teacher knowledge provide lenses through which one can examine research about
learning to teach in the context of the bi-directional transition between university
and school. At a fundamental level, this understanding concerns the production of a
set of criteria for what constitutes the professional knowledge of mathematics
teachers and what constitutes the essential features of mathematics teacher educa-
tion curricula. In this respect, Shulman’s (1986) seminal work on teacher knowl-
edge provides a wuseful guide on how to expand previous content
knowledge-oriented teacher education curricula. He proposed a framework for
analyzing teachers’ knowledge that distinguished different categories of knowledge.
Among these categories, Shulman emphasized pedagogical content knowledge,
“subject matter knowledge for teaching” (Shulman 1986, p. 9), as being important
because it identifies the distinctive ways of understanding mathematics for the
purpose of teaching. The distinction between general pedagogical knowledge (PK),
content knowledge (CK), and pedagogical content knowledge (PCK) has proved
practically useful and has been employed in numerous studies (e.g., Borko 2004;
Blomeke et al. 2011). However, the assessment of teachers’ CK and PCK requires a
theory of the subject in question and of its knowledge. There is broad consensus
that these two components of professional knowledge cannot simply be equated
with a command of the material taught. Nevertheless, theory-driven approaches to
the assessment of teachers’ CK and PCK remain rare.

Some conceptions have, however, been developed and empirically tested for the
subject of mathematics. Ball et al. (2005, 2009) and Hill et al. (2008) have
developed a theoretical framework and empirical measures to assess professional
content knowledge that mathematics teachers need in order to teach effectively.
Their frame of reference is not university-level knowledge but the mathematics
behind the institutionalized curriculum of elementary school mathematics. On this
basis, Ball et al. (2005) and Hill et al. (2004) distinguish the everyday mathematical
knowledge that every educated adult should have (common knowledge of content)
from the specialist knowledge acquired through professional training and classroom
experience (specialized knowledge of content). They further identify a third
dimension of mathematical knowledge, which links mathematical content with
student cognition (including misconceptions and pedagogical strategies), namely,
knowledge of students’ apprehension and learning of mathematics. At the same
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time, they distinguish three content areas of elementary mathematics: numbers and
operations, patterns and functions, and algebra. Ball’s group has used a matrix of
these content areas and knowledge dimensions as a theoretical structure for the
development of test items, with items being allocated to the cells of the matrix on
the basis of prior theoretical considerations. On the basis of these analyses, they
developed an overall test based on item response theory assessing elementary
school teachers’ mathematical knowledge for teaching (MKT). In doing so, they
refined the notion of PCK to introduce MKT, which they defined as a specialized
knowledge of mathematics situated in the context of teaching. MKT consists of four
domains of mathematical knowledge: common content knowledge (CCK), spe-
cialized content knowledge (SCK), knowledge of content and students (KCS), and
knowledge of content and teaching (KCT). The four domains of MKT can be
broadly categorized into subject matter knowledge (i.e., CCK and SCK) and ped-
agogical content knowledge (i.e., KCS and KCT) (Hill et al. 2008). More impor-
tantly, MKT highlights the idea that the knowledge required for teaching is
determined by the practice of teaching itself. The Teacher Education and
Development Study: Learning to Teach Mathematics (TEDS-M) provided the
opportunity to examine the outcomes of teacher education in terms of teacher
knowledge and teacher beliefs across countries. The TEDS-M concept of teacher
education outcomes is based on the notion of “professional competence” (Blomeke
et al. 2014). Competence is defined as those latent dispositions that enable pro-
fessionals to master their job-related tasks, Teacher knowledge as one facet of
competence was conceptualized in TEDS-M (for further details, see Blomeke et al.
2014). There are many studies of teachers’ mathematical knowledge for teaching
mathematics, mostly at pre-high school levels. A growing number of articles
address high school teachers’ and university instructors’ MKT (e.g., Boston 2012;
Herbst and Kosko 2014; Lai and Weber 2013; Lewis and Blunk 2012), but the vast
majority of studies are at the elementary level.

A major criticism of research on teachers’ MKT is that knowledge, the central
construct of MKT, is rarely defined and is therefore operationalized inconsistently
across investigations (Thompson 2013). Mason and Spence (1999) introduced these
distinctions: knowing-to (act in the moment), knowing-that, knowing-how, and
knowing-why (an action is appropriate), arguing that knowing-to and knowing-why
are the most important forms of knowing for teachers. Thompson (2015) argued
that a focus on teachers’ meanings is in line with Mason and Spence’s argument
and that a focus on teachers’ mathematical meanings is profitable for understanding
their instructional decisions, both in planning and in moments of teaching. His
research group developed the Mathematical Meaning for Teaching Secondary
Mathematics, a diagnostic instrument designed to give insights into the mathe-
matical meanings with which teachers operate.

Although the previous studies showed the importance of the assessed knowledge
components for teaching quality and student learning, they could not answer
important questions concerning the structure of mathematics teachers’ knowledge.
In particular, the relation between CK and PCK is still unclear: Although these
components seem clearly separable from a theoretical point of view, most studies
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found that CK and PCK are highly correlated and sometimes even hard to separate
(Blomeke et al. 2014). However, it is not clear if this strong correlation is caused by
the underlying conceptualizations or the chosen operationalization. Although CK is
often described as knowledge of disciplinary mathematics acquired through formal
teacher education, most operationalization is predominantly focused on mathe-
matical content as it is found in schools. This means in particular that the corre-
sponding tests are not appropriate to measure learning progress in pre-service
teacher education. Similarly, PCK is described as a kind of knowledge specific to
teaching mathematics, but existing test items are often solvable by analytical
mathematical competence that has nothing obviously to do with learning or
teaching. In this context, Loch et al. (2015) suggested a three-dimensional structure
of pre-service mathematics teachers’ domain-specific knowledge. In particular, they
conceptualized school-related content knowledge (SRCK) as applying academic
mathematical knowledge in the context of school mathematics for teaching pur-
poses, which turned out to be separable from CK and was found to be distin-
guishable from PCK. SRCK may be interpreted as a link between CK and PCK.
Though CK, PCK, MKT, and SRCK are directly addressed in courses in university
teacher education programs or in other teacher education institutes, the develop-
ment of teachers’ professional knowledge and the relationship between all these
elements of teachers’ knowledge and teachers’ teaching actions in the class are still
not comprehensively understood.

3.2 Developments in Teacher Preparation

There have been calls for rethinking mathematical education for future teachers in
many countries (e.g., CBMS 2012; Kwon et al. 2012). Criticism about the ineffi-
ciency of teacher education is common in the literature. Buchholtz et al.’s evalu-
ation study (2013) of teachers’ knowledge of elementary mathematics from an
advanced standpoint indicated that during their university education many future
mathematics teachers do not succeed in acquiring the deeper mathematical
knowledge needed to dismantle school-related misconceptions and solve elemen-
tary mathematical problems competently. Teacher education programs at univer-
sities fail to provide student teachers with adequate and in-depth learning
opportunities for CK and PCK.

Likewise, teacher education curricula are continually criticized as being insuf-
ficient to develop professionalism in pre-service teachers. One criticism is that there
is no connection between the teacher education curriculum and actual teaching
practice. Some argue that there has been arbitrariness in teacher education pro-
grams, often being more like a master craftsman’s diploma than a theory-guided
education in teaching (e.g., Blomeke et al. 2011). Another criticism has been that
the mathematics education curriculum for future secondary mathematics teachers is
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not essentially different from the curriculum for mathematics majors, as shown in
the analysis of a current mathematics teacher education curriculum (Kwon et al.
2012).

In order to overcome these criticisms of teacher preparation, there have been
several approaches to bridging the gap between university mathematics and school
mathematics. Klein (1933) proposed a course on school mathematics from a higher
level that addresses the second discontinuity, i.e., the transition from university to
school. Klein’s proposal for such a course implies that students already have rather
advanced mathematics knowledge and can operate with this knowledge in a flexible
and mathematically competent way; in particular, the proposal implies that they do
not only know facts and techniques but possess adequate, networked, and critical
ideas for validating and evaluating the significance of those ideas and techniques.
Nowadays, an average student in an upper secondary teacher program may not
show this expertise even after finishing their mathematics coursework. This may be
the main reason that courses following Klein’s recommendations are seldom pro-
posed today. Instead, courses aimed at supporting student teachers in connecting
university and school mathematics (typically run in the first or second semester)
focus directly and explicitly on connecting the mathematics experienced in these
different environments (Winslow and Grenbak 2014). There are two principal
approaches to interconnecting these different kind of mathematics, which may be
mixed: one that adds aspects of the new university discourse slowly and
step-by-step and one that develops university-level problems starting with school
mathematics.

Another approach is to develop courses on explicitly integrating CK with PCK
in mathematics and the didactics of mathematics (Krauss et al. 2013). These courses
provide students the opportunity to reflect on school-relevant mathematical content
and thus to construct their individual network of content, pedagogical content, and
general pedagogical knowledge. Kaiser and Buchholtz (2014) developed ideas for a
program in mathematics teacher education to overcome the gap between university
and school mathematics. Their project aimed particularly at first semester student
teachers, and it offered mathematics in a way intended to address the first of Klein’s
discontinuities.

