Skip to main content

In Vitro Neuronal Networks

  • Chapter
  • First Online:
  • 613 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the previous chapter, I outlined the evolution of MEA electrophysiology, starting from the very first applications to the most recent developments. Here, I will present an overview of different types of neuronal networks coupled to MEAs. I will start with homogeneous neuronal networks (cf. Sect. 3.1); then I will introduce confined or patterned neuronal networks coupled to MEAs (cf. Sect. 3.2). Finally I will present an overview of the advantages and limitation of this in vitro bi-dimensional model (cf. Sect. 3.3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229

    Article  Google Scholar 

  • Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24(6):353–360

    Article  Google Scholar 

  • Branch DW, Corey JM et al (1998) Microstamp patterns of biomolecules for high-resolution neuronal networks. Med Biol Eng Comput 36:135–141

    Article  Google Scholar 

  • Brewer GJ, Boehler MD et al (2009a) Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates. J Neurosci Methods 184(1):104–109

    Article  Google Scholar 

  • Brewer GJ, Boehler MD et al (2009b) Neuron network activity scales exponentially with synapse density. J Neural Eng 6(1):014001

    Article  Google Scholar 

  • Chiappalone M, Bove M et al (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 1093(1):41–53

    Article  Google Scholar 

  • Chub N, O’Donovan MJ (1998) Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J Neurosci 18(1):294–306

    Google Scholar 

  • Corey JM, Brewer GJ et al (1996) Micrometer resolution silane-based patterning of hippocampal neurons: critical variables in photoresist and laser ablation process for substrate fabrication. IEEE Trans Biomed Eng 43:944–955

    Article  Google Scholar 

  • Cullen DK, Wolf JA et al (2011) Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (part 1). Crit Rev Biomed Eng 39(3):201–240

    Article  Google Scholar 

  • Dranias MR, Ju H et al (2013) Short-term memory in networks of dissociated cortical neurons. J Neurosci Off J Soc Neurosci 33(5):1940–1953

    Article  Google Scholar 

  • Dulcey CS, George JM et al (1991) Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecules assemblies. Science 252:551–554

    Article  Google Scholar 

  • Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26(33):8465–8476

    Article  Google Scholar 

  • Gal A, Eytan D et al (2010) Dynamics of excitability over extended timescales in cultured cortical neurons. J Neurosci 30(48):16332–16342

    Article  Google Scholar 

  • Gandolfo M, Maccione A et al (2010) Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. J Neural Eng 7(5):056001

    Article  Google Scholar 

  • Georger JH, Stenger DA et al (1992) Coplanar patterns of self-assembled monolayers for selective cell-adhesion and outgrowth. Thin Solid Films 210(11):716–719

    Article  Google Scholar 

  • Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27

    Article  Google Scholar 

  • Jimbo Y, Robinson HP et al (1993) Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture. IEEE Trans Biomed Eng 40(8):804–810

    Article  Google Scholar 

  • Johnstone AF, Gross GW et al (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350

    Article  Google Scholar 

  • Kamioka H, Maeda E et al (1996) Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci Lett 206(2–3):109–112

    Article  Google Scholar 

  • Kanagasabapathi TT, Ciliberti D et al (2011) Dual-compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture. Front Neuroeng 4:13

    Google Scholar 

  • Kanagasabapathi TT, Massobrio P et al (2012) Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. J Neural Eng 9(3):036010

    Article  Google Scholar 

  • Lee KB, Park SJ et al (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560):1702–1705

    Article  Google Scholar 

  • Letourneau P (1975) Possible roles of cell to substratum adhesion in neuronal morphogenesis. Dev Biol 44:77–91

    Article  Google Scholar 

  • Lin YC, Hung Z-H et al (2002) Development of excitatory synapses in cultured neurons dissociated from the cortices of rat embryos and rat pups at birth. J Neurosci Res 67:484–493

    Article  Google Scholar 

  • Ma W, Liu QY et al (1998) Central neuronal synapse formation on micropatterned surfaces. Dev Brain Res 111:231–243

    Article  Google Scholar 

  • Macis E, Tedesco M et al (2007) An automated microdrop delivery system for neuronal network patterning on microelectrode arrays. J Neurosci Methods 161(1):88–95

    Article  Google Scholar 

  • Marconi E, Nieus T et al (2012) Emergent functional properties of neuronal networks with controlled topology. PLoS ONE 7(4):e34648

    Article  Google Scholar 

  • Marguet SL, Harris KD (2011) State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J Neurosci 31(17):6414–6420

    Article  Google Scholar 

  • Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 35(1):63–87

    Article  Google Scholar 

  • Muramoto K, Ichikawa M et al (1993) Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neurosci Lett 163(2):163–165

    Article  Google Scholar 

  • Piner RD, Zhu J et al (1999) “Dip-Pen” nanolithography. Science 283(5402):661–663

    Article  Google Scholar 

  • Rolston JD, Wagenaar DA et al (2007) Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience 148(1):294–303

    Article  Google Scholar 

  • Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci 21(22):8782–8788

    Google Scholar 

  • Sporns O (2011) The human connectome: a complex network. Ann NY Acad Sci 1224:109–125

    Article  Google Scholar 

  • Sporns O, Tononi G (2001) Classes of network connectivity and dynamics. Complexity 7(1):28–38

    Article  MathSciNet  Google Scholar 

  • Suzuki I, Sugio Y et al (2004) Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture. J Nanobiotechnol 2(1):7

    Article  Google Scholar 

  • Suzuki I, Sugio Y et al (2005) Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement. Lab Chip 5(3):241–247

    Article  Google Scholar 

  • Timofeev I, Grenier F et al (2000a) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex (New York, NY: 1991) 10(12):1185–1199

    Google Scholar 

  • Timofeev I, Grenier F et al (2000b) Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J Phys Paris 94(5–6):343–355

    Article  Google Scholar 

  • Torimitsu KKA (1990) Selective outgrowth of sensory nerve fibers on metal oxide pattern in culture. Dev Brain Res 51:128–131

    Article  Google Scholar 

  • Van Pelt J, Corner MA et al (2004a) Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multi-electrode arrays. Neurosci Lett 361(1–3):86–89

    Article  Google Scholar 

  • Van Pelt J, Wolters PS et al (2004b) Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans Biomed Eng 51(11):2051–2062

    Article  Google Scholar 

  • Vogt AK, Wrobel G et al (2005) Synaptic plasticity in micropatterned neuronal networks. Biomaterials 26(15):2549–2557

    Article  Google Scholar 

  • Wagenaar DA, Madhavan R et al (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25(3):680–688

    Article  Google Scholar 

  • Wagenaar DA, Nadasdy Z et al (2006) Persistent dynamic attractors in activity patterns of cultured neuronal networks. Phys Rev E: Stat, Nonlin, Soft Matter Phys 73(5 Pt 1):051907

    Article  MathSciNet  Google Scholar 

  • Wilson DL, Martin R et al (2001) Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc Natl Acad Sci USA 98(24):13660–13664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Frega .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frega, M. (2016). In Vitro Neuronal Networks. In: Neuronal Network Dynamics in 2D and 3D in vitro Neuroengineered Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-30237-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30237-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30236-2

  • Online ISBN: 978-3-319-30237-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics