
Chapter 12
Anomaly Detection with HTM

We model information and communications technology (ICT) systems as complex
adaptive systems. Since we cannot hope to predict all future incidents in complex
systems, real-timemonitoring is needed to detect local failures before they propagate
into global failures with an intolerable impact. In particular, monitoring is required
to determine the consequences of injecting artificial errors into production systems
and to learn how to avoid or limit the impact of future incidents.

In Part II we argued that anti-fragile ICT solutions in the cloud should have a
service-oriented architecture with microservices, preferably created by development
andoperations (DevOps) teams. Sincemicroservices dependonmuch fewer variables
than a complete system, it is possible to monitor and diagnose microservice failures.
However, the ability to monitor these services does not come for free [53]. DevOps
teams need monitoring and logging setups for each type of microservice showing the
up/down status, current throughput and latency, and details on circuit breaker status.

In this chapter, we discuss what an anomaly means and how the hierarchical
temporal memory (HTM) learning algorithm detects anomalies in data streams. The
HTM algorithm can be applied to many different types of data streams. Grok is an
application that Numenta built on top of the Numenta Platform for Intelligent Com-
puting (NuPIC) implementation of HTM (http://numenta.org/nupic.html) to detect
anomalies in metric data provided by the AmazonWeb Services (AWS) cloud. Here,
we examine how Grok detects and displays anomalies in AWS streaming data. We
then study how HTM detects rogue human behavior. The chapter is mostly based
on information provided by Numenta [109, 110], including talks by Ahmad (http://
youtube.com/watch?v=nVCKjZWYavM) and Purdy (http://youtube.com/watch?v=
I5lSEHvngaI).

12.1 Anomalies

Complex ICT systems generate much data about their own operations. Cloud solu-
tions are no exception. In fact, cloud providers offer services that allow solution own-
ers to easily access operational data from their own cloud applications. The Internet
© The Author(s) 2016
K.J. Hole, Anti-fragile ICT Systems, Simula SpringerBriefs on Computing 1,
DOI 10.1007/978-3-319-30070-2_12

125

http://numenta.org/nupic.html
http://youtube.com/watch?v=nVCKjZWYavM
http://youtube.com/watch?v=nVCKjZWYavM
http://youtube.com/watch?v=I5lSEHvngaI
http://youtube.com/watch?v=I5lSEHvngaI


126 12 Anomaly Detection with HTM

of Things will likely lead to a huge increase in sensors generating continuous data
streams about the status of both natural and man-made systems. The many data
streams from current and future systems will make it impossible to analyze all the
data in detail. One interesting alternative is to look for anomalies in the streams to
detect the beginning of failures. There is evidence that it is possible to detect the
beginning of large failures in different types of complex adaptive systems before the
impact becomes intolerable [111, 112].

Anomalies are data patterns that do not conform to expected behavior [113].Adata
stream of patterns can have several types of anomalies. A spatial (static) anomaly
is a single pattern or set of relatively closely spaced patterns in the data stream
that deviates from what is standard, normal, or expected. A temporal anomaly is a
set of surprising transitions between patterns. Note that it is the temporal sequence
that is surprising, not the individual patterns themselves. If the patterns in a stream
are highly random, then it is hard or even impossible to detect spatial and temporal
anomalies. However, it is possible to detect a change in the distribution of the random
data, denoted a distribution anomaly. All three types of anomalies are temporary
anomalies. When a surprising change first appears, then it is an anomaly. If it appears
multiple times, then it is the “new normal” and ceases to be an anomaly.

12.2 HTM Anomaly Score

The Grok application built on top of HTM detects spatial, temporal, and distribu-
tion anomalies. Since HTM is an online continuous learning system, it will detect
temporary anomalies and quickly learn when they are the new normal. HTM works
for both numerical and categorical input data. The two data types can be mixed in
an input stream to HTM because they are both converted to a sparse distributed
representation (SDR).