3.3 Final Comments

In sum, Klein’s notion of a double discontinuity between university mathematics
and school mathematics has proved to be extremely fruitful and can be seen, in both
theoretical and practical respects, to constitute the core of mathematics teacher
education. It remains an open question as to how much understanding the “ele-
mentary mathematics from an advanced standpoint” in the double discontinuity
phenomenon can be achieved in teacher education, and to what extent it can solve
the problems of discontinuity.
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4 Transitions Between Teaching Institutions

4.1 Changes Between Educational Institutions at Different
Levels of Determination

During their studies, students experience many transitions of educational institu-
tion: from pre-school to primary school, from primary to secondary school,
sometimes from lower to higher secondary school or technical college, from higher
secondary to university, from professional school or university to the workplace,
etc. These transitions mean changes in many senses. First of all, and with some
exceptions, a spatial one: another building, another school center, and sometimes
another city and way of living. Transitions also include changes in the general
functioning of the educational institution: number and types of teachers, number
and types of students, time schedules, classroom equipment, etc. They can also
affect pedagogic approach: relationships between teachers and students, kind of
resources used, how learning goals and topics are specified and organized, etc.
Finally, changes may occur in the kind of knowledge and know-how that is
taught, as well as in the specific didactic activities related to this knowledge and
know-how.

The study of the discontinuities found in the transition between educational
institutions can be organized according to different levels of specificity, depending
whether they affect the core learning and teaching content, which we will call the
didactic level; whether they affect the organization of topics, which we will call the
pedagogic level; or whether they affect the more global organization of learning and
teaching activities in the educational institution, which we will call the school level,
giving to school a broad sense of “place for instruction.” In this respect, an inter-
esting methodological tool proposed by Chevallard (2002) and also used in com-
parative studies (Artigue and Winslew 2010) is the scale of levels of didactic
codetermination (Fig. 2). The scale indicates that the way teaching and learning
processes are organized determines, and is in turn determined by, conditions and
constraints located at different levels of specificity. For instance, a more axiomatic
or deductive organization of knowledge will favor and be reinforced by more
“transmissive” pedagogies, which in turn will favor and be reinforced by traditional
school organizations (one-hour lectures with one teacher and a large group of
students). On the other hand, a change at the school level (for instance, to turn
instruction into a more inquiry-based activity) needs changes not only at the ped-
agogical level (responsibilities assumed by the teacher and the students, for
instance) but also at the more specific levels—how the different bodies of knowl-
edge should be organized and presented.

Recognizing the various levels of the scale will help organize research findings
on transitions found in the literature about mathematics education. We focus on the
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Fig. 2 Scale of levels of

didactic codetermination 9. Civilisation e.g.. “Western culture™
(from Artigue and Winslow State, ministry, region
2010, p. 52) 8. Society PRSI oL
7. School Teaching institution
6. Pedagogy Local teaching principles
5. Discipline ¢.g.. Mathematics
e
L. Subject ¢.g.. Quadratics

primary-secondary and secondary-university transitions and which levels are
questioned with respect to their desirable properties, which ones taken for granted,
and how this depends on the kind of transition involved.

We will here discuss transitions to consider a change at the level of school and in
relation to the teaching and learning of a specific discipline or field of knowledge
(mathematics, in our case). It is important to take into account that the transition
happens between institutions maintaining a certain ordered relationship, meaning
that the first one is partially aiming at preparing the passage to the other: in many
countries primary school prepares students to enter secondary school, secondary
school to a technical college or university, and technical college and university to
the workplace. A certain “grading” also exists with regards to the mathematics (or
other field of knowledge) involved in the global educational process: many uni-
versity teachers are researchers in mathematics or related fields of knowledge
(engineering, sciences, etc.), closer to the production, development, and dissemi-
nation of mathematics than their colleagues at secondary level; these, in turn, have
people who have usually taken more advanced mathematics studies than primary
school teachers. It appears that these different positions can explain some asym-
metry in the factors taken into account by researchers to explain the gaps found in
the transitions.

We will now briefly consider some of the main research findings in the study of
difficulties, discontinuities, or gaps found in the transition between, on the one
hand, primary and secondary schools (P-S) and, on the other, between secondary
school and university (S-U). We will try to locate the relevant phenomena at the
different levels of the scale of didactic codetermination, in order to identify different
patterns used in the treatment of P-S and S-U transitions. Even if most of the
research in the literature proposes ways to bridge or smooth the discontinuities
between schools, it is also important to notice that discontinuities are inherent to
educational processes. Because their aim is to make students’ knowledge and
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know-how evolve, the receiving schools need to highlight the changes made by
exposing the differences with the feeding schools, a phenomenon that is especially
visible at the frontier between institutions, where the transition takes place. Clark
and Lovric (2008) propose to approach this issue in terms of “rites of passage,” that
is, the events and activities that assist the person undergoing it to achieve necessary
changes in order to pass from one “community” (or school) to another. Even if
transitions and the discontinuities they suppose can be approached as crucial (and
not necessarily negative) crises—we do not have to forget that they can involve
critical gains as well as losses—they are often the black spot where educational
trajectories are interrupted, with special damage to the weakest social groups.

