Skip to main content

Microbiota and Chronic Inflammation as Targets for Colorectal Cancer Prevention

  • Chapter
  • First Online:
Book cover Molecular Targets and Strategies in Cancer Prevention

Abstract

Recent findings have disclosed the complexity of large bowel microbiota which includes bacteria, viruses and unicellular eukaryotes. Bacteria represents 90 % of human gut microbiota.

A relevant percentage of colorectal cancers is considered to depend from bowel microbes. An additional recent achievement has been the finding that chronic inflammation has a promoting role in the onset of colorectal cancer (CRC), as well as in progression and resistance to treatment. An emerging concept is that diet, microbiota and inflammation have a complex interplay. All this novel information has indeed produced a paradigm change in our understanding the pathobiology of CRC. It is our opinion that personalized or population-based CRC prevention strategies can be derived by the information gained by the integrative genomics approaches based on modern profiling and sequencing technologies, which allow the understanding of the key molecular nodes of this interplay and identify novel targets as well as intermediate endpoints to monitor the efficacy of intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx

  2. Lynch HT, De La Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.

    Article  CAS  PubMed  Google Scholar 

  3. Eberhart CE, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sinicrope FA, et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology. 1999;117:350–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chan TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol. 2002;3:166–74.

    Article  CAS  PubMed  Google Scholar 

  6. Arber N. Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point. Cancer Epidemiol Biomarkers Prev. 2008;17:1852–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chan AT, et al. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007;356:2131–42.

    Article  CAS  PubMed  Google Scholar 

  8. Liao X, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishihara R, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013;309:2563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinbach G, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52.

    Article  CAS  PubMed  Google Scholar 

  11. Giardiello FM, et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med. 2002;346:1054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch PM, et al. The safety and efficacy of celecoxib in children with familial adenomatous polyposis. Am J Gastroenterol. 2010;105:1437–43.

    Article  CAS  PubMed  Google Scholar 

  13. Nugent KP, et al. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg. 1993;80:1618–9.

    Article  CAS  PubMed  Google Scholar 

  14. Phillips RK, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut. 2002;50:857–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burn J, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378:2081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Burn J, et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med. 2008;359:2567–78.

    Article  CAS  PubMed  Google Scholar 

  17. Solomon SD, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352:1071–80.

    Article  CAS  PubMed  Google Scholar 

  18. Arber N, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355:885–95.

    Article  CAS  PubMed  Google Scholar 

  19. Solomon SD, et al. Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation. 2006;114:1028–35.

    Article  CAS  PubMed  Google Scholar 

  20. Abreu MT, Peek Jr RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(1534–1546):e1533.

    Google Scholar 

  21. Gallimore AM, Godkin A. Epithelial barriers, microbiota, and colorectal cancer. N Engl J Med. 2013;368:282–4.

    Article  CAS  PubMed  Google Scholar 

  22. Shen XJ, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gianotti L, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 2010;16:167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishikawa H, et al. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer. 2005;116:762–7.

    Article  CAS  PubMed  Google Scholar 

  25. Dalmasso G, et al. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5:675–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tojo R, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014;20:15163–76.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu S, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sobhani I, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6:e16393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sobhani I, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therap Adv Gastroenterol. 2013;6:215–29.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balkwill F, et al. Safety of medicines and the use of animals in research. Lancet. 2011;378:127–8.

    Article  PubMed  Google Scholar 

  32. Bronstein-Sitton N, et al. Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat Immunol. 2003;4:957–64.

    Article  CAS  PubMed  Google Scholar 

  33. Bunt SK, et al. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006;176:284–90.

    Article  CAS  PubMed  Google Scholar 

  34. Botta C, et al. Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities. Front Oncol. 2014;4:348.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Farraye FA, et al. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology. 2010;138:746–74. 774 e741–44; quiz e712–43.

    Article  PubMed  Google Scholar 

  36. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.

    Article  CAS  PubMed  Google Scholar 

  37. Erdman SE, et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003;162:691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribatti D, Vacca A. The role of inflammatory cells in angiogenesis in multiple myeloma. Adv Exp Med Biol. 2014;816:361–76.

    Article  CAS  PubMed  Google Scholar 

  39. Mantovani A, et al. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  40. Karczewski J, et al. Role of Th17 lymphocytes in pathogenesis of colorectal cancer. Postepy Hig Med Dosw. 2014;68:42–7.

    Article  Google Scholar 

  41. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12:715–23.

    Article  CAS  PubMed  Google Scholar 

  42. Palmero EI, et al. Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol. 2011;34:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strillacci A, et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009;315:1439–47.

    Article  CAS  PubMed  Google Scholar 

  44. Strillacci A, et al. Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 2013;229:379–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierosandro Tagliaferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ciliberto, D., Fiorillo, L., Iuliano, E., Del Giudice, T., Tagliaferri, P. (2016). Microbiota and Chronic Inflammation as Targets for Colorectal Cancer Prevention. In: Chatterjee, M. (eds) Molecular Targets and Strategies in Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-31254-5_2

Download citation

Publish with us

Policies and ethics