HTM calculates an anomaly score for each new pattern it receives [109]. If a
received pattern was predicted, then the anomaly score is zero. If the pattern was
not predicted at all, then the score is one. A partially predicted pattern has a score
between zero and one. The actual score depends on the “similarity” between the
actual received pattern and the predicted pattern. The similarity is determined by the
SDR. The larger the overlap between actual and predicted bits in column space, the
smaller the anomaly score.

If none of the cells in a column were predicted, then all the cells are made active.
This process is referred to as bursting. It occurs when there is no context, that is,
when HTM is learning a new transition. At each time instance, the anomaly score
is simply the fraction given by the number of bursting columns divided by the total
number of active columns. In the beginning of the training, the anomaly score will
be high because most patterns will be new. As HTM learns, the anomaly score will
diminish until there is a change in the pattern stream.



12.3 HTM Anomaly Probabilities 127

Fig. 12.1 Normal
distribution of anomaly
scores divided into typical
values, somewhat
unexpected values, and
anomalies

12.3 HTM Anomaly Probabilities

There are cases where the anomaly score is all that is needed to detect anomalies,
but there are also cases where the anomaly score produces too many false positives
because the metric data are very noisy. To deal with noise, we compute anomaly
probabilities. The anomaly probability values are calculated relative to historical
metric data rather than being absolute measurements of anomalous behavior. In
other words, the goal is to detect changes in the anomaly score itself.

To determine anomaly probabilities, we consider a window of previous calculated
anomaly scores and compute estimates of the expectation and standard deviation of
the values, assuming normally distributed scores. Figure12.1 depicts the right half of
a normal distribution of possible score values.When a new anomaly score arrives, we
estimate how likely the value is using the normal distribution based on the window
of previous values. A new value on the x-axis under the central area of the curve in
Fig. 12.1 is a typical value that we should expect to see often. Typical values of the
anomaly score indicate that the system is operating as desired.

To detect anomalies, we look for values associated with the right tail of the com-
puted normal distribution. Values falling in the beginning of the tail in Fig. 12.1 are
somewhat unusual, while values further out in the tail represent anomalous behavior.
Because the distribution of the anomaly scores can change over time, the estimates
of the expectation and standard deviation of the normal distribution are recalculated
as the window slides over the previously received scores.

12.4 Grok the Cloud

The word grok was coined by Robert A. Heinlein in his 1961 science fiction novel
Stranger in a Strange Land. To grok means to understand so thoroughly that the
observer becomes a part of the observed. Numenta has built an application called
Grok on top of the NuPIC implementation of HTM to detect anomalies in metric
data from the AWS cloud. The application utilizes HTM to learn streaming metrics



128 12 Anomaly Detection with HTM

Fig. 12.2 While the blue
curve showing CPU
utilization looks normal to
humans, Grok detected an
anomaly (picture from [109])

from virtual machine clusters and to identify anomalies in these metrics. Grok builds
a separate model for each monitored AWS metric. The metric values are combined
with timestamps to allow Grok to learn patterns related to the time of day or the
day of the week. To reduce the number of false positives, Grok calculates anomaly
probabilities.

Figure12.2 shows a part of the Grok user interface. The blue graph with the black
background shows the CPU utilization of a virtual machine in the AWS cloud. The
corresponding anomaly score is shown directly below. Grok uses color-coded bars
to depict anomaly scores. The color and height of a bar have the same meaning,
making it easier to see anomalies. The three types of anomaly probabilities, typical,
somewhat unusual, and anomalies (see Fig. 12.1), are used to color the bars. Red
represents an anomaly, a highly improbable score with a probability around 0.001%.
Yellow and green represent progressively more common scores.

The example in Fig. 12.2 illustrates that Grok can detect anomalies that are hard
for a human to see in a raw metric stream. When it is not obvious why Grok flagged
an anomaly, an operator can view the anomaly scores of other AWS metrics to gain
more insight. Since Grok builds an independent model for each monitored metric
stream, a system operator can obtain several independent confirmations that a virtual
machine has unusual behavior.