4.2 The Primary-Secondary Transition

When we look at investigations that approach the transition between primary to
secondary compulsory education (for instance, Attard 2010) as well as pilot ini-
tiatives carried out in various countries or regions (see for instance Bryan and
Treanor 2007 for the Scottish case), we find a common agreement about the
influence, not always negative, of the following changes. At the school level, we
pass from a main generalist teacher to various specialist teachers per class, with less
fluent interaction between pupils and teachers, tighter time schedules, less relevant
out-of-school activities, and a smaller intervention of parents in school events. At
the level of pedagogy, hands-on materials and concrete activities are left behind,
learning activities become more usually based in written activities and more
transmission oriented, and less place is left for collective work and multidisciplinary
activities.

When considering the level of the discipline, and with respect to the S-U tran-
sition, there are not many investigations focusing on the more specific levels, those
related to a mathematical domain or theme. The main exception is research on early
algebra (Carraher and Schliemann 2014). As a matter of fact, algebra has long been
the “transition topic” par excellence, marking the frontier between elementary and
secondary education. We can thus interpret research on early algebra as the first
attempt to blur the frontier by introducing a properly secondary content at primary
school. How this might affect (and be affected by) other mathematical domains, for
instance measure and quantities, statistics, or geometry, iS an open question.
Geometry is the other domain that is approached in the P-S transition (see, for
instance, Sdrolias and Triandafillidis 2008). Research on this area shows the impact
of curriculum discontinuities on students’ and teachers’ practices.

In fact, many of the proposals to smooth the transition or to increase the
engagement in mathematics of students entering secondary schools are mainly
based on strengthening the relationships between primary and secondary teachers,
sharing teaching activities carried out in both institutions, and, particularly, pro-
moting more open activities during the first years of secondary school. Apart from
early algebra, we do not find proposals to modify the curriculum (discipline level)
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or at least some areas or domains that are usually studied at both the end of primary
school and at lower secondary. In summary, students’ disengagement or adaptation
difficulties are mainly attributed to pedagogical and school characteristics of sec-
ondary schools, beyond the discipline level. Therefore, the proposals to bridge the
gap tend to concern this second level of instruction by questioning its pedagogical
practices and trying to link them to those of primary school. Pressures for change
always go in the direction of bringing lower secondary education closer to ele-
mentary education.

In many countries, compulsory education has been extended to the age of 15 or
16, so the passage from primary to secondary school is no longer elective.
Generally, the expansion has been accomplished by combining a slight variation of
the old non-compulsory education with basic education. Some curricular changes
have also been made, but the general structure of content is not really modified.
Therefore, the P-S transition remains a vestige of the time when only a minority of
pupils pursued their studies while the large majority went directly to the workplace
or, at most, to a vocational school. In some countries the primary level of studies is
also called basic or elementary education since it involves the necessary preparation
for any citizen to live in society. However, this idea has not necessarily been
extended to compulsory secondary education, which remains in an uncomfortable
position between education for all and preparation for the post-compulsory edu-
cation of a few.

4.3 The Secondary-University Transition

The transition between secondary and university education has attracted the
attention of many researchers during the last 20 years, as shown in Gueudet (2008)
and Thomas et al. (2015). Again we will use the scale of levels of codetermination
to present the main results and, more concretely, the phenomena observed as well as
the “blind spots” that remain unquestioned:

At the school level, the passage from secondary school to university is generally
marked by an increase in class size, having more than one teacher per subject,
teachers that are also researchers with more time to prepare teaching but less to
cooperate on pedagogical issues. Universities also provide richer equipment in
written and technological resources that students are supposed to use more freely.
At the pedagogical level, students find an increase in autonomy, a more
transmission-based pedagogy requiring a more proactive use of resources (several
books, articles, and notes in contrast to a unique textbook), while lecturers have
more freedom in the organization of content and a greater variety in the types of
assessments.

When we consider the level of the discipline, investigations characterize uni-
versity mathematics as being more focused on the theoretical organization of
mathematical content, the foundations of knowledge, and presenting proofs and
theorems as tools to approach problems. In contrast, secondary mathematics
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stresses the production of results and the practical aspect of mathematical activities,
assigning a more “decorative” role to axioms, definitions, and proofs. Bosch et al.
(2004) talk about “incompleteness” of secondary school mathematics in the sense
that it appears as a set of relatively isolated types of tasks with usually a single
technique to solve them, the validation of which is more based on evidence than a
formal construction. At the university, we can also speak of incompleteness in
another sense: a lot of theoretical results are introduced without much connection to
the problems and tasks that motivate them. The need for new knowledge is rarely
associated with the content and practices of secondary school mathematics through,
for instance, the consideration of mathematical phenomena that may require formal
justification. Much research on the S-U transition approaches specific mathematical
domains or themes. Calculus (functions, limits, and derivatives) is one of the most
studied domains. Like arithmetic and algebra in the primary-secondary transition,
the passage from calculus to analysis is paradigmatic of the entrance to “higher
mathematics.” Linear algebra and geometry are other domains that are critically
involved in the transition, where the evidence based on geometrical facts in S needs
to become formal proof in U.

Surprisingly, some of the phenomena pointed out as difficulties in the S-U
transition appear in the same sense in the case of the P-S transition: more interaction
between teacher and students in the lower level than in the new one, increase in the
students’ autonomy, passage from more active to more transmissive pedagogies,
and stronger separation between disciplines (in P-S) or between domains within a
discipline (in S-U). However, the treatment of these difficulties is clearly asym-
metric: in the P-S transition it is the (higher) secondary school practice that requires
change, while students’ difficulties in the passage from S to U are also proposed to
be overcome by changes in S (the lower level), as if the teaching and mathematical
organizations at the university were unquestionable and thus untouchable. As an
example, Hong et al. (2009) discuss secondary teachers’ lack of knowledge of how
calculus is taught at the tertiary level, without any inquiry or questioning about the
lecturers’ knowledge (and concern) about what is done at secondary level.

Research on the S-U transition has also focused on “bridging courses” organized
in various universities to smooth the gap between upper-secondary school and
university (Kayander and Lovric 2005; Biehler et al. 2011). Some of these studies
(Serrano et al. 2007; Sierpinska et al. 2008) show how the bridging courses can
actually increase the gap between institutions instead of facilitating the entrance to
the new culture and its ways of working. This is the case for some courses
proposing intensive work based on completing the required basic knowledge, thus
reinforcing and rigidifying the old relationships to the old knowledge. In a sense,
the bridging courses appear as a coup de force of the tertiary institution to clearly
establish the entrance requirements of the new students, without any attempt to
adapt its own practices to the newcomers and the feeding institutions. As indicated
by Clark and Lovric (2008), they are not good devices for the “rite of passage”
since they are rarely offered to all the students and are ineffective in giving them
tools and confidence to approach the crisis better prepared.
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4.4 Questions to Be Pursued

It is important to stress that, even if much research on transitions point to phe-
nomena related to the general levels of codetermination (pedagogy, school, and
society), approaching the specific levels is unavoidable since it is through the
mathematical content that student-teacher relationships are built and teaching and
learning activities concretized. In this respect, research on transitions needs to focus
on broad domains of mathematics, covering more than one educational level. This
enlarged unit of analysis facilitates raising questions that touch on the rationale of
mathematical topics (what they are for), the reasons they should be taught, and even
their delimitation (what they are). In this respect, the position of the researcher
approaching transitions between teaching institutions appears to be a critical issue.
What institutional point of view is assumed and which one is contested? Regarding
mathematics (specific levels) we need to be cautious with the university perspective
since it tends to appear as the most legitimate to secondary and primary mathe-
matics teachers, thus reinforcing the propaedeutic function of the first levels of
education (to facilitate the entrance to university mathematics) over their role in
preparing students for citizenship.

5 Transitions Between In- and Out-of-School
Mathematics

5.1 Introduction

For a very long time, mathematics educators and researchers in mathematics edu-
cation have considered mathematics as universal and culture-free knowledge and
have focused on the classroom as the primary—or even sole—setting in which
mathematics learning takes place. Since the 1980s, numerous studies have docu-
mented that much mathematical knowledge is practiced, acquired, and transmitted
outside school (Nunes 1992). This realization has brought new issues and questions
about the transitions between these out-of-school mathematical practices and school
mathematics into the research and practice of mathematics education.

Since 2000, this field of research on the existence of and transitions between
various cultures of mathematics education has further evolved from “ethnomathe-
matics and everyday cognition” (Nunes 1992) to “a broadening of the field, clari-
fication and evolution of definitions, recognition of the complexity of the constructs
and issues, and inclusion of social, critical, and political dimensions as well as those
from cultural psychology, involving valorization, identity, and agency” (Presmeg
2007, p. 436).
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This contribution provides a brief overview of some main themes, questions,
findings, and recommendations relating to the multifold transitions between in- and
out-of-school mathematics, with special attention to learners of early and elemen-
tary mathematics. We start by reviewing the state of the art in research on the
transition from prior-to-school to school mathematics. Then we look at the research
on the transitions from out-of-school to school mathematics (and vice versa).1

5.2 The Transition from Prior-to-School to School
Mathematics

The transition from prior-to-school to school mathematics may be studied from a
cognitive-developmental or a socio-cultural perspective.