In the next example, a load balancer distributes requests from many clients over
a set of servers. The load balancer produces a fairly unpredictable or noisy met-
ric stream showing the latency in serving web pages to clients. The blue curve in
Fig. 12.3 represents the metric values fed into Grok, while the green, yellow, and
red bars represent the anomaly scores colored according to the calculated anomaly
probabilities. The example illustrates that Grok can find anomalies in noisy data.

In Chap.5, we discussed how software engineers induced artificial failures into
Netflix’smedia streaming system to discover vulnerabilities early,when their impacts
are small. Early vulnerability detection allows engineers to improve systems and

http://dx.doi.org/10.1007/978-3-319-30070-2_5


12.4 Grok the Cloud 129

Fig. 12.3 An anomalous
pattern detected within a
noisy metric stream from a
load balancer (picture from
[109])

Fig. 12.4 A process to
detect and mitigate the
impact of induced (and
natural) failures in virtual
machines (VMs)

avoid failures with intolerable impacts. The flow diagram in Fig. 12.4 illustrates how
Grok can be integrated into a process to detect and mitigate the impact of induced
(and natural) failures in applications running in the AWS cloud. How the learn-
ing/mitigation step will be carried out depends on the application being monitored.
Today, this step is carried out by humans. In the future, it may be possible to automate
at least part of the step.

12.5 Rogue Behavior

Numenta has developed an application for rogue behavior detection (RBD) based
on HTM [110]. Using human- and machine-generated data, the RBD application
automatically models an individual’s behavior and identifies irregular actions. This
anomaly detection of irregular human behavior is useful for ICT security, device
access control, and fraud detection.

The RBD application has several attractive properties due to HTM. First, it is not
necessary to divide employees into classes and define what normal behavior is for
each class. Furthermore, there is no need for a separate training period or retraining,
since employee behavior changes over time. The application learns continuously in



130 12 Anomaly Detection with HTM

Fig. 12.5 An employee
anomaly (picture from [110])

real time and builds a separate model for each monitored individual, thus achieving
high-precision anomaly detection for all individuals. The same high-quality detection
is generally not possible with class-based monitoring. Finally, real-time anomaly
detection enables quick corrective actions to avoid or at least reduce the negative
consequences of illegal actions.

Figure12.5 shows part of the user interface for the RBD application. The senior
analyst monitored, Diana Lucero, is part of an experiment to test the application.
She exhibits unusual behavior at 11a.m. Drilling down to see the anomaly scores
for the individual metric streams, we find spikes in both the file activity and CPU
usage. Further investigation finds that the RBD application reacted because the ana-
lyst generated and stored a large .zip file containing intellectual property. The early
detection of this activity made it possible to stop the analyst from transmitting the
file to a third party.

12.6 Detecting the Beginning of Swans

In this book, we have assumed that there is no fundamental difference between
frequent incidents with a tolerable impact and rare incidents with an intolerable
impact, called swans. Most swans simply start out as local incidents that do not stop
but propagate due to positive feedback loops. According to Sect. 2.3, to predict any
future incident, we must describe the event, estimate its probability, and calculate
the impact. In Chap. 2, we argued that humans have limited ability to predict swans.

http://dx.doi.org/10.1007/978-3-319-30070-2_2
http://dx.doi.org/10.1007/978-3-319-30070-2_2


12.6 Detecting the Beginning of Swans 131

It is unlikely that a group of stakeholders will predict all potential swans in a complex
adaptive ICT system, even if they use significant resources in classical risk analysis.

At the time of this writing, the detection of catastrophic events in real time is an
active area of research [111, 112]. Because global or emergent failures very often start
out as local failures in complex ICT systems, it is possible to detect the beginning of
a swan in real time, even though we may not immediately understand the underlying
reasons for its occurrence. HTM detects unlikely behavior by observing the fraction
of bursting cell columns. Because HTM can be applied to different data streams, it
can detect the beginning of swans in different types of complex ICT systems. It is still
essential to realize the four design principles in Chap. 4 to avoid positive feedback
loops that quickly propagate local failures into global failures before countermeasures
can be introduced.