Inspired by developments in the field of neuroscience (e.g., Butterworth 2015),
the past two decades have witnessed the emergence of a very productive and
influential line of cognitive research on children’s early number sense, its devel-
opment, and its relation to school mathematics. Cross-sectional and longitudinal
studies have demonstrated that various core elements of children’s early mathe-
matical ability—such as their numerical magnitude understanding, their subitizing
and counting skills, and their ability to transcode a number from one representation
to another—are positively related to concurrent and future mathematics achievement
(Torbeyns et al. 2015). More recent research is yielding increasing evidence for
significant relations also with (1) young children’s abilities related to mathematical
relations, patterns, and structures and (2) their tendency to spontaneously attend to
numerosities and to mathematical relations, patterns, and structures in their envi-
ronment (Torbeyns et al. 2015). Furthermore, researchers have tried to enhance
children’s transition from informal to formal school mathematics by means of
(computer-based) intervention programs aimed at enhancing one or more early
numerical competencies—before or in the transition to formal mathematical
instruction (Butterworth 2015; Torbeyns et al. 2015). While most of these inter-
ventions resulted in positive effects on the development of the trained early math-
ematical skills, evidence for positive transfer to mathematics learning more broadly
is much less. The most convincing results have been obtained through long-lasting
and broadly conceived intervention programs (e.g., Clements and Sarama 2014).

In a complementary line, researchers approach the transition from prior-to-school
to school mathematics from a broader socio-cultural perspective wherein it is pri-
marily conceived as a set of processes whereby individuals “cross borders” from one
cultural or more specifically educational context or community to another. An
overview of this perspective is provided by Perry et al. (2015), which points to the
following issues.

"While the first kind of transition may be considered a non-reversible process, the second kind
may, in contrast, be construed as an interaction—a “continuous transition” between two contexts
(see Sect. 1).
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First, prior to starting learning mathematics in school, children already engage in
a wide range of early mathematical experiences and develop many sophisticated
and powerful early mathematical ideas. While some of these experiences are
explicitly linked to school mathematics, many others are less salient or more
implicit and thus often go unrecognized as contributing to the mastery of mathe-
matical skills by parents and teachers. Mathematical ideas that have already been
developed may also not be revealed by traditional (collectively administered and
worksheet-based) forms of assessment but require appropriate conversational
interviewing techniques and meaningful tasks to elicit them.

Second, this research has provided ample evidence of the enormous variation in
the frequency and the quality of exposure to early mathematical activities and
experiences—both within and between cultures—which has shown to be predic-
tively related to children’s later mathematics achievement at school. For instance,
using a large and representative sample of kindergartners from the United States,
Galindo and Sheldon (2012) found that, on average, family involvement at school
and parents’ educational expectations were correlated with gains in mathematics
achievement in kindergarten. Interestingly, this study also revealed that schools’
efforts to communicate with and engage families predicted greater family
involvement in school and, consequently, higher levels of student achievement in
mathematics at the end of kindergarten. To give an example at the intercultural
level, the Chinese cultural aspiration for academic success and the belief about the
importance of an early start is generally considered an important explanatory factor
for the excellent mathematical achievement scores of Chinese learners in interna-
tional comparisons such as TIMSS.

Third, several qualitative studies have documented the serious transition prob-
lems that may arise when families, pre-school educators, and elementary school
teachers are not working together to support the mathematics learning of children
making the transition to school mathematics.

5.3 Transitions from Qut-of-School to School Mathematics
(and Vice Versa)

During the past decades many studies have looked at the transition from
out-of-school to school mathematics (and vice versa). Three main themes of this
literature are: (1) exploration of out-of-school mathematical practices and cultures
(in comparison to mathematics learnt at school), (2) difficulties in the transition
between out-of-school and school mathematics, and (3) attempts to facilitate these
transitions.

As stated above, since the early works on ethnomathematics and everyday
mathematics from the 1980s (Nunes 1992), researchers have continued to explore
and describe forms of informal mathematics that are embedded in everyday cultural
activities (Nunes 1992; Presmeg 2007). A first and very important perspective on
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these issues comes from research that has analyzed the forms and functions of
mathematical activity in remote, indigenous, non-Western cultures where no sys-
tematic transmission in school prevails. Illustrative for this perspective is are Saxe’s
(2015) in-depth analyses of the Oksapmin numeration system based on body parts
and of how certain changing socio-economic conditions (such as increased par-
ticipation in economic exchanges involving currency) lead to important adaptations
in that system. A second perspective involves analyses of informal mathematical
practices that are embedded in specific out-of-school activities and contexts that
may be contrasted with “school mathematics,” as in the famous pioneering study of
Brazilian street venders (see Nunes 1992). Continuing efforts have further con-
tributed to our insight into the forms and social functions of mathematical activity
demonstrated by people in varied out-of-school or, more specifically, work contexts
such as carpet laying, interior design, retailing, restaurant management, dietetics,
newspaper selling, nursing, banking, and architecture. These everyday math studies
show that these forms and functions of mathematical activity are quite different
from those of school mathematics, as they are “embodied in expressive forms and
bodily modalities, distributed to other people and technologies, and are embedded
in the language of the locals” (Reed 2013, p. 75).

While many of these analyses have focused on how people perform certain
tasks, others have focused more on the mathematics learning processes in those
out-of-school environments, showing that mathematics learning is certainly not
limited to acquisition of the mathematical knowledge and skills passed down by
mathematics teachers to individuals via school, but that it occurs as well during
participation in cultural practices as people attempt to accomplish pragmatic goals.
More specifically, these studies contributed to the view of mathematics learning in
many of these out-of-school environments as “a centripetal movement of the
apprentice from the periphery to the center of practice, under the guidance of those
who are already masters in that practice” (Presmeg 2007, p. 444).

Many of these analyses of out-of-school mathematical practices and learning
environments involve more or less explicit contrasts between doing and learning
mathematics in these out-of-school contexts versus formal school contexts, glam-
orizing the former as more “authentic,” “meaningful,” “flexible,” and/or “effective”
than the latter. However, during the past decades, better understanding of the
similarities and differences between these different contexts of mathematical
(learning) practices has increasingly discouraged researchers and educators from
making caricature-like characterizations of these different contexts of mathematical
practices and, consequently, oversimplified recommendations for implementing
features of these informal mathematical practices into mathematics classroom
contexts.

Second, researchers have analyzed people’s use of their mathematical knowl-
edge and skills acquired in one context when functioning in the other. This analysis
can be done in both directions.

As far as the transition from school to out-of-school mathematics is concerned,
many researchers have documented—for elementary school up to university—
(traditionally schooled) learners’ difficulties in spontaneously and efficiently
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applying their formal mathematical knowledge and skills learned at school in rel-
evant out-of-school contexts (e.g., C&TG at Vanderbilt 1997).

Rather than looking at school mathematics’ lack of transfer to real life and work
situations, various other lines of research have inversely focused on how real-world
knowledge does—or rather does not—permeate into school mathematics. One such
line of research has documented learners’ reluctance or inability to make productive
use of their experiential knowledge and realistic considerations about the real world
situation described in the problem when solving word problems in the mathematics
classroom. As shown by this research, the practice and culture of the word
problem-solving lessons at school develop the belief in learners that there is a huge
gap between solving a word problem at school and solving a comparable problem
in the real world outside school, making it counterproductive to rely on one’s
experiential knowledge about the problem situation (Verschaffel et al. 2009).
Whereas the above research is concerned with learners’ reluctance to allow relevant
real-world knowledge and sense-making into their word problem-solving endeavors
at school, other research has analyzed the restrictions of people’s everyday math-
ematical knowledge and skills vis-a-vis academic mathematical tasks (such as
mathematical word problems). For instance, Nunes’ (1992) analyzed unschooled
adults’ ability to solve indirect word problems (i.e., problems that needed the
application of the mathematical inverse principle, e.g.,a+ b =csoc — b = a) and
showed how difficult it was for them to solve such problems based on their
everyday mathematical knowledge and skills. These difficulties were explained in
terms of the highly contextualized nature of the mathematical knowledge and skills
acquired by these adults in informal learning environments, whereas mathematical
competencies acquired at school are assumed to be of a more general and abstract
nature. This is not to say that the situated mathematical knowledge and skills
acquired out of school have no generalizability at all; they do, but it typically
remains restricted to their specific context of application (e.g., they do not transfer
beyond the carpenter’s working context).

Third, researchers have looked—at different levels of specificity and again in
both directions—for ways to bridge the gap between in- and out-of-school
mathematics.

At a general level, many innovative approaches to the teaching of elementary
and secondary school mathematics, have—as one of their major design principles—
striven to bring out-of-school problems, experiences, and practices into the arena of
school mathematics. Probably one of the most well-known examples is the Realistic
Mathematics Education approach, which starts from the basic idea that, rather than
having learners first acquire the formal system of mathematics with the applications
to come afterwards, mathematical knowledge should be gathered and developed
starting from the exploration and study of phenomena in the real world (Treffers
1987). In the past decades, many other scholars have developed and implemented
similar educational approaches wherein mathematical concepts and skills are
developed starting from a real or imaginable out-of-school situation and linking it in
a number of steps with formal school mathematics (Presmeg 2007).
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At a more specific level, particularly in the domain of mathematical modeling,
many researchers have documented various kinds of efforts—from the first years of
elementary school to the university level—aimed at making mathematical mod-
elling less scholastic and more realistic. These studies vary from basic attempts to
increase the authenticity of the formulation and presentation of (standard) word
problems to more drastic efforts to replace these word problems with challenging
real-world mathematical modeling problems presented and embedded in rich and
multi-componential technological environments (e.g., C&TG at Vanderbilt 1997).
While several of these studies have reported successes in terms of learner outcomes,
they also point to many difficulties—mathematical, pedagogical and managerial—
that occur when teachers try to implement these novel modelling tasks and their
accompanying pedagogies in the mathematics classroom (Verschaffel et al. 2009).