12.7 Discussion and Summary

Government agencies regulate many complex adaptive ICT systems of national
importance. Unfortunately, it is very hard for a regulator to gain an adequate under-
standing of a complex ICT system without being closely involved in its design and
daily operation. A regulator can set all kinds of non-functional requirements but
cannot discover system fragilities or request useful improvements from afar. Regu-
lation and compliance really only make sense for relatively simple systems that have
one best method of working [18]. There will always be a significant gap between a
regulator’s understanding of a complex ICT system and the way it really operates.
This gap must be filled by other stakeholders. This is particularly true for complex
ICT systems with microservice architectures.

For a system to achieve anti-fragility to a class of negative events, stakeholders
must monitor the operation of the microservices, especially their outputs, and detect
anomalies. While information technology (IT) departments know how to monitor
monolithic applications with single executables, it is more challenging to monitor
applications of microservices running in clouds and communicating over network
connections. Since a solutionmay fail even though all its microservices work accord-
ing to their specifications (see Sect. 4.6), it may be necessary to trace the communi-
cation between services to understand why a particular service received input values
for which it was not designed. Furthermore, there are many network connections
where latency could cause intermediate problems. Hence, sophisticated monitoring
of a large number of microservices and their communications is needed to detect
anomalies, determine failures, and create anti-fragile solutions.

A comprehensive comparison of different techniques to detect anomalies in
streaming data is outside the scope of this book. We have only illustrated how HTM
detects anomalies in two domains. However, the performance results of Price [97],
Galetzka [98], and Numenta [109, 110] strongly indicate that HTM is a good choice
for anomaly detection in streaming data. In 2015, Numenta published source code
and test data to compare the performance of anomaly detection algorithms. The initial

http://dx.doi.org/10.1007/978-3-319-30070-2_4
http://dx.doi.org/10.1007/978-3-319-30070-2_4


132 12 Anomaly Detection with HTM

results show that the HTM algorithm detects anomalies earlier than other popular
algorithms (http://github.com/Numenta/NAB). If we have good anomaly detectors
connected to a complex adaptive ICT system, then we can detect anomalies before
the whole system breaks down. We have seen that HTM is able to detect changes
before it is obvious to a human that a new problem is brewing.

A reader interested in more information about anomaly detection with HTM, as
well as more examples detecting sudden, slow, and subtle anomalies, should study
Numenta’s two white papers [109, 110]. At the time of this writing, is also possible
to use Grock for IT analytics and Grok for stocks on the Web.

What to learn from Part IV

Part IV introduced a novel learning algorithm based on Hawkins’ HTM theory.
HTM explains how the neocortex learns by modeling and processing data from
the body’s sensory organs. We concentrated on understanding how the HTM
learning algorithm can detect anomalies in complex adaptive ICT systems.
While most anomaly detection techniques are created to determine anomalies
in data stored in databases, HTM finds anomalies in real-time streaming data.
There is no need to store huge amounts of data since HTM builds models rep-
resenting the properties of the data.

The ability to process streaming data makes the HTM learning algorithm
ideal for applications running on cloud platforms since leading cloud providers
offer services that stream metrics about an application’s state. HTM’s ability to
process streaming data from a huge number of sensors also makes the algorithm
perfect for monitoring the Internet of Things. While the current version of HTM
is implemented in software, a hardware implementation is needed to seriously
scale the algorithm’s operation.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-

Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any

noncommercial use, distribution, and reproduction in any medium, provided the original author(s)

and source are credited.

The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included

in the work’s Creative Commons license and the respective action is not permitted by statutory

regulation, users will need to obtain permission from the license holder to duplicate, adapt or

reproduce the material.

http://github.com/Numenta/NAB
http://creativecommons.org/licenses/by-nc/2.5/

	12 Anomaly Detection with HTM
	12.1 Anomalies
	12.2 HTM Anomaly Score
	12.3 HTM Anomaly Probabilities
	12.4 Grok the Cloud
	12.5 Rogue Behavior
	12.6 Detecting the Beginning of Swans
	12.7 Discussion and Summary