Finally, as in the above-mentioned studies with young children in the transition
from prior-to-school to school mathematics, other researchers have tried to
strengthen—from a socio-cultural rather than a cognitive-psychological perspec-
tive—the transitional links between learners’” home and school culture. They do so by
setting up productive forms of home-school collaboration with a view to help parents
of learners—typically learners with a minority or immigration background—to
support their children in the transition to learning mathematics in a school culture that
is new for them. Prominent examples are the Home-School Knowledge Exchange
Project by Hughes and Pollard (2006) in the United Kingdom and the BRIDGE:
Linking Home and School project by Civil and Andrade (2002) in the United States.

In general, the transition between in- and out-of-school mathematics continues to
be an issue of great theoretical and practical importance, even after learners have
made the important cognitive and cultural step from preschool to school mathe-
matics. This transition issue is also approached from different and complementary
theoretical angles—cognitive-psychological as well as socio-cultural—in both
directions, and at various levels of specificity. The extremely dichotomous
descriptions of the features and merits of in- and out-of-school (learning) practices
have been replaced by more nuanced and complex descriptions and analyses of
these different kinds of mathematical practices (and the various kinds of interme-
diate mathematical practices) and of the various types of transitions (in both
directions) between them.

6 Summary and Looking Ahead

The five chapters of this survey have only sketched some essential aspects of the
very rich body of international research in mathematics education addressing
transitions. The reader interested will find below a complete references list and
some selected texts for further reading.

How should we proceed to further develop the research reviewed in our syn-
thesis?
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o The need for combining approaches

Our aim was to order the discussion of the body of relevant literature by separating
the historical, cognitive, epistemological, and socio-cultural approaches. At the end
of this survey, it appears clearly that most of the research engages several of these
approaches. Our survey has evidenced the complementarity of the different views on
transition, particularly the cognitive and socio-cultural views. Studying the complex
evolutions taking place during educational transitions probably requires drawing on
several theoretical perspectives, offering different lenses and also certainly diverse
associated methods. Analyses of students’ discourse, comparison of mathematical
texts provided by two different institutions, specific interviews with young children,
didactical engineering, etc., have been used and sometimes combined by the authors
of the works we cited. One of the challenges for future research on transition is to
build methods that permit not only the analysis of the initial and the final state but
also allow grasping the process of change itself in all its complexity in order to
provide students and teachers’ resources that foster this process.

e From gaps and obstacles to commonalities and opportunities

The research discussed in the state-of-the-art synthesis above has mainly addressed
discontinuities and difficulties attached to transitions, such as epistemological
obstacles hindering conceptual change, gaps between out-of-school and in-school
mathematics, and chasms between institutions. In more recent works we see some
interesting evolution that can suggest directions for further research. These works
propose more balanced analyses where transition is not depicted as a route paved with
obstacles only, but as a complex process where difficulties are also associated with
opportunities. Concerning conceptual change, we propose that the transition from
naive to expert knowledge can correspond to a variety of paths, which must be
searched out and explored. For teachers, subject matter knowledge and pedagogical
content knowledge are not independent. About institutional transitions, we observed
that not only differences but also common features appear across transitions in
institutions and that these common features are likely to be very informative about
school mathematics in particular countries. The search for common elements, or a
continuous path from out-of-school to school mathematics, is likely made more
complex by the variety of possible contexts: family mathematics, which changes from
one family to another; mathematics for nursing; mathematics for playing music, etc.,
are all different. Nevertheless communication between the actors in the different
contexts can help to identify elements from which coherent learning paths can be built.

e Research results and interventions on transitions

Amongst the research results about transition, analyses of the situation in ordinary
classes can usefully inform teachers and other educational agents at all school
levels—including families. A first form of educational intervention drawing on
research can be to address this important topic in teacher education and in journals
for non-specialists.
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Research on transitions has also proposed teaching devices: specific mathe-
matical situations likely to foster conceptual change, bridging courses between
different institutions, teacher training programs where university mathematics is
used to build coherent teaching for secondary school, and courses about modeling
where the “real world” and mathematics are connected.

For transitions between different contexts, developing communities where
teachers (or other actors) can communicate and work together to elaborate a
common vision of the teaching of mathematics (Barton et al. 2010) is a promising
direction. In fact, for all kinds of transitions, the complexity of the phenomena
taking place suggests that designing possible interventions requires a collective
effort and collaborations among the members of all the sub-communities of the
ICME.
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This volume contains up-to-date descriptions of conceptual change research, including chapters by
many of the protagonists mentioned in Chapter 2.
